| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| |
| #include <gtest/gtest.h> |
| |
| using namespace ::testing; |
| using exec_aten::ArrayRef; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using torch::executor::testing::TensorFactory; |
| |
| class OpTCopyTest : public OperatorTest { |
| protected: |
| Tensor& op_t_copy_out(const Tensor& self, Tensor& out) { |
| return torch::executor::aten::t_copy_outf(context_, self, out); |
| } |
| }; |
| |
| TEST_F(OpTCopyTest, 1DTranspose) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor t_in = tf.make({4}, {1, 2, 3, 4}); |
| Tensor t_out = tf.make({4}, {0, 0, 0, 0}); |
| |
| op_t_copy_out(t_in, t_out); |
| EXPECT_TENSOR_EQ(t_in, t_out); |
| } |
| |
| TEST_F(OpTCopyTest, 1DTransposeMismatchShapeDie) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle mismatched shapes"; |
| } |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor t_in = tf.make({4}, {1, 2, 3, 4}); |
| Tensor t_out = tf.make({2}, {0, 0}); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_t_copy_out(t_in, t_out)); |
| } |
| |
| TEST_F(OpTCopyTest, 2DTranspose) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor t_in = tf.make({2, 3}, {1, 2, 3, 4, 5, 6}); |
| Tensor t_out = tf.make({3, 2}, {0, 0, 0, 0, 0, 0}); |
| Tensor t_expected = tf.make({3, 2}, {1, 4, 2, 5, 3, 6}); |
| |
| op_t_copy_out(t_in, t_out); |
| EXPECT_TENSOR_EQ(t_out, t_expected); |
| } |
| |
| TEST_F(OpTCopyTest, 2DTransposeMismatchShapeDie) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle mismatched shapes"; |
| } |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor t_in = tf.make({2, 3}, {1, 2, 3, 4, 5, 6}); |
| Tensor t_out = tf.make({2, 2}, {0, 0, 0, 0}); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_t_copy_out(t_in, t_out)); |
| } |
| |
| TEST_F(OpTCopyTest, 3DTransposeDie) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor t_in = tf.make({2, 3, 1}, {1, 2, 3, 4, 5, 6}); |
| Tensor t_out = tf.make({3, 2, 1}, {0, 0, 0, 0, 0, 0}); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_t_copy_out(t_in, t_out)); |
| } |
| |
| /* %python |
| import torch |
| torch.manual_seed(0) |
| x = torch.rand(3, 2) |
| res = torch.t(x) |
| op = "op_t_copy_out" |
| dtype = "ScalarType::Float" |
| check = "EXPECT_TENSOR_EQ" */ |
| |
| TEST_F(OpTCopyTest, DynamicShapeUpperBoundSameAsExpected) { |
| /* %python |
| out_args = "{2, 3}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND" |
| %rewrite(unary_op) */ |
| |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {0.49625658988952637, |
| 0.7682217955589294, |
| 0.08847743272781372, |
| 0.13203048706054688, |
| 0.30742281675338745, |
| 0.6340786814689636}); |
| Tensor expected = tf.make( |
| {2, 3}, |
| {0.49625658988952637, |
| 0.08847743272781372, |
| 0.30742281675338745, |
| 0.7682217955589294, |
| 0.13203048706054688, |
| 0.6340786814689636}); |
| |
| Tensor out = |
| tf.zeros({2, 3}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| op_t_copy_out(x, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |
| |
| TEST_F(OpTCopyTest, DynamicShapeUpperBoundLargerThanExpected) { |
| if (!torch::executor::testing::SupportedFeatures::get()->output_resize) { |
| GTEST_SKIP() << "Dynamic shape not supported"; |
| } |
| /* %python |
| out_args = "{10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND" |
| %rewrite(unary_op) */ |
| |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {0.49625658988952637, |
| 0.7682217955589294, |
| 0.08847743272781372, |
| 0.13203048706054688, |
| 0.30742281675338745, |
| 0.6340786814689636}); |
| Tensor expected = tf.make( |
| {2, 3}, |
| {0.49625658988952637, |
| 0.08847743272781372, |
| 0.30742281675338745, |
| 0.7682217955589294, |
| 0.13203048706054688, |
| 0.6340786814689636}); |
| |
| Tensor out = |
| tf.zeros({10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| op_t_copy_out(x, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |
| |
| TEST_F(OpTCopyTest, DynamicShapeUnbound) { |
| if (!torch::executor::testing::SupportedFeatures::get()->output_resize) { |
| GTEST_SKIP() << "Dynamic shape not supported"; |
| } |
| /* %python |
| out_args = "{1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND" |
| %rewrite(unary_op) */ |
| |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {0.49625658988952637, |
| 0.7682217955589294, |
| 0.08847743272781372, |
| 0.13203048706054688, |
| 0.30742281675338745, |
| 0.6340786814689636}); |
| Tensor expected = tf.make( |
| {2, 3}, |
| {0.49625658988952637, |
| 0.08847743272781372, |
| 0.30742281675338745, |
| 0.7682217955589294, |
| 0.13203048706054688, |
| 0.6340786814689636}); |
| |
| Tensor out = |
| tf.zeros({1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND); |
| op_t_copy_out(x, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |