blob: 6d39be41fdd5f33cf07287461ab4db93658b8d74 [file] [log] [blame]
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import ctypes
import typing
from typing import Dict, List, Type
import torch
import torch.fx
from executorch.bundled_program.config import (
BundledConfig,
ConfigExecutionPlanTest,
ConfigValue,
)
from executorch.bundled_program.schema import (
BundledBool,
BundledDouble,
BundledExecutionPlanTest,
BundledInt,
BundledIOSet,
BundledProgram,
BundledTensor,
BundledValue,
)
from executorch.bundled_program.version import BUNDLED_PROGRAM_SCHEMA_VERSION
from executorch.exir.schema import (
Bool,
Double,
ExecutionPlan,
Int,
KernelTypes,
Program,
Tensor,
)
from executorch.exir.serialize import serialize_to_flatbuffer
from executorch.exir.tensor import get_scalar_type, scalar_type_enum, TensorSpec
# pyre-ignore
supported_program_type_table: Dict[Type[KernelTypes], ConfigValue] = {
Tensor: torch.Tensor,
Int: int,
Double: float,
Bool: bool,
}
def emit_bundled_tensor(spec: TensorSpec, bundled_values: List[BundledValue]) -> None:
# QuantizedSchema in tensor has deprecated and may not be used anymore.
# So here we don't emit it.
if spec.allocated_memory == 0:
tensor_data: bytes = b""
else:
array_type = (
ctypes.c_char * typing.cast(torch.UntypedStorage, spec.storage).nbytes()
)
spec_array = ctypes.cast(
typing.cast(torch.UntypedStorage, spec.storage).data_ptr(),
ctypes.POINTER(array_type),
).contents
tensor_data: bytes = bytes(spec_array)
bundled_values.append(
BundledValue(
val=BundledTensor(
scalar_type=scalar_type_enum(spec.dtype),
sizes=spec.shape,
data=tensor_data,
dim_order=list(spec.dim_order),
),
)
)
def emit_prim(val: ConfigValue, bundled_values: List[BundledValue]):
if type(val) == int:
bundled_values.append(BundledValue(val=BundledInt(int_val=val)))
elif type(val) == bool:
bundled_values.append(BundledValue(val=BundledBool(bool_val=val)))
elif type(val) == float:
bundled_values.append(BundledValue(val=BundledDouble(double_val=val)))
else:
assert 0, "Unsupported primitive type received."
def get_program_input(program: Program, plan_idx: int, input_idx: int) -> KernelTypes:
return (
program.execution_plan[plan_idx]
.values[program.execution_plan[plan_idx].inputs[input_idx]]
.val
)
def get_program_output(program: Program, plan_idx: int, output_idx: int) -> KernelTypes:
return (
program.execution_plan[plan_idx]
.values[program.execution_plan[plan_idx].outputs[output_idx]]
.val
)
def get_input_dtype(program: Program, plan_idx: int, input_idx: int) -> torch.dtype:
# pyre-fixme[16]: now assert all input and outputs is in tenor type. Support multuple datatypes in the future.
return get_scalar_type(get_program_input(program, plan_idx, input_idx).scalar_type)
def get_input_type(program: Program, plan_idx: int, input_idx: int) -> type:
type_lookup = {Int: int, Bool: bool, Double: float}
# pyre-fixme[6]: Incompatible parameter type [6]: In call `dict.__getitem__`, for 1st positional only parameter
# expected `Type[Union[Bool, Double, Int]]` but got `Type[Union[Bool, Double, Int, Tensor, BoolList, DoubleList,
# IntList, Null, OptionalTensorList, String, TensorList]]`.
return type_lookup[type(get_program_input(program, plan_idx, input_idx))]
def get_output_dtype(program: Program, plan_idx: int, output_idx: int) -> torch.dtype:
return get_scalar_type(
# pyre-ignore[16]: now assert all outputs is in tensor type.
get_program_output(program, plan_idx, output_idx).scalar_type
)
def assert_valid_bundle(
program: Program,
bundled_config: BundledConfig,
) -> None:
"""Check if the program and BundledConfig matches each other.
Other checks not related to correspondence are done in config.py
Args:
program: The program to be bundled.
bundled_config: The config to be bundled.
"""
# Check the number of execution plan tests
assert len(bundled_config.execution_plan_tests) == len(
program.execution_plan
), "The length of execution_plan_tests in config should match the length of execution_plan in program, but get {} and {}.".format(
len(bundled_config.execution_plan_tests), len(program.execution_plan)
)
# Check if the inputs' type meet Program's requirement
for plan_id in range(len(program.execution_plan)):
plan_test: ConfigExecutionPlanTest = bundled_config.execution_plan_tests[
plan_id
]
plan: ExecutionPlan = program.execution_plan[plan_id]
# Check if the type of Program's input is supported
for index in range(len(plan.inputs)):
assert (
type(get_program_input(program, plan_id, index))
in supported_program_type_table
), "The type of program's input isn't supported."
# Check if the type of Program's output is supported
for index in range(len(plan.outputs)):
assert (
type(get_program_output(program, plan_id, index)) == Tensor
), "Only supports program with output in Tensor type."
# Check if the I/O sets of each execution plan test match program's requirement.
for i in range(len(plan_test.test_sets)):
cur_plan_test_inputs = plan_test.test_sets[i].inputs
cur_plan_test_expected_outputs = plan_test.test_sets[i].expected_outputs
assert len(plan.inputs) == len(
cur_plan_test_inputs
), "The number of input in each bundled set and Program shall equal, but get {} and {}".format(
len(plan.inputs),
len(cur_plan_test_inputs),
)
# Check if bundled input in the current exeution plan test share same type as input in Program
for j in range(len(cur_plan_test_inputs)):
assert (
type(cur_plan_test_inputs[j])
== supported_program_type_table[
type(get_program_input(program, plan_id, j))
]
), "The type {}-th input in {}-th test set of {}-th execution plan does not meet Program's requirement: expected {} but get {}".format(
j,
i,
plan_id,
supported_program_type_table[
type(get_program_input(program, plan_id, j))
],
type(cur_plan_test_inputs[j]),
)
# type of tensor input should match execution plan
if type(cur_plan_test_inputs[j]) == torch.Tensor:
# pyre-fixme[16]: Undefined attribute [16]: Item `bool` of `typing.Union[bool, float, int, torch._tensor.Tensor]`
# has no attribute `dtype`.
assert cur_plan_test_inputs[j].dtype == get_input_dtype(
program, plan_id, j
), "The input tensor {} dtype shall be {}, but now is {}".format(
cur_plan_test_inputs[j],
get_input_dtype(program, plan_id, j),
cur_plan_test_inputs[j].dtype,
)
elif type(cur_plan_test_inputs[j]) in (
int,
bool,
float,
):
assert type(cur_plan_test_inputs[j]) == get_input_type(
program, plan_id, j
), "The input primitive dtype shall be {}, but now is {}".format(
get_input_type(program, plan_id, j),
type(cur_plan_test_inputs[j]),
)
# Check if bundled expected output in the current exeution plan test share same type as output in Program
for j in range(len(cur_plan_test_expected_outputs)):
# pyre-fixme[16]: Undefined attribute [16]: Item `bool` of `typing.Union[bool, float, int, torch._tensor.Tensor]`
# has no attribute `dtype`.
assert cur_plan_test_expected_outputs[j].dtype == get_output_dtype(
program, plan_id, j
), "The label tensor {} dtype shall be {}, but now is {}".format(
cur_plan_test_expected_outputs[j],
get_output_dtype(program, plan_id, j),
cur_plan_test_expected_outputs[j].dtype,
)
def create_bundled_program(
program: Program,
bundled_config: BundledConfig,
) -> BundledProgram:
"""Create BundledProgram by bundling the given program and bundled_config together.
Args:
program: The program to be bundled.
bundled_config: The config to be bundled.
"""
assert_valid_bundle(program, bundled_config)
execution_plan_tests: List[BundledExecutionPlanTest] = []
# Emit data and metadata of bundled tensor
for plan_id in range(len(program.execution_plan)):
plan_test: ConfigExecutionPlanTest = bundled_config.execution_plan_tests[
plan_id
]
test_sets: List[BundledIOSet] = []
# emit I/O sets for each execution plan test
for i in range(len(plan_test.test_sets)):
inputs: List[BundledValue] = []
expected_outputs: List[BundledValue] = []
cur_plan_test_inputs = plan_test.test_sets[i].inputs
cur_plan_test_expected_outputs = plan_test.test_sets[i].expected_outputs
for input_val in cur_plan_test_inputs:
if type(input_val) == torch.Tensor:
emit_bundled_tensor(
TensorSpec.from_tensor(input_val, const=True),
inputs,
)
else:
emit_prim(
input_val,
inputs,
)
for expected_output_tensor in cur_plan_test_expected_outputs:
assert (
type(expected_output_tensor) == torch.Tensor
), "Only tensor outputs are currently supported."
emit_bundled_tensor(
TensorSpec.from_tensor(expected_output_tensor, const=True),
expected_outputs,
)
test_sets.append(
BundledIOSet(inputs=inputs, expected_outputs=expected_outputs)
)
# emit meta data of each execution plan test, and emit the whole execution plan test
execution_plan_tests.append(
BundledExecutionPlanTest(test_sets=test_sets, metadata=plan_test.metadata)
)
program_bytes: bytes = serialize_to_flatbuffer(program)
return BundledProgram(
version=BUNDLED_PROGRAM_SCHEMA_VERSION,
attachments=bundled_config.attachments,
execution_plan_tests=execution_plan_tests,
program=program_bytes,
)