blob: 3cc581c818a37bbf2c663b373c9ee8a329dfbb62 [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator
#include <executorch/kernels/test/TestUtil.h>
#include <executorch/kernels/test/supported_features.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>
#include <gtest/gtest.h>
using namespace ::testing;
using exec_aten::optional;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::TensorFactory;
Tensor& op_logit_out(const Tensor& self, optional<double> eps, Tensor& out) {
exec_aten::RuntimeContext context{};
return torch::executor::aten::logit_outf(context, self, eps, out);
}
// Common testing for logit operator
template <ScalarType DTYPE, ScalarType OUTPUT_DTYPE>
void test_integer_logit_out() {
TensorFactory<DTYPE> tf;
TensorFactory<OUTPUT_DTYPE> tf_out;
const std::vector<int32_t> sizes = {2, 2};
// Destination for the logit operator.
Tensor out = tf_out.zeros(sizes);
ET_EXPECT_KERNEL_FAILURE(
op_logit_out(tf.make(sizes, /*data=*/{1, 2, 4, 8}), 0, out));
}
template <>
void test_integer_logit_out<ScalarType::Float, ScalarType::Float>() {
TensorFactory<ScalarType::Float> tf;
TensorFactory<ScalarType::Float> tf_out;
const std::vector<int32_t> sizes = {2, 2};
// Destination for the logit operator.
Tensor out = tf_out.zeros(sizes);
// Check that it matches (or close to) the expected output.
op_logit_out(tf.make(sizes, /*data=*/{.1, .2, .4, .8}), 0, out);
EXPECT_TENSOR_CLOSE(
out,
tf_out.make(
sizes, /*data=*/{-2.197224, -1.386294, -0.405465, 1.3862943}));
}
// Common testing for logit operator
template <ScalarType DTYPE, ScalarType OUTPUT_DTYPE>
void test_integer_logit_out_eps_set() {
TensorFactory<DTYPE> tf;
TensorFactory<OUTPUT_DTYPE> tf_out;
const std::vector<int32_t> sizes = {2, 2};
// Destination for the logit operator.
Tensor out = tf_out.zeros(sizes);
op_logit_out(tf.make(sizes, /*data=*/{1, 2, 4, 8}), 0.1, out);
// Check that it matches (or close to) the expected output.
EXPECT_TENSOR_CLOSE(
out,
tf_out.make(sizes, /*data=*/{2.197224, 2.197224, 2.197224, 2.197224}));
}
TEST(OpLogitOutKernelTest, AllRealInputFloatOutputSupport) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel can handle this";
}
#define TEST_ENTRY(ctype, dtype) \
test_integer_logit_out<ScalarType::dtype, ScalarType::Float>();
ET_FORALL_REAL_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
TEST(OpLogitOutKernelTest, AllRealInputDoubleOutputSupport) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel can handle this";
}
#define TEST_ENTRY(ctype, dtype) \
test_integer_logit_out<ScalarType::dtype, ScalarType::Double>();
ET_FORALL_REAL_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
TEST(OpLogitOutKernelTest, AllRealInputFloatOutputSupportEpsSet) {
#define TEST_ENTRY(ctype, dtype) \
test_integer_logit_out_eps_set<ScalarType::dtype, ScalarType::Float>();
ET_FORALL_REAL_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
TEST(OpLogitOutKernelTest, AllRealInputDoubleOutputSupportEpsSet) {
#define TEST_ENTRY(ctype, dtype) \
test_integer_logit_out_eps_set<ScalarType::dtype, ScalarType::Double>();
ET_FORALL_REAL_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
// Mismatched shape tests.
TEST(OpLogitOutKernelTest, MismatchedShapesDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel can handle mismatched shapes";
}
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Float> tf_out;
Tensor a = tf.ones(/*sizes=*/{4});
Tensor out = tf_out.ones(/*sizes=*/{2, 2});
ET_EXPECT_KERNEL_FAILURE(op_logit_out(a, 0, out));
}
// Unhandled output dtypes.
template <ScalarType OUTPUT_DTYPE>
void test_logit_invalid_output_dtype_dies() {
TensorFactory<ScalarType::Float> tf;
TensorFactory<OUTPUT_DTYPE> tf_out;
const std::vector<int32_t> sizes = {2, 5};
Tensor in = tf.ones(sizes);
Tensor out = tf_out.zeros(sizes);
ET_EXPECT_KERNEL_FAILURE(op_logit_out(in, 0, out));
}
TEST(OpLogitOutKernelTest, AllNonFloatOutputDTypeDies) {
#define TEST_ENTRY(ctype, dtype) \
test_logit_invalid_output_dtype_dies<ScalarType::dtype>();
ET_FORALL_INT_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
TEST(OpLogitOutKernelTest, SimpleGeneratedCase) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{10, 10},
{1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0});
Tensor expected_result = tf.make(
{10, 10}, {2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154, 2.1972243785858154, 2.1972243785858154,
2.1972243785858154});
Tensor out = tf.zeros({10, 10});
Tensor ret = op_logit_out(x, 0.1, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST(OpLogitOutKernelTest, DynamicShapeUpperBoundSameAsExpected) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.9622091054916382,
0.511866569519043,
0.15690308809280396,
0.7423648834228516,
0.627659797668457,
0.4892460107803345});
Tensor expected_result = tf.make(
{3, 2},
{2.1972243785858154,
0.04747522622346878,
-1.6814535856246948,
1.05829656124115,
0.5221903324127197,
-0.043022606521844864});
Tensor out =
tf.zeros({3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor ret = op_logit_out(x, 0.1, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST(OpLogitOutKernelTest, DynamicShapeUpperBoundLargerThanExpected) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.9622091054916382,
0.511866569519043,
0.15690308809280396,
0.7423648834228516,
0.627659797668457,
0.4892460107803345});
Tensor expected_result = tf.make(
{3, 2},
{2.1972243785858154,
0.04747522622346878,
-1.6814535856246948,
1.05829656124115,
0.5221903324127197,
-0.043022606521844864});
Tensor out =
tf.zeros({10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor ret = op_logit_out(x, 0.1, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST(OpLogitOutKernelTest, DynamicShapeUnbound) {
GTEST_SKIP() << "Dynamic shape unbound not supported";
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.9622091054916382,
0.511866569519043,
0.15690308809280396,
0.7423648834228516,
0.627659797668457,
0.4892460107803345});
Tensor expected_result = tf.make(
{3, 2},
{2.1972243785858154,
0.04747522622346878,
-1.6814535856246948,
1.05829656124115,
0.5221903324127197,
-0.043022606521844864});
Tensor out =
tf.zeros({1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND);
Tensor ret = op_logit_out(x, 0.1, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}