| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| |
| #include <gtest/gtest.h> |
| |
| using namespace ::testing; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using torch::executor::testing::TensorFactory; |
| |
| class OpRoundTest : public OperatorTest { |
| protected: |
| Tensor& op_round_out(const Tensor& self, Tensor& out) { |
| return torch::executor::aten::round_outf(context_, self, out); |
| } |
| |
| // Common testing for round on two floating point Tensors. |
| template <ScalarType DTYPE> |
| void test_round_execution_floats() { |
| TensorFactory<DTYPE> tf; |
| |
| const std::vector<int32_t> sizes = {11}; |
| |
| Tensor in = tf.make( |
| sizes, |
| /*data=*/{1.5, -1.5, 0, 1.5, 2.5, 3.5, 4.5, 1.4, -1.4, 1.7, -1.7}); |
| |
| // Destination for the round. |
| Tensor out = tf.zeros(sizes); |
| |
| // Run round. |
| op_round_out(in, out); |
| |
| // Check that it matches the expected output. |
| EXPECT_TENSOR_EQ( |
| out, |
| tf.make( |
| sizes, |
| /*data=*/ |
| {2.0, -2.0, 0.0, 2.0, 2.0, 4.0, 4.0, 1.0, -1.0, 2.0, -2.0})); |
| } |
| |
| template <ScalarType DTYPE> |
| void test_round_execution_ints() { |
| TensorFactory<DTYPE> tf; |
| |
| const std::vector<int32_t> sizes = {6}; |
| |
| Tensor in = tf.make(sizes, /*data=*/{-1, 2, 0, 3, 0, -5}); |
| |
| // Destination for the round. |
| Tensor out = tf.zeros(sizes); |
| |
| // Run round. |
| op_round_out(in, out); |
| |
| // Check that it matches the expected output. |
| EXPECT_TENSOR_EQ( |
| out, |
| tf.make( |
| sizes, |
| /*data=*/ |
| {-1, 2, 0, 3, 0, -5})); |
| } |
| }; |
| |
| TEST_F(OpRoundTest, FloatTensors) { |
| test_round_execution_floats<ScalarType::Float>(); |
| } |
| |
| TEST_F(OpRoundTest, DoubleTensors) { |
| test_round_execution_floats<ScalarType::Double>(); |
| } |
| |
| TEST_F(OpRoundTest, ByteTensors) { |
| TensorFactory<ScalarType::Byte> tf; |
| |
| const std::vector<int32_t> sizes = {6}; |
| |
| Tensor in = tf.make(sizes, /*data=*/{1, 2, 0, 3, 0, 5}); |
| |
| // Destination for the round. |
| Tensor out = tf.zeros(sizes); |
| |
| // Run round. |
| op_round_out(in, out); |
| |
| // Check that it matches the expected output. |
| EXPECT_TENSOR_EQ( |
| out, |
| tf.make( |
| sizes, |
| /*data=*/ |
| {1, 2, 0, 3, 0, 5})); |
| } |
| |
| TEST_F(OpRoundTest, CharTensors) { |
| test_round_execution_ints<ScalarType::Char>(); |
| } |
| |
| TEST_F(OpRoundTest, ShortTensors) { |
| test_round_execution_ints<ScalarType::Short>(); |
| } |
| |
| TEST_F(OpRoundTest, IntTensors) { |
| test_round_execution_ints<ScalarType::Int>(); |
| } |
| |
| TEST_F(OpRoundTest, LongTensors) { |
| test_round_execution_ints<ScalarType::Long>(); |
| } |
| |
| TEST_F(OpRoundTest, InfAndNanPreserved) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| const std::vector<int32_t> sizes = {7}; |
| |
| Tensor in = tf.make( |
| sizes, |
| /*data=*/ |
| {1.7, 1.4, NAN, std::numeric_limits<float>::infinity(), 1.5, -1.5, 0}); |
| |
| // Destination for the round. |
| Tensor out = tf.zeros(sizes); |
| |
| // Run full round. |
| op_round_out(in, out); |
| |
| // Check that it matches the expected output. |
| EXPECT_TENSOR_EQ( |
| out, |
| tf.make( |
| sizes, |
| /*data=*/ |
| {2.0, |
| 1.0, |
| NAN, |
| std::numeric_limits<float>::infinity(), |
| 2.0, |
| -2.0, |
| 0.0})); |
| } |
| |
| TEST_F(OpRoundTest, UnhandledDtypeDies) { |
| // round() doesn't handle Bool. |
| TensorFactory<ScalarType::Bool> tf; |
| |
| const std::vector<int32_t> sizes = {2, 2}; |
| |
| Tensor a = tf.make(sizes, /*data=*/{false, true, false, true}); |
| |
| // Destination for the round. |
| Tensor out = tf.zeros(sizes); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_round_out(a, out)); |
| } |
| |
| /* %python |
| import torch |
| torch.manual_seed(0) |
| x = torch.rand(3, 2) * 10.0 - 5.0 |
| res = torch.round(x) |
| op = "op_round_out" |
| dtype = "ScalarType::Float" |
| check = "EXPECT_TENSOR_EQ" */ |
| |
| TEST_F(OpRoundTest, DynamicShapeUpperBoundSameAsExpected) { |
| /* %python |
| out_args = "{3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND" |
| %rewrite(unary_op) */ |
| |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {-0.03743410110473633, |
| 2.682218074798584, |
| -4.115225791931152, |
| -3.6796951293945312, |
| -1.925771713256836, |
| 1.3407869338989258}); |
| Tensor expected = tf.make({3, 2}, {-0.0, 3.0, -4.0, -4.0, -2.0, 1.0}); |
| |
| Tensor out = |
| tf.zeros({3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| op_round_out(x, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |
| |
| TEST_F(OpRoundTest, DynamicShapeUpperBoundLargerThanExpected) { |
| /* %python |
| out_args = "{10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND" |
| %rewrite(unary_op) */ |
| |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {-0.03743410110473633, |
| 2.682218074798584, |
| -4.115225791931152, |
| -3.6796951293945312, |
| -1.925771713256836, |
| 1.3407869338989258}); |
| Tensor expected = tf.make({3, 2}, {-0.0, 3.0, -4.0, -4.0, -2.0, 1.0}); |
| |
| Tensor out = |
| tf.zeros({10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| op_round_out(x, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |
| |
| TEST_F(OpRoundTest, DynamicShapeUnbound) { |
| GTEST_SKIP() << "Dynamic shape unbound not supported"; |
| /* %python |
| out_args = "{1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND" |
| %rewrite(unary_op) */ |
| |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {-0.03743410110473633, |
| 2.682218074798584, |
| -4.115225791931152, |
| -3.6796951293945312, |
| -1.925771713256836, |
| 1.3407869338989258}); |
| Tensor expected = tf.make({3, 2}, {-0.0, 3.0, -4.0, -4.0, -2.0, 1.0}); |
| |
| Tensor out = |
| tf.zeros({1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND); |
| op_round_out(x, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |