| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| #include <executorch/runtime/core/exec_aten/util/scalar_type_util.h> |
| #include <executorch/test/utils/DeathTest.h> |
| #include <gtest/gtest.h> |
| #include <cmath> |
| |
| using namespace ::testing; |
| using exec_aten::ArrayRef; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using torch::executor::testing::TensorFactory; |
| |
| class OpMinOutTest : public OperatorTest { |
| protected: |
| std::tuple<Tensor&, Tensor&> op_min_dim_min( |
| const Tensor& in, |
| int64_t dim, |
| bool keepdim, |
| Tensor& min, |
| Tensor& min_indices) { |
| return torch::executor::aten::min_outf( |
| context_, in, dim, keepdim, min, min_indices); |
| } |
| |
| template <ScalarType IN_DTYPE> |
| void test_min_out_invalid_dimensions() { |
| TensorFactory<IN_DTYPE> tf_in; |
| TensorFactory<ScalarType::Long> tf_long; |
| |
| Tensor in = tf_in.ones(/*sizes=*/{2, 3, 4}); |
| Tensor min = tf_in.zeros({2, 3, 2}); |
| Tensor min_indices = tf_in.zeros({2, 3}); |
| |
| // output tensor dim mismatch |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/true, min, min_indices)); |
| |
| // output tensor shape incorrect: size of dimension: dim should be 1 |
| min = tf_in.zeros({2, 3, 2}); |
| min_indices = tf_in.zeros({2, 3, 2}); |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/true, min, min_indices)); |
| |
| // output tensor shape should be squeezed when keepdim is false |
| min = tf_in.zeros({2, 3, 1}); |
| min_indices = tf_in.zeros({2, 3, 1}); |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/false, min, min_indices)); |
| |
| // invalid dim |
| min = tf_in.zeros({2, 3, 1}); |
| min_indices = tf_in.zeros({2, 3, 1}); |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_min_dim_min(in, /*dim=*/3, /*keepdim=*/true, min, min_indices)); |
| } |
| |
| void test_dynamic_shape( |
| const std::vector<int32_t>& out_shape, |
| enum torch::executor::TensorShapeDynamism dynamism) { |
| /* %python |
| %rewrite(min_template) */ |
| |
| TensorFactory<ScalarType::Float> tf; |
| TensorFactory<ScalarType::Long> tfl; |
| |
| // clang-format off |
| Tensor input = tf.make( |
| {2, 3, 4}, |
| {0.49, 0.76, 0.08, 0.13, |
| 0.30, 0.63, 0.49, 0.89, |
| 0.45, 0.63, 0.34, 0.40, |
| |
| 0.02, 0.16, 0.29, 0.51, |
| 0.69, 0.80, 0.16, 0.28, |
| 0.68, 0.91, 0.39, 0.87}); |
| Tensor expected_min = tf.make( |
| {2, 4}, |
| {0.30, 0.63, 0.08, 0.13, |
| 0.02, 0.16, 0.16, 0.28}); |
| // clang-format on |
| |
| Tensor expected_min_indices = tfl.make({2, 4}, {1, 1, 0, 0, 0, 0, 1, 1}); |
| Tensor min = tf.zeros(out_shape, dynamism); |
| Tensor min_indices = tfl.zeros(out_shape, dynamism); |
| |
| op_min_dim_min(input, 1, false, min, min_indices); |
| EXPECT_TENSOR_EQ(min, expected_min); |
| EXPECT_TENSOR_EQ(min_indices, expected_min_indices); |
| } |
| |
| template <ScalarType IN_DTYPE> |
| void test_min_out_dtype() { |
| TensorFactory<IN_DTYPE> tf_in; |
| TensorFactory<ScalarType::Long> tf_long; |
| // clang-format off |
| Tensor in = tf_in.make( |
| {2, 3, 4}, |
| { |
| 0, 1, 2, 4, |
| 4, 2, 1, 0, |
| 1, 0, 4, 2, |
| |
| 4, 2, 1, 0, |
| 0, 1, 2, 4, |
| 1, 0, 4, 2, |
| }); |
| // clang-format on |
| |
| Tensor min = tf_in.zeros({2, 4}); |
| Tensor min_indices = tf_long.zeros({2, 4}); |
| op_min_dim_min(in, /*dim=*/1, /*keepdim=*/false, min, min_indices); |
| // clang-format off |
| EXPECT_TENSOR_CLOSE(min, tf_in.make( |
| {2, 4}, |
| { |
| 0, 0, 1, 0, |
| 0, 0, 1, 0 |
| })); |
| |
| EXPECT_TENSOR_EQ(min_indices, tf_long.make( |
| {2, 4}, |
| { |
| 0, 2, 1, 1, |
| 1, 2, 0, 0 |
| })); |
| // clang-format on |
| |
| // negative dim should work |
| op_min_dim_min(in, /*dim=*/-2, /*keepdim=*/false, min, min_indices); |
| // clang-format off |
| EXPECT_TENSOR_CLOSE(min, tf_in.make( |
| {2, 4}, |
| { |
| 0, 0, 1, 0, |
| 0, 0, 1, 0 |
| })); |
| EXPECT_TENSOR_EQ(min_indices, tf_long.make( |
| {2, 4}, |
| { |
| 0, 2, 1, 1, |
| 1, 2, 0, 0 |
| })); |
| // clang-format on |
| |
| // keepdim should work |
| min = tf_in.zeros({2, 3, 1}); |
| min_indices = tf_long.zeros({2, 3, 1}); |
| op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/true, min, min_indices); |
| EXPECT_TENSOR_CLOSE(min, tf_in.make({2, 3, 1}, {0, 0, 0, 0, 0, 0})); |
| EXPECT_TENSOR_EQ(min_indices, tf_long.make({2, 3, 1}, {0, 3, 1, 3, 0, 1})); |
| } |
| }; |
| |
| template <> |
| void OpMinOutTest::test_min_out_dtype<ScalarType::Bool>() { |
| TensorFactory<ScalarType::Bool> tf_bool; |
| TensorFactory<ScalarType::Long> tf_long; |
| // clang-format off |
| Tensor in = tf_bool.make( |
| {2, 3, 4}, |
| { |
| true, false, true, false, |
| false, false, false, false, |
| false, true, true, false, |
| |
| false, false, true, false, |
| false, false, false, true, |
| true, true, true, true, |
| }); |
| // clang-format on |
| |
| Tensor min = tf_bool.zeros({2, 3, 1}); |
| Tensor min_indices = tf_long.zeros({2, 3, 1}); |
| |
| // +/-inf and nan should work |
| op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/true, min, min_indices); |
| // clang-format off |
| EXPECT_TENSOR_CLOSE( |
| min, tf_bool.make( |
| {2, 3, 1}, |
| { |
| false, |
| false, |
| false, |
| |
| false, |
| false, |
| true |
| })); |
| EXPECT_TENSOR_EQ(min_indices, tf_long.make( |
| {2, 3, 1}, |
| { |
| 1, |
| 0, |
| 0, |
| |
| 0, |
| 0, |
| 0 |
| })); |
| // clang-format on |
| } |
| |
| TEST_F(OpMinOutTest, MismatchedDimensionsDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel test fails"; |
| } |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_min_out_invalid_dimensions<ScalarType::dtype>(); |
| ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpMinOutTest, MismatchedDTypesDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel test fails"; |
| } |
| TensorFactory<ScalarType::Float> tf_float; |
| TensorFactory<ScalarType::Long> tf_long; |
| |
| Tensor in = tf_float.ones(/*sizes=*/{2, 3, 4}); |
| Tensor min = tf_long.zeros({2, 3, 1}); |
| Tensor min_indices = tf_long.zeros({2, 3, 1}); |
| |
| // dtype of in and min should match |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/true, min, min_indices)); |
| |
| // min_value tensor should have long as dtype |
| min = tf_float.zeros({2, 3, 1}); |
| min_indices = tf_float.zeros({2, 3, 1}); |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/true, min, min_indices)); |
| } |
| |
| TEST_F(OpMinOutTest, AllRealInputLongOutputPasses) { |
| #define TEST_ENTRY(ctype, dtype) test_min_out_dtype<ScalarType::dtype>(); |
| ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpMinOutTest, InfinityAndNANTest) { |
| TensorFactory<ScalarType::Float> tf_float; |
| TensorFactory<ScalarType::Long> tf_long; |
| // clang-format off |
| Tensor in = tf_float.make( |
| {2, 3, 4}, |
| { |
| 0, 1, 2, INFINITY, |
| INFINITY, -INFINITY, 1, 0, |
| NAN, INFINITY, -INFINITY, 2, |
| |
| NAN, NAN, 1, 0, |
| 0, INFINITY, NAN, 4, |
| 1, NAN, 3.14, 2, |
| }); |
| // clang-format on |
| |
| Tensor min = tf_float.zeros({2, 3, 1}); |
| Tensor min_indices = tf_long.zeros({2, 3, 1}); |
| |
| // +/-inf and nan should work |
| op_min_dim_min(in, /*dim=*/-1, /*keepdim=*/true, min, min_indices); |
| EXPECT_TENSOR_CLOSE( |
| min, tf_float.make({2, 3, 1}, {0, -INFINITY, NAN, NAN, NAN, NAN})); |
| // clang-format off |
| EXPECT_TENSOR_EQ(min_indices, tf_long.make( |
| {2, 3, 1}, |
| { |
| 0, |
| 1, |
| 0, |
| |
| 0, |
| 2, |
| 1 |
| })); |
| // clang-format on |
| } |
| |
| TEST_F(OpMinOutTest, DynamicShapeUpperBoundSameAsExpected) { |
| test_dynamic_shape( |
| {2, 4}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| } |
| |
| TEST_F(OpMinOutTest, DynamicShapeUpperBoundLargerThanExpected) { |
| test_dynamic_shape( |
| {10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| } |
| |
| TEST_F(OpMinOutTest, DynamicShapeUnbound) { |
| if (!torch::executor::testing::SupportedFeatures::get()->output_resize) { |
| GTEST_SKIP() << "Dynamic shape unbound not supported"; |
| } |
| test_dynamic_shape( |
| {1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND); |
| } |