| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| #include <executorch/runtime/core/exec_aten/util/scalar_type_util.h> |
| |
| using namespace ::testing; |
| using exec_aten::ArrayRef; |
| using exec_aten::IntArrayRef; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using torch::executor::testing::TensorFactory; |
| |
| class OpRepeatOutTest : public OperatorTest { |
| protected: |
| Tensor& op_repeat_out(const Tensor& self, IntArrayRef repeats, Tensor& out) { |
| return torch::executor::aten::repeat_outf(context_, self, repeats, out); |
| } |
| |
| template <typename CTYPE, ScalarType DTYPE> |
| void run_dtype_tests() { |
| TensorFactory<DTYPE> tf; |
| // clang-format off |
| Tensor x = tf.make( |
| /*size=*/{2, 2}, |
| /*data=*/{ |
| 0, 1, |
| 2, 3, |
| }); |
| std::vector<int64_t> repeats_vec = {3, 3, 3}; |
| exec_aten::ArrayRef<int64_t> repeats = {repeats_vec.data(), repeats_vec.size()}; |
| // clang-format on |
| |
| // Output tensor with the shape of the input tensor x repeated |
| // - Its dimension shall equal to the length of repeat. |
| // - For any dimension i ∈ [repeat.size()-x.dim(), repeat.size()), |
| // out.size(i) = x.size(i) * repeat[i] |
| // - For any dimension i ∈ [0, repeat.size()), out.size(i) = repeat[i] |
| Tensor out = tf.zeros({3, 6, 6}); |
| |
| // clang-format off |
| // Repeat the input tensor along the specified `repeat` dimensions. |
| Tensor expected = tf.make( |
| /*sizes=*/ {3, 6, 6}, |
| /*data=*/ |
| { |
| //[0, :, :] |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| |
| //[1, :, :] |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| |
| //[2, :, :] |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| }); |
| // clang-format on |
| |
| Tensor ret = op_repeat_out(x, repeats, out); |
| EXPECT_TENSOR_EQ(ret, out); |
| EXPECT_TENSOR_EQ(ret, expected); |
| } |
| }; |
| |
| TEST_F(OpRepeatOutTest, AllDtypesSupported) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel test fails"; |
| } |
| #define TEST_ENTRY(ctype, dtype) run_dtype_tests<ctype, ScalarType::dtype>(); |
| ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpRepeatOutTest, EmptyInputSupported) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.make( |
| /*sizes=*/{3, 0, 2}, /*data=*/{}); |
| |
| std::vector<int64_t> repeats_vec = {3, 4, 5, 6}; |
| exec_aten::ArrayRef<int64_t> repeats = { |
| repeats_vec.data(), repeats_vec.size()}; |
| |
| Tensor out = tf.ones(/*sizes=*/{3, 12, 0, 12}); |
| Tensor expected = tf.make(/*sizes=*/{3, 12, 0, 12}, /*data=*/{}); |
| |
| Tensor ret = op_repeat_out(x, repeats, out); |
| EXPECT_TENSOR_EQ(ret, out); |
| EXPECT_TENSOR_EQ(ret, expected); |
| } |
| |
| TEST_F(OpRepeatOutTest, ZeroDimInputSupported) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.make( |
| /*sizes=*/{}, /*data=*/{5}); |
| |
| std::vector<int64_t> repeats_vec = {3, 4}; |
| exec_aten::ArrayRef<int64_t> repeats = { |
| repeats_vec.data(), repeats_vec.size()}; |
| |
| Tensor out = tf.ones(/*sizes=*/{3, 4}); |
| |
| // clang-format off |
| Tensor expected = tf.make( |
| /*sizes=*/{3, 4}, |
| /*data=*/ |
| { |
| 5, 5, 5, 5, |
| 5, 5, 5, 5, |
| 5, 5, 5, 5, |
| }); |
| // clang-format on |
| |
| Tensor ret = op_repeat_out(x, repeats, out); |
| EXPECT_TENSOR_EQ(ret, out); |
| EXPECT_TENSOR_EQ(ret, expected); |
| } |
| |
| TEST_F(OpRepeatOutTest, ZeroRepeatRegularInputSupported) { |
| TensorFactory<ScalarType::Int> tf; |
| Tensor x = tf.make( |
| /*sizes=*/{3, 2}, /*data=*/{0, 1, 2, 3, 4, 5}); |
| |
| std::vector<int64_t> repeats_vec = {3, 0, 6}; |
| exec_aten::ArrayRef<int64_t> repeats = { |
| repeats_vec.data(), repeats_vec.size()}; |
| |
| Tensor out = tf.ones(/*sizes=*/{3, 0, 12}); |
| Tensor expected = tf.make(/*sizes=*/{3, 0, 12}, /*data=*/{}); |
| |
| Tensor ret = op_repeat_out(x, repeats, out); |
| EXPECT_TENSOR_EQ(ret, out); |
| EXPECT_TENSOR_EQ(ret, expected); |
| } |
| |
| TEST_F(OpRepeatOutTest, ZeroRepeatZeroDimInputSupported) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.make( |
| /*sizes=*/{}, /*data=*/{5}); |
| |
| std::vector<int64_t> repeats_vec = {3, 0, 6}; |
| exec_aten::ArrayRef<int64_t> repeats = { |
| repeats_vec.data(), repeats_vec.size()}; |
| |
| Tensor out = tf.ones(/*sizes=*/{3, 0, 6}); |
| Tensor expected = tf.make(/*sizes=*/{3, 0, 6}, /*data=*/{}); |
| |
| Tensor ret = op_repeat_out(x, repeats, out); |
| EXPECT_TENSOR_EQ(ret, out); |
| EXPECT_TENSOR_EQ(ret, expected); |
| } |
| |
| TEST_F(OpRepeatOutTest, RepeatTooShortDie) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.make( |
| /*sizes=*/{3, 2}, /*data=*/{0, 1, 2, 3, 4, 5}); |
| |
| // The length of repeat vector shall not be shorter than x.dim(). |
| std::vector<int64_t> repeats_vec = {3}; |
| exec_aten::ArrayRef<int64_t> repeats = { |
| repeats_vec.data(), repeats_vec.size()}; |
| |
| Tensor out = tf.ones(/*sizes=*/{3, 0, 12}); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_repeat_out(x, repeats, out)); |
| } |
| |
| TEST_F(OpRepeatOutTest, NegativeRepeatDie) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.make( |
| /*sizes=*/{3, 2}, /*data=*/{0, 1, 2, 3, 4, 5}); |
| |
| // Try to create tensor with negative shape, die. |
| std::vector<int64_t> repeats_vec = {3, -1}; |
| exec_aten::ArrayRef<int64_t> repeats = { |
| repeats_vec.data(), repeats_vec.size()}; |
| |
| Tensor out = tf.ones(/*sizes=*/{3, 1}); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_repeat_out(x, repeats, out)); |
| } |
| |
| TEST_F(OpRepeatOutTest, WrongOutputShapeDie) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle wrong output shape"; |
| } |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.ones( |
| /*sizes=*/{3, 2}); |
| |
| std::vector<int64_t> repeats_vec = {3, 5, 6}; |
| exec_aten::ArrayRef<int64_t> repeats = { |
| repeats_vec.data(), repeats_vec.size()}; |
| |
| // The size of output shall be [3, 15, 12]. |
| Tensor out = tf.ones(/*sizes=*/{3, 5, 12}); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_repeat_out(x, repeats, out)); |
| } |
| |
| TEST_F(OpRepeatOutTest, OutputDtypeMismatchedDie) { |
| TensorFactory<ScalarType::Int> tf_in; |
| TensorFactory<ScalarType::Float> tf_out; |
| |
| Tensor x = tf_in.ones( |
| /*sizes=*/{3, 3}); |
| |
| std::vector<int64_t> repeats_vec = {7, 5, 6}; |
| exec_aten::ArrayRef<int64_t> repeats = { |
| repeats_vec.data(), repeats_vec.size()}; |
| |
| Tensor out = tf_out.ones(/*sizes=*/{7, 15, 18}); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_repeat_out(x, repeats, out)); |
| } |
| |
| // Right now we only support the dimension of input and output no larger |
| // than 16. |
| TEST_F(OpRepeatOutTest, TooManyDimensionsDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle larger number of dimensions"; |
| } |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.ones( |
| /*sizes=*/{3, 2}); |
| |
| auto repeats_vec = std::vector<int64_t>(17, 1); |
| exec_aten::ArrayRef<int64_t> repeats = { |
| repeats_vec.data(), repeats_vec.size()}; |
| |
| // The size of output shall be [1, 1, .. total 15 * 1 .. , 1, 3, 2]. |
| auto output_shape = std::vector<int32_t>(15, 1); |
| output_shape.push_back(3); |
| output_shape.push_back(2); |
| Tensor out = tf.ones(/*sizes=*/output_shape); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_repeat_out(x, repeats, out)); |
| } |
| |
| #if !defined(USE_ATEN_LIB) |
| TEST_F(OpRepeatOutTest, UpperBoundOutTensor) { |
| TensorFactory<ScalarType::Float> tf; |
| // clang-format off |
| Tensor x = tf.make( |
| /*size=*/{2, 2}, |
| /*data=*/{ |
| 0, 1, |
| 2, 3, |
| }); |
| std::vector<int64_t> repeats_vec = {3, 3, 3}; |
| exec_aten::ArrayRef<int64_t> repeats = {repeats_vec.data(), repeats_vec.size()}; |
| // clang-format on |
| |
| // Output tensor with the shape of the input tensor x repeated |
| // - Its dimension shall equal to the length of repeat. |
| // - For any dimension i ∈ [repeat.size()-x.dim(), repeat.size()), out.size(i) |
| // = x.size(i) * repeat[i] |
| // - For any dimension i ∈ [0, repeat.size()), out.size(i) = repeat[i] |
| Tensor out = |
| tf.zeros({5, 9, 9}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| |
| // clang-format off |
| // Repeat the input tensor along the specified `repeat` dimensions. |
| Tensor expected = tf.make( |
| /*sizes=*/ {3, 6, 6}, |
| /*data=*/ |
| { |
| //[0, :, :] |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| |
| //[1, :, :] |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| |
| //[2, :, :] |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| 0, 1, 0, 1, 0, 1, |
| 2, 3, 2, 3, 2, 3, |
| }); |
| // clang-format on |
| |
| Tensor ret = op_repeat_out(x, repeats, out); |
| EXPECT_TENSOR_EQ(ret, out); |
| EXPECT_TENSOR_EQ(ret, expected); |
| } |
| #endif |
| |
| /* %python |
| import torch |
| torch.manual_seed(0) |
| x = torch.randint(10, (1, 2)) |
| res = x.repeat(4, 2) |
| op = "op_repeat_out" |
| opt_setup_params = f""" |
| {declare_array_ref([4, 2], "int64_t", "repeats")} |
| """ |
| opt_extra_params = "repeats," |
| dtype = "ScalarType::Int" |
| check = "EXPECT_TENSOR_EQ" */ |
| |
| TEST_F(OpRepeatOutTest, DynamicShapeUpperBoundSameAsExpected) { |
| /* %python |
| out_args = "{4, 4}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND" |
| %rewrite(unary_op) */ |
| |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.make({1, 2}, {4, 9}); |
| Tensor expected = |
| tf.make({4, 4}, {4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9}); |
| |
| std::vector<int64_t> repeatsv = {4, 2}; |
| ArrayRef<int64_t> repeats(repeatsv.data(), repeatsv.size()); |
| |
| Tensor out = |
| tf.zeros({4, 4}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| op_repeat_out(x, repeats, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |
| |
| TEST_F(OpRepeatOutTest, DynamicShapeUpperBoundLargerThanExpected) { |
| if (!torch::executor::testing::SupportedFeatures::get()->output_resize) { |
| GTEST_SKIP() << "Dynamic shape not supported"; |
| } |
| /* %python |
| out_args = "{10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND" |
| %rewrite(unary_op) */ |
| |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.make({1, 2}, {4, 9}); |
| Tensor expected = |
| tf.make({4, 4}, {4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9}); |
| |
| std::vector<int64_t> repeatsv = {4, 2}; |
| ArrayRef<int64_t> repeats(repeatsv.data(), repeatsv.size()); |
| |
| Tensor out = |
| tf.zeros({10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| op_repeat_out(x, repeats, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |
| |
| TEST_F(OpRepeatOutTest, DynamicShapeUnbound) { |
| if (!torch::executor::testing::SupportedFeatures::get()->output_resize) { |
| GTEST_SKIP() << "Dynamic shape not supported"; |
| } |
| /* %python |
| out_args = "{1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND" |
| %rewrite(unary_op) */ |
| |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.make({1, 2}, {4, 9}); |
| Tensor expected = |
| tf.make({4, 4}, {4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9}); |
| |
| std::vector<int64_t> repeatsv = {4, 2}; |
| ArrayRef<int64_t> repeats(repeatsv.data(), repeatsv.size()); |
| |
| Tensor out = |
| tf.zeros({1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND); |
| op_repeat_out(x, repeats, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |