blob: 1a748bb45e127b178b740f13e9110c0e9db5b4a7 [file] [log] [blame]
# Copyright (c) Qualcomm Innovation Center, Inc.
# All rights reserved
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os
import subprocess
import sys
from pathlib import Path
from typing import Callable, List, Optional
import numpy as np
import torch
from executorch.backends.qualcomm.partition.qnn_partitioner import QnnPartitioner
from executorch.backends.qualcomm.quantizer.quantizer import (
get_16a4w_qnn_ptq_config,
get_default_16bit_qnn_ptq_config,
QnnQuantizer,
QuantDtype,
)
from executorch.backends.qualcomm.serialization.qnn_compile_spec_schema import (
QcomChipset,
)
from executorch.backends.qualcomm.utils.utils import (
capture_program,
generate_htp_compiler_spec,
generate_qnn_executorch_compiler_spec,
)
from executorch.exir import EdgeCompileConfig, EdgeProgramManager
from executorch.exir.backend.backend_api import to_backend
from executorch.exir.capture._config import ExecutorchBackendConfig
from executorch.exir.passes.memory_planning_pass import MemoryPlanningPass
from torch.ao.quantization.observer import MovingAverageMinMaxObserver
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
class SimpleADB:
"""
A wrapper class for communicating with Android device
Attributes:
qnn_sdk (str): QNN SDK path setup in environment variable
build_path (str): Path where artifacts were built
pte_path (str): Path where executorch binary was stored
workspace (str): Folder for storing artifacts on android device
device_id (str): Serial number of android device
soc_model (str): Chipset of device
host_id (str): Hostname of machine where device connects
error_only (bool): Redirect stdio and leave error messages only
shared_buffer (bool): Apply zero-copy mechanism in runtime
runner (str): Runtime executor binary
"""
def __init__(
self,
qnn_sdk,
build_path,
pte_path,
workspace,
device_id,
soc_model,
host_id=None,
error_only=False,
shared_buffer=False,
runner="examples/qualcomm/executor_runner/qnn_executor_runner",
):
self.qnn_sdk = qnn_sdk
self.build_path = build_path
self.pte_path = pte_path if isinstance(pte_path, list) else [pte_path]
self.workspace = workspace
self.device_id = device_id
self.host_id = host_id
self.working_dir = Path(self.pte_path[0]).parent.absolute()
self.input_list_filename = "input_list.txt"
self.etdump_path = f"{self.workspace}/etdump.etdp"
self.output_folder = f"{self.workspace}/outputs"
self.arch_table = {
"SM8650": "75",
"SM8550": "73",
"SM8475": "69",
"SM8450": "69",
}
self.soc_model = self.arch_table[soc_model]
self.error_only = error_only
self.shared_buffer = shared_buffer
self.runner = runner
def _adb(self, cmd):
if not self.host_id:
cmds = ["adb", "-s", self.device_id]
else:
cmds = ["adb", "-H", self.host_id, "-s", self.device_id]
cmds.extend(cmd)
subprocess.run(
cmds, stdout=subprocess.DEVNULL if self.error_only else sys.stdout
)
def push(self, inputs=None, input_list=None, files=None):
self._adb(["shell", f"rm -rf {self.workspace}"])
self._adb(["shell", f"mkdir -p {self.workspace}"])
# necessary artifacts
artifacts = [
*self.pte_path,
f"{self.qnn_sdk}/lib/aarch64-android/libQnnHtp.so",
(
f"{self.qnn_sdk}/lib/hexagon-v{self.soc_model}/"
f"unsigned/libQnnHtpV{self.soc_model}Skel.so"
),
(
f"{self.qnn_sdk}/lib/aarch64-android/"
f"libQnnHtpV{self.soc_model}Stub.so"
),
f"{self.qnn_sdk}/lib/aarch64-android/libQnnHtpPrepare.so",
f"{self.qnn_sdk}/lib/aarch64-android/libQnnSystem.so",
f"{self.build_path}/{self.runner}",
f"{self.build_path}/backends/qualcomm/libqnn_executorch_backend.so",
]
input_list_file, input_files = generate_inputs(
self.working_dir, self.input_list_filename, inputs, input_list
)
if input_list_file is not None:
# prepare input list
artifacts.append(input_list_file)
for artifact in artifacts:
self._adb(["push", artifact, self.workspace])
# input data
for file_name in input_files:
self._adb(["push", file_name, self.workspace])
# custom files
if files is not None:
for file_name in files:
self._adb(["push", file_name, self.workspace])
def execute(self, custom_runner_cmd=None):
self._adb(["shell", f"mkdir -p {self.output_folder}"])
# run the delegation
if custom_runner_cmd is None:
qnn_executor_runner_args = " ".join(
[
f"--model_path {os.path.basename(self.pte_path[0])}",
f"--output_folder_path {self.output_folder}",
f"--input_list_path {self.input_list_filename}",
f"--etdump_path {self.etdump_path}",
"--shared_buffer" if self.shared_buffer else "",
]
)
qnn_executor_runner_cmds = " ".join(
[
f"cd {self.workspace} &&",
"export ADSP_LIBRARY_PATH=. &&",
"export LD_LIBRARY_PATH=. &&",
f"./qnn_executor_runner {qnn_executor_runner_args}",
]
)
else:
qnn_executor_runner_cmds = custom_runner_cmd
self._adb(["shell", f"{qnn_executor_runner_cmds}"])
def pull(self, output_path, callback=None):
self._adb(["pull", "-a", self.output_folder, output_path])
if callback:
callback()
def pull_etdump(self, output_path, callback=None):
self._adb(["pull", self.etdump_path, output_path])
if callback:
callback()
# TODO: refactor to support different backends
def build_executorch_binary(
model, # noqa: B006
inputs, # noqa: B006
soc_model,
file_name,
dataset: List[torch.Tensor] | Callable[[torch.fx.GraphModule], None],
custom_annotations=(),
skip_node_id_set=None,
skip_node_op_set=None,
quant_dtype: Optional[QuantDtype] = None,
per_channel_linear=False, # TODO: remove this once QNN fully supports linear
shared_buffer=False,
metadata=None,
act_observer=MovingAverageMinMaxObserver,
):
if quant_dtype is not None:
quantizer = QnnQuantizer()
quantizer.add_custom_quant_annotations(custom_annotations)
quantizer.set_per_channel_linear_quant(per_channel_linear)
quantizer.set_per_channel_conv_quant(True)
if quant_dtype == QuantDtype.use_8a8w:
pass # default setting
elif quant_dtype == QuantDtype.use_16a16w:
quantizer.add_16bit_quant_ops(quantizer.SUPPORTED_OPS)
quantizer.set_bit16_op_quant_config(
get_default_16bit_qnn_ptq_config(act_observer=act_observer)
)
elif quant_dtype == QuantDtype.use_16a4w:
quantizer.add_16bit_quant_ops(quantizer.SUPPORTED_OPS)
quantizer.set_bit16_op_quant_config(
get_16a4w_qnn_ptq_config(act_observer=act_observer)
)
quantizer.set_per_channel_weight_dtype(weight_dtype_for_16bit_act="int4")
else:
raise AssertionError(f"No support for QuantDtype {quant_dtype}.")
captured_model = torch.export.export(model, inputs).module()
annotated_model = prepare_pt2e(captured_model, quantizer)
print("Quantizing the model...")
# calibration
if callable(dataset):
dataset(annotated_model)
else:
for data in dataset:
annotated_model(*data)
quantized_model = convert_pt2e(annotated_model)
edge_prog = capture_program(quantized_model, inputs)
else:
edge_prog = capture_program(model, inputs)
arch_table = {
"SM8650": QcomChipset.SM8650,
"SM8550": QcomChipset.SM8550,
"SM8475": QcomChipset.SM8475,
"SM8450": QcomChipset.SM8450,
}
backend_options = generate_htp_compiler_spec(
use_fp16=False if quant_dtype else True
)
qnn_partitioner = QnnPartitioner(
generate_qnn_executorch_compiler_spec(
soc_model=arch_table[soc_model],
backend_options=backend_options,
debug=False,
saver=False,
shared_buffer=shared_buffer,
profile=False,
),
skip_node_id_set,
skip_node_op_set,
)
executorch_config = ExecutorchBackendConfig(
# For shared buffer, user must pass the memory address
# which is allocated by RPC memory to executor runner.
# Therefore, won't want to pre-allocate
# by memory manager in runtime.
memory_planning_pass=MemoryPlanningPass(
memory_planning_algo="greedy",
alloc_graph_input=not shared_buffer,
alloc_graph_output=not shared_buffer,
),
extract_delegate_segments=True,
)
if metadata is None:
edge_prog.exported_program = to_backend(
edge_prog.exported_program, qnn_partitioner
)
edge_prog.exported_program.graph_module.graph.print_tabular()
exec_prog = edge_prog.to_executorch(config=executorch_config)
with open(f"{file_name}.pte", "wb") as file:
file.write(exec_prog.buffer)
else:
edge_prog_mgr = EdgeProgramManager(
edge_programs={"forward": edge_prog.exported_program},
constant_methods=metadata,
compile_config=EdgeCompileConfig(_check_ir_validity=False),
)
edge_prog_mgr = edge_prog_mgr.to_backend(qnn_partitioner)
exec_prog_mgr = edge_prog_mgr.to_executorch(config=executorch_config)
with open(f"{file_name}.pte", "wb") as file:
file.write(exec_prog_mgr.buffer)
def make_output_dir(path: str):
if os.path.exists(path):
for f in os.listdir(path):
os.remove(os.path.join(path, f))
os.removedirs(path)
os.makedirs(path)
def topk_accuracy(predictions, targets, k):
def solve(prob, target, k):
_, indices = torch.topk(prob, k=k, sorted=True)
golden = torch.reshape(target, [-1, 1])
correct = (golden == indices) * 1.0
top_k_accuracy = torch.mean(correct) * k
return top_k_accuracy
cnt = 0
for index, pred in enumerate(predictions):
cnt += solve(torch.from_numpy(pred), targets[index], k)
return cnt * 100.0 / len(predictions)
def segmentation_metrics(predictions, targets, classes):
def make_confusion(goldens, predictions, num_classes):
def histogram(golden, predict):
mask = golden < num_classes
hist = np.bincount(
num_classes * golden[mask].astype(int) + predict[mask],
minlength=num_classes**2,
).reshape(num_classes, num_classes)
return hist
confusion = np.zeros((num_classes, num_classes))
for g, p in zip(goldens, predictions):
confusion += histogram(g.flatten(), p.flatten())
return confusion
eps = 1e-6
confusion = make_confusion(targets, predictions, len(classes))
pa = np.diag(confusion).sum() / (confusion.sum() + eps)
mpa = np.mean(np.diag(confusion) / (confusion.sum(axis=1) + eps))
iou = np.diag(confusion) / (
confusion.sum(axis=1) + confusion.sum(axis=0) - np.diag(confusion) + eps
)
miou = np.mean(iou)
cls_iou = dict(zip(classes, iou))
return (pa, mpa, miou, cls_iou)
def setup_common_args_and_variables():
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model",
help="SoC model of current device. e.g. 'SM8550' for Snapdragon 8 Gen 2.",
type=str,
required=True,
)
parser.add_argument(
"-b",
"--build_folder",
help="path to cmake binary directory for android, e.g., /path/to/build-android",
type=str,
required=True,
)
parser.add_argument(
"-H",
"--host",
help="hostname where android device is connected.",
default=None,
type=str,
)
parser.add_argument(
"--ip",
help="IPC address for delivering execution result",
default="",
type=str,
)
parser.add_argument(
"--port",
help="IPC port for delivering execution result",
default=-1,
type=int,
)
parser.add_argument(
"-S",
"--skip_delegate_node_ids",
help="If specified, skip delegation for the specified node based on node ids. Node ids should be seperated by comma. e.g., aten_relu_default_10,aten_relu_default_2",
default=None,
type=str,
)
parser.add_argument(
"-f",
"--skip_delegate_node_ops",
help="If specified, skip delegation for the specified op. Node ops should be seperated by comma. e.g., aten.add.Tensor,aten.relu.default",
default=None,
type=str,
)
parser.add_argument(
"-c",
"--compile_only",
help="If specified, only compile the model.",
action="store_true",
default=False,
)
parser.add_argument(
"-s",
"--device",
help="serial number for android device communicated via ADB.",
type=str,
)
parser.add_argument(
"-z",
"--shared_buffer",
help="Enables usage of shared buffer between application and backend for graph I/O.",
action="store_true",
)
parser.add_argument(
"--skip_push",
help="If specified, skip pushing files to device.",
action="store_true",
default=False,
)
# QNN_SDK_ROOT might also be an argument, but it is used in various places.
# So maybe it's fine to just use the environment.
if "QNN_SDK_ROOT" not in os.environ:
raise RuntimeError("Environment variable QNN_SDK_ROOT must be set")
print(f"QNN_SDK_ROOT={os.getenv('QNN_SDK_ROOT')}")
if "LD_LIBRARY_PATH" not in os.environ:
print(
"[Warning] LD_LIBRARY_PATH is not set. If errors like libQnnHtp.so "
"not found happen, please follow setup.md to set environment."
)
else:
print(f"LD_LIBRARY_PATH={os.getenv('LD_LIBRARY_PATH')}")
return parser
def parse_skip_delegation_node(args):
skip_node_id_set = set()
skip_node_op_set = set()
if args.skip_delegate_node_ids is not None:
skip_node_id_set = set(map(str, args.skip_delegate_node_ids.split(",")))
print("Skipping following node ids: ", skip_node_id_set)
if args.skip_delegate_node_ops is not None:
skip_node_op_set = set(map(str, args.skip_delegate_node_ops.split(",")))
print("Skipping following node ops: ", skip_node_op_set)
return skip_node_id_set, skip_node_op_set
def generate_inputs(dest_path: str, file_name: str, inputs=None, input_list=None):
input_list_file = None
input_files = []
# Prepare input list
if input_list is not None:
input_list_file = f"{dest_path}/{file_name}"
with open(input_list_file, "w") as f:
f.write(input_list)
f.flush()
# Prepare input data
if inputs is not None:
for idx, data in enumerate(inputs):
for i, d in enumerate(data):
file_name = f"{dest_path}/input_{idx}_{i}.raw"
d.detach().numpy().tofile(file_name)
input_files.append(file_name)
return input_list_file, input_files