blob: a2bc73fd0e478af7ab51775d1dec5e3fac8f6d2d [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator
#include <executorch/kernels/test/TestUtil.h>
#include <executorch/kernels/test/supported_features.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>
#include <executorch/runtime/core/exec_aten/util/scalar_type_util.h>
#include <executorch/test/utils/DeathTest.h>
#include <gtest/gtest.h>
#include <cmath>
using namespace ::testing;
using exec_aten::ArrayRef;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::TensorFactory;
class OpMinOutTest : public OperatorTest {
protected:
std::tuple<Tensor&, Tensor&> op_min_dim_min(
const Tensor& in,
int64_t dim,
bool keepdim,
Tensor& min,
Tensor& min_indices) {
return torch::executor::aten::min_outf(
context_, in, dim, keepdim, min, min_indices);
}
template <ScalarType IN_DTYPE>
void test_min_out_invalid_dimensions() {
TensorFactory<IN_DTYPE> tf_in;
TensorFactory<ScalarType::Long> tf_long;
Tensor in = tf_in.ones(/*sizes=*/{2, 3, 4});
Tensor min = tf_in.zeros({2, 3, 2});
Tensor min_indices = tf_in.zeros({2, 3});
// output tensor dim mismatch
ET_EXPECT_KERNEL_FAILURE(
context_,
op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/true, min, min_indices));
// output tensor shape incorrect: size of dimension: dim should be 1
min = tf_in.zeros({2, 3, 2});
min_indices = tf_in.zeros({2, 3, 2});
ET_EXPECT_KERNEL_FAILURE(
context_,
op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/true, min, min_indices));
// output tensor shape should be squeezed when keepdim is false
min = tf_in.zeros({2, 3, 1});
min_indices = tf_in.zeros({2, 3, 1});
ET_EXPECT_KERNEL_FAILURE(
context_,
op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/false, min, min_indices));
// invalid dim
min = tf_in.zeros({2, 3, 1});
min_indices = tf_in.zeros({2, 3, 1});
ET_EXPECT_KERNEL_FAILURE(
context_,
op_min_dim_min(in, /*dim=*/3, /*keepdim=*/true, min, min_indices));
}
void test_dynamic_shape(
const std::vector<int32_t>& out_shape,
enum torch::executor::TensorShapeDynamism dynamism) {
/* %python
%rewrite(min_template) */
TensorFactory<ScalarType::Float> tf;
TensorFactory<ScalarType::Long> tfl;
// clang-format off
Tensor input = tf.make(
{2, 3, 4},
{0.49, 0.76, 0.08, 0.13,
0.30, 0.63, 0.49, 0.89,
0.45, 0.63, 0.34, 0.40,
0.02, 0.16, 0.29, 0.51,
0.69, 0.80, 0.16, 0.28,
0.68, 0.91, 0.39, 0.87});
Tensor expected_min = tf.make(
{2, 4},
{0.30, 0.63, 0.08, 0.13,
0.02, 0.16, 0.16, 0.28});
// clang-format on
Tensor expected_min_indices = tfl.make({2, 4}, {1, 1, 0, 0, 0, 0, 1, 1});
Tensor min = tf.zeros(out_shape, dynamism);
Tensor min_indices = tfl.zeros(out_shape, dynamism);
op_min_dim_min(input, 1, false, min, min_indices);
EXPECT_TENSOR_EQ(min, expected_min);
EXPECT_TENSOR_EQ(min_indices, expected_min_indices);
}
template <ScalarType IN_DTYPE>
void test_min_out_dtype() {
TensorFactory<IN_DTYPE> tf_in;
TensorFactory<ScalarType::Long> tf_long;
// clang-format off
Tensor in = tf_in.make(
{2, 3, 4},
{
0, 1, 2, 4,
4, 2, 1, 0,
1, 0, 4, 2,
4, 2, 1, 0,
0, 1, 2, 4,
1, 0, 4, 2,
});
// clang-format on
Tensor min = tf_in.zeros({2, 4});
Tensor min_indices = tf_long.zeros({2, 4});
op_min_dim_min(in, /*dim=*/1, /*keepdim=*/false, min, min_indices);
// clang-format off
EXPECT_TENSOR_CLOSE(min, tf_in.make(
{2, 4},
{
0, 0, 1, 0,
0, 0, 1, 0
}));
EXPECT_TENSOR_EQ(min_indices, tf_long.make(
{2, 4},
{
0, 2, 1, 1,
1, 2, 0, 0
}));
// clang-format on
// negative dim should work
op_min_dim_min(in, /*dim=*/-2, /*keepdim=*/false, min, min_indices);
// clang-format off
EXPECT_TENSOR_CLOSE(min, tf_in.make(
{2, 4},
{
0, 0, 1, 0,
0, 0, 1, 0
}));
EXPECT_TENSOR_EQ(min_indices, tf_long.make(
{2, 4},
{
0, 2, 1, 1,
1, 2, 0, 0
}));
// clang-format on
// keepdim should work
min = tf_in.zeros({2, 3, 1});
min_indices = tf_long.zeros({2, 3, 1});
op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/true, min, min_indices);
EXPECT_TENSOR_CLOSE(min, tf_in.make({2, 3, 1}, {0, 0, 0, 0, 0, 0}));
EXPECT_TENSOR_EQ(min_indices, tf_long.make({2, 3, 1}, {0, 3, 1, 3, 0, 1}));
}
};
template <>
void OpMinOutTest::test_min_out_dtype<ScalarType::Bool>() {
TensorFactory<ScalarType::Bool> tf_bool;
TensorFactory<ScalarType::Long> tf_long;
// clang-format off
Tensor in = tf_bool.make(
{2, 3, 4},
{
true, false, true, false,
false, false, false, false,
false, true, true, false,
false, false, true, false,
false, false, false, true,
true, true, true, true,
});
// clang-format on
Tensor min = tf_bool.zeros({2, 3, 1});
Tensor min_indices = tf_long.zeros({2, 3, 1});
// +/-inf and nan should work
op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/true, min, min_indices);
// clang-format off
EXPECT_TENSOR_CLOSE(
min, tf_bool.make(
{2, 3, 1},
{
false,
false,
false,
false,
false,
true
}));
EXPECT_TENSOR_EQ(min_indices, tf_long.make(
{2, 3, 1},
{
1,
0,
0,
0,
0,
0
}));
// clang-format on
}
TEST_F(OpMinOutTest, MismatchedDimensionsDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel test fails";
}
#define TEST_ENTRY(ctype, dtype) \
test_min_out_invalid_dimensions<ScalarType::dtype>();
ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpMinOutTest, MismatchedDTypesDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel test fails";
}
TensorFactory<ScalarType::Float> tf_float;
TensorFactory<ScalarType::Long> tf_long;
Tensor in = tf_float.ones(/*sizes=*/{2, 3, 4});
Tensor min = tf_long.zeros({2, 3, 1});
Tensor min_indices = tf_long.zeros({2, 3, 1});
// dtype of in and min should match
ET_EXPECT_KERNEL_FAILURE(
context_,
op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/true, min, min_indices));
// min_value tensor should have long as dtype
min = tf_float.zeros({2, 3, 1});
min_indices = tf_float.zeros({2, 3, 1});
ET_EXPECT_KERNEL_FAILURE(
context_,
op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/true, min, min_indices));
}
TEST_F(OpMinOutTest, AllRealInputLongOutputPasses) {
#define TEST_ENTRY(ctype, dtype) test_min_out_dtype<ScalarType::dtype>();
ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpMinOutTest, InfinityAndNANTest) {
TensorFactory<ScalarType::Float> tf_float;
TensorFactory<ScalarType::Long> tf_long;
// clang-format off
Tensor in = tf_float.make(
{2, 3, 4},
{
0, 1, 2, INFINITY,
INFINITY, -INFINITY, 1, 0,
NAN, INFINITY, -INFINITY, 2,
NAN, NAN, 1, 0,
0, INFINITY, NAN, 4,
1, NAN, 3.14, 2,
});
// clang-format on
Tensor min = tf_float.zeros({2, 3, 1});
Tensor min_indices = tf_long.zeros({2, 3, 1});
// +/-inf and nan should work
op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/true, min, min_indices);
EXPECT_TENSOR_CLOSE(
min, tf_float.make({2, 3, 1}, {0, -INFINITY, NAN, NAN, NAN, NAN}));
// clang-format off
EXPECT_TENSOR_EQ(min_indices, tf_long.make(
{2, 3, 1},
{
0,
1,
0,
0,
2,
1
}));
// clang-format on
}
TEST_F(OpMinOutTest, DynamicShapeUpperBoundSameAsExpected) {
test_dynamic_shape(
{2, 4}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
}
TEST_F(OpMinOutTest, DynamicShapeUpperBoundLargerThanExpected) {
test_dynamic_shape(
{10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
}
TEST_F(OpMinOutTest, DynamicShapeUnbound) {
if (!torch::executor::testing::SupportedFeatures::get()->output_resize) {
GTEST_SKIP() << "Dynamic shape unbound not supported";
}
test_dynamic_shape(
{1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND);
}