| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| |
| #include <gtest/gtest.h> |
| |
| using namespace ::testing; |
| using exec_aten::optional; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using torch::executor::testing::TensorFactory; |
| |
| Tensor& op_logit_out(const Tensor& self, optional<double> eps, Tensor& out) { |
| exec_aten::RuntimeContext context{}; |
| return torch::executor::aten::logit_outf(context, self, eps, out); |
| } |
| |
| // Common testing for logit operator |
| template <ScalarType DTYPE, ScalarType OUTPUT_DTYPE> |
| void test_integer_logit_out() { |
| TensorFactory<DTYPE> tf; |
| TensorFactory<OUTPUT_DTYPE> tf_out; |
| |
| const std::vector<int32_t> sizes = {2, 2}; |
| |
| // Destination for the logit operator. |
| Tensor out = tf_out.zeros(sizes); |
| |
| ET_EXPECT_KERNEL_FAILURE( |
| op_logit_out(tf.make(sizes, /*data=*/{1, 2, 4, 8}), 0, out)); |
| } |
| |
| template <> |
| void test_integer_logit_out<ScalarType::Float, ScalarType::Float>() { |
| TensorFactory<ScalarType::Float> tf; |
| TensorFactory<ScalarType::Float> tf_out; |
| |
| const std::vector<int32_t> sizes = {2, 2}; |
| |
| // Destination for the logit operator. |
| Tensor out = tf_out.zeros(sizes); |
| |
| // Check that it matches (or close to) the expected output. |
| op_logit_out(tf.make(sizes, /*data=*/{.1, .2, .4, .8}), 0, out); |
| EXPECT_TENSOR_CLOSE( |
| out, |
| tf_out.make( |
| sizes, /*data=*/{-2.197224, -1.386294, -0.405465, 1.3862943})); |
| } |
| |
| // Common testing for logit operator |
| template <ScalarType DTYPE, ScalarType OUTPUT_DTYPE> |
| void test_integer_logit_out_eps_set() { |
| TensorFactory<DTYPE> tf; |
| TensorFactory<OUTPUT_DTYPE> tf_out; |
| |
| const std::vector<int32_t> sizes = {2, 2}; |
| |
| // Destination for the logit operator. |
| Tensor out = tf_out.zeros(sizes); |
| |
| op_logit_out(tf.make(sizes, /*data=*/{1, 2, 4, 8}), 0.1, out); |
| |
| // Check that it matches (or close to) the expected output. |
| EXPECT_TENSOR_CLOSE( |
| out, |
| tf_out.make(sizes, /*data=*/{2.197224, 2.197224, 2.197224, 2.197224})); |
| } |
| |
| TEST(OpLogitOutKernelTest, AllRealInputFloatOutputSupport) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle this"; |
| } |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_integer_logit_out<ScalarType::dtype, ScalarType::Float>(); |
| ET_FORALL_REAL_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST(OpLogitOutKernelTest, AllRealInputDoubleOutputSupport) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle this"; |
| } |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_integer_logit_out<ScalarType::dtype, ScalarType::Double>(); |
| ET_FORALL_REAL_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| TEST(OpLogitOutKernelTest, AllRealInputFloatOutputSupportEpsSet) { |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_integer_logit_out_eps_set<ScalarType::dtype, ScalarType::Float>(); |
| ET_FORALL_REAL_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST(OpLogitOutKernelTest, AllRealInputDoubleOutputSupportEpsSet) { |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_integer_logit_out_eps_set<ScalarType::dtype, ScalarType::Double>(); |
| ET_FORALL_REAL_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| // Mismatched shape tests. |
| TEST(OpLogitOutKernelTest, MismatchedShapesDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle mismatched shapes"; |
| } |
| TensorFactory<ScalarType::Int> tf; |
| TensorFactory<ScalarType::Float> tf_out; |
| |
| Tensor a = tf.ones(/*sizes=*/{4}); |
| Tensor out = tf_out.ones(/*sizes=*/{2, 2}); |
| |
| ET_EXPECT_KERNEL_FAILURE(op_logit_out(a, 0, out)); |
| } |
| |
| // Unhandled output dtypes. |
| template <ScalarType OUTPUT_DTYPE> |
| void test_logit_invalid_output_dtype_dies() { |
| TensorFactory<ScalarType::Float> tf; |
| TensorFactory<OUTPUT_DTYPE> tf_out; |
| |
| const std::vector<int32_t> sizes = {2, 5}; |
| |
| Tensor in = tf.ones(sizes); |
| Tensor out = tf_out.zeros(sizes); |
| |
| ET_EXPECT_KERNEL_FAILURE(op_logit_out(in, 0, out)); |
| } |
| |
| TEST(OpLogitOutKernelTest, AllNonFloatOutputDTypeDies) { |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_logit_invalid_output_dtype_dies<ScalarType::dtype>(); |
| ET_FORALL_INT_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST(OpLogitOutKernelTest, SimpleGeneratedCase) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {10, 10}, |
| {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}); |
| Tensor expected_result = tf.make( |
| {10, 10}, {2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154, 2.1972243785858154, 2.1972243785858154, |
| 2.1972243785858154}); |
| |
| Tensor out = tf.zeros({10, 10}); |
| Tensor ret = op_logit_out(x, 0.1, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST(OpLogitOutKernelTest, DynamicShapeUpperBoundSameAsExpected) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {0.9622091054916382, |
| 0.511866569519043, |
| 0.15690308809280396, |
| 0.7423648834228516, |
| 0.627659797668457, |
| 0.4892460107803345}); |
| Tensor expected_result = tf.make( |
| {3, 2}, |
| {2.1972243785858154, |
| 0.04747522622346878, |
| -1.6814535856246948, |
| 1.05829656124115, |
| 0.5221903324127197, |
| -0.043022606521844864}); |
| |
| Tensor out = |
| tf.zeros({3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| Tensor ret = op_logit_out(x, 0.1, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST(OpLogitOutKernelTest, DynamicShapeUpperBoundLargerThanExpected) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {0.9622091054916382, |
| 0.511866569519043, |
| 0.15690308809280396, |
| 0.7423648834228516, |
| 0.627659797668457, |
| 0.4892460107803345}); |
| Tensor expected_result = tf.make( |
| {3, 2}, |
| {2.1972243785858154, |
| 0.04747522622346878, |
| -1.6814535856246948, |
| 1.05829656124115, |
| 0.5221903324127197, |
| -0.043022606521844864}); |
| |
| Tensor out = |
| tf.zeros({10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| Tensor ret = op_logit_out(x, 0.1, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST(OpLogitOutKernelTest, DynamicShapeUnbound) { |
| GTEST_SKIP() << "Dynamic shape unbound not supported"; |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {0.9622091054916382, |
| 0.511866569519043, |
| 0.15690308809280396, |
| 0.7423648834228516, |
| 0.627659797668457, |
| 0.4892460107803345}); |
| Tensor expected_result = tf.make( |
| {3, 2}, |
| {2.1972243785858154, |
| 0.04747522622346878, |
| -1.6814535856246948, |
| 1.05829656124115, |
| 0.5221903324127197, |
| -0.043022606521844864}); |
| |
| Tensor out = |
| tf.zeros({1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND); |
| Tensor ret = op_logit_out(x, 0.1, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |