| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| |
| #include <gtest/gtest.h> |
| |
| using namespace ::testing; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using torch::executor::testing::TensorFactory; |
| |
| class OpTanhOutTest : public OperatorTest { |
| protected: |
| Tensor& op_tanh_out(const Tensor& self, Tensor& out) { |
| return torch::executor::aten::tanh_outf(context_, self, out); |
| } |
| |
| // Common testing for tanh operator and all kinds of supported input types |
| template <ScalarType IN_DTYPE, ScalarType OUT_DTYPE> |
| void test_floating_point_tanh_out() { |
| TensorFactory<IN_DTYPE> tf_in; |
| TensorFactory<OUT_DTYPE> tf_out; |
| |
| const std::vector<int32_t> sizes = {1, 12}; |
| |
| // Destination for the tanh operator. |
| Tensor out = tf_out.zeros(sizes); |
| |
| // clang-format off |
| op_tanh_out( |
| tf_in.make(sizes, /*data=*/{ 0, 1, 2, 3, 4, 5, |
| 6, 7, 8, 9, 10, 100}), |
| out); |
| |
| // Check that it matches (or close to) the expected output. |
| EXPECT_TENSOR_CLOSE( |
| out, |
| tf_out.make( |
| sizes, /*data=*/{ 0.0000000000, 0.7615941763, |
| 0.9640275836, 0.9950547814, 0.9993293285, |
| 0.9999092221, 0.9999877214, 0.9999983311, |
| 0.9999997616, 0.9999999404, 1.0000000000, 1.0000000000})); |
| // clang-format on |
| } |
| |
| // Unhandled output dtypes. |
| template <ScalarType INPUT_DTYPE, ScalarType OUTPUT_DTYPE> |
| void test_tanh_invalid_output_dtype_dies() { |
| TensorFactory<INPUT_DTYPE> tf; |
| TensorFactory<OUTPUT_DTYPE> tf_out; |
| |
| const std::vector<int32_t> sizes = {2, 5}; |
| |
| Tensor in = tf.ones(sizes); |
| Tensor out = tf_out.zeros(sizes); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_tanh_out(in, out)); |
| } |
| }; |
| |
| TEST_F(OpTanhOutTest, HandleBoolInput) { |
| TensorFactory<ScalarType::Bool> tf_bool; |
| TensorFactory<ScalarType::Float> tf_float; |
| |
| const std::vector<int32_t> sizes = {1, 2}; |
| |
| Tensor a = tf_bool.make(sizes, /*data=*/{false, true}); |
| Tensor out = tf_float.zeros(sizes); |
| Tensor res = tf_float.make(sizes, /*data=*/{0.000000, 0.761594}); |
| |
| EXPECT_TENSOR_CLOSE(op_tanh_out(a, out), res); |
| } |
| |
| TEST_F(OpTanhOutTest, AllRealInputHalfOutputSupport) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "Test Half support only for ExecuTorch mode"; |
| } |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_floating_point_tanh_out<ScalarType::dtype, ScalarType::Half>(); |
| ET_FORALL_REALH_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpTanhOutTest, AllRealInputFloatOutputSupport) { |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_floating_point_tanh_out<ScalarType::dtype, ScalarType::Float>(); |
| ET_FORALL_REAL_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpTanhOutTest, AllRealInputDoubleOutputSupport) { |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_floating_point_tanh_out<ScalarType::dtype, ScalarType::Double>(); |
| ET_FORALL_REAL_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpTanhOutTest, AllNonFloatOutputDTypeDies) { |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_tanh_invalid_output_dtype_dies<ScalarType::Float, ScalarType::dtype>(); |
| ET_FORALL_INT_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| // Mismatched shape tests. |
| TEST_F(OpTanhOutTest, MismatchedInputShapesDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle mismatched input shapes"; |
| } |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor a = tf.ones(/*sizes=*/{4}); |
| Tensor out = tf.ones(/*sizes=*/{2, 2}); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_tanh_out(a, out)); |
| } |
| |
| TEST_F(OpTanhOutTest, SimpleGeneratedCase) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {10, 10}, |
| {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}); |
| Tensor expected_result = tf.make( |
| {10, 10}, {0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194, 0.7615941762924194, 0.7615941762924194, |
| 0.7615941762924194}); |
| |
| Tensor out = tf.zeros({10, 10}); |
| Tensor ret = op_tanh_out(x, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST_F(OpTanhOutTest, DynamicShapeUpperBoundSameAsExpected) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {0.23026639223098755, |
| 0.24356824159622192, |
| 0.9074369668960571, |
| 0.167863667011261, |
| 0.8099868297576904, |
| 0.6270960569381714}); |
| Tensor expected_result = tf.make( |
| {3, 2}, |
| {0.22628112137317657, |
| 0.2388632595539093, |
| 0.7198998332023621, |
| 0.1663045436143875, |
| 0.6695830225944519, |
| 0.5560494065284729}); |
| |
| Tensor out = |
| tf.zeros({3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| Tensor ret = op_tanh_out(x, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST_F(OpTanhOutTest, DynamicShapeUpperBoundLargerThanExpected) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {0.23026639223098755, |
| 0.24356824159622192, |
| 0.9074369668960571, |
| 0.167863667011261, |
| 0.8099868297576904, |
| 0.6270960569381714}); |
| Tensor expected_result = tf.make( |
| {3, 2}, |
| {0.22628112137317657, |
| 0.2388632595539093, |
| 0.7198998332023621, |
| 0.1663045436143875, |
| 0.6695830225944519, |
| 0.5560494065284729}); |
| |
| Tensor out = |
| tf.zeros({10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| Tensor ret = op_tanh_out(x, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST_F(OpTanhOutTest, DynamicShapeUnbound) { |
| GTEST_SKIP() << "Dynamic shape unbound not supported"; |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {0.23026639223098755, |
| 0.24356824159622192, |
| 0.9074369668960571, |
| 0.167863667011261, |
| 0.8099868297576904, |
| 0.6270960569381714}); |
| Tensor expected_result = tf.make( |
| {3, 2}, |
| {0.22628112137317657, |
| 0.2388632595539093, |
| 0.7198998332023621, |
| 0.1663045436143875, |
| 0.6695830225944519, |
| 0.5560494065284729}); |
| |
| Tensor out = |
| tf.zeros({1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND); |
| Tensor ret = op_tanh_out(x, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |