| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| #include <executorch/runtime/core/exec_aten/util/scalar_type_util.h> |
| #include <executorch/test/utils/DeathTest.h> |
| #include <gtest/gtest.h> |
| #include <cmath> |
| |
| using namespace ::testing; |
| using exec_aten::ArrayRef; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using torch::executor::testing::TensorFactory; |
| |
| class OpAmaxOutTest : public OperatorTest { |
| protected: |
| Tensor& op_amax_out( |
| const Tensor& in, |
| ArrayRef<int64_t> dim, |
| bool keepdim, |
| Tensor& out) { |
| return torch::executor::aten::amax_outf(context_, in, dim, keepdim, out); |
| } |
| |
| template <ScalarType DTYPE> |
| void test_amax_out_invalid_dimensions() { |
| TensorFactory<DTYPE> tf; |
| |
| // clang-format off |
| Tensor in = tf.make( |
| {2, 3, 4}, |
| { |
| 0, 1, 2, 4, |
| 4, 2, 1, 0, |
| 1, 0, 4, 2, |
| |
| 4, 2, 1, 0, |
| 0, 1, 2, 4, |
| 1, 0, 4, 2, |
| }); |
| // clang-format on |
| Tensor out = tf.zeros({2, 3, 1}); |
| |
| // out-of-bound dim in dim list |
| int64_t dims_1[1] = {3}; |
| ArrayRef<int64_t> dim_list{ArrayRef<int64_t>{dims_1, 1}}; |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, op_amax_out(in, dim_list, /*keepdim=*/true, out)); |
| |
| // the same dim appears multiple times in list of dims |
| int64_t dims_2[2] = {2, 2}; |
| dim_list = ArrayRef<int64_t>{dims_2, 2}; |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, op_amax_out(in, dim_list, /*keepdim=*/true, out)); |
| } |
| |
| template <ScalarType DTYPE> |
| void test_amax_out_invalid_shape() { |
| TensorFactory<DTYPE> tf; |
| |
| // clang-format off |
| Tensor in = tf.make( |
| {2, 3, 4}, |
| { |
| 0, 1, 2, 4, |
| 4, 2, 1, 0, |
| 1, 0, 4, 2, |
| |
| 4, 2, 1, 0, |
| 0, 1, 2, 4, |
| 1, 0, 4, 2, |
| }); |
| // clang-format on |
| |
| // dimension size mismatch when keepdim is true |
| Tensor out = tf.zeros({2, 4}); |
| |
| int64_t dims_1[1] = {1}; |
| ArrayRef<int64_t> dim_list{ArrayRef<int64_t>{dims_1, 1}}; |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, op_amax_out(in, dim_list, /*keepdim=*/true, out)); |
| |
| // dimension size mismatch when keepdim is false |
| out = tf.zeros({2, 1, 4}); |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, op_amax_out(in, dim_list, /*keepdim=*/false, out)); |
| } |
| |
| template <ScalarType DTYPE> |
| void test_amax_out_dtype() { |
| TensorFactory<DTYPE> tf; |
| // clang-format off |
| Tensor in = tf.make( |
| {2, 3, 4}, |
| { |
| 0, 1, 2, 4, |
| 4, 2, 1, 0, |
| 1, 5, 4, 2, |
| |
| 4, 2, 1, 0, |
| 5, 1, 2, 4, |
| 7, 5, 4, 2, |
| }); |
| // clang-format on |
| |
| // keepdim=true should work |
| Tensor out = tf.zeros({2, 3, 1}); |
| int64_t dims_1[1] = {2}; |
| ArrayRef<int64_t> dim_list{ArrayRef<int64_t>{dims_1, 1}}; |
| |
| op_amax_out(in, dim_list, /*keepdim=*/true, out); |
| // clang-format off |
| EXPECT_TENSOR_CLOSE(out, tf.make( |
| {2, 3, 1}, |
| {4, 4, 5, 4, 5, 7})); |
| // clang-format on |
| |
| // keepdim=false should work |
| out = tf.zeros({2, 3}); |
| op_amax_out(in, dim_list, /*keepdim=*/false, out); |
| // clang-format off |
| EXPECT_TENSOR_CLOSE(out, tf.make( |
| {2, 3}, |
| {4, 4, 5, 4, 5, 7})); |
| // clang-format on |
| |
| // dim list with multiple dimensions should work |
| out = tf.zeros({1, 1, 4}); |
| int64_t dims_2[2] = {0, 1}; |
| dim_list = ArrayRef<int64_t>{dims_2, 2}; |
| op_amax_out(in, dim_list, /*keepdim=*/true, out); |
| EXPECT_TENSOR_CLOSE(out, tf.make({1, 1, 4}, {7, 5, 4, 4})); |
| |
| out = tf.zeros({4}); |
| op_amax_out(in, dim_list, /*keepdim=*/false, out); |
| EXPECT_TENSOR_CLOSE(out, tf.make({4}, {7, 5, 4, 4})); |
| |
| // dim list with negative dimensions should work |
| out = tf.zeros({2, 1, 4}); |
| int64_t dims_3[1] = {-2}; |
| dim_list = ArrayRef<int64_t>{dims_3, 1}; |
| op_amax_out(in, dim_list, /*keepdim=*/true, out); |
| // clang-format off |
| EXPECT_TENSOR_CLOSE(out, tf.make( |
| {2, 1, 4}, |
| { |
| 4, 5, 4, 4, |
| |
| 7, 5, 4, 4, |
| })); |
| // clang-format on |
| |
| // empty/null dim list should work |
| // clang-format off |
| in = tf.make( |
| {2, 2, 4}, |
| { |
| 8, 7, 5, 4, |
| 4, 3, 7, 9, |
| |
| 4, 2, 6, 8, |
| 8, 7, 3, 4, |
| }); |
| // clang-format on |
| out = tf.zeros({1, 1, 1}); |
| ArrayRef<int64_t> null_dim_list; |
| op_amax_out(in, null_dim_list, /*keepdim=*/true, out); |
| EXPECT_TENSOR_CLOSE(out, tf.make({1, 1, 1}, {9})); |
| |
| ArrayRef<int64_t> empty_dim_list{ArrayRef<int64_t>{}}; |
| op_amax_out(in, empty_dim_list, /*keepdim=*/true, out); |
| EXPECT_TENSOR_CLOSE(out, tf.make({1, 1, 1}, {9})); |
| |
| out = tf.zeros({}); |
| op_amax_out(in, null_dim_list, /*keepdim=*/false, out); |
| EXPECT_TENSOR_CLOSE(out, tf.make({}, {9})); |
| |
| op_amax_out(in, empty_dim_list, /*keepdim=*/false, out); |
| EXPECT_TENSOR_CLOSE(out, tf.make({}, {9})); |
| } |
| }; |
| |
| template <> |
| void OpAmaxOutTest::test_amax_out_dtype<ScalarType::Bool>() { |
| TensorFactory<ScalarType::Bool> tf_bool; |
| // clang-format off |
| Tensor in = tf_bool.make( |
| {2, 3, 4}, |
| { |
| true, false, true, false, |
| false, false, false, false, |
| false, true, true, false, |
| |
| false, false, true, false, |
| false, false, false, true, |
| true, true, true, true, |
| }); |
| // clang-format on |
| |
| Tensor out = tf_bool.zeros({2, 3, 1}); |
| |
| // +/-inf and nan should work |
| op_amax_out(in, /*dim=*/-1, /*keepdim=*/true, out); |
| // clang-format off |
| EXPECT_TENSOR_CLOSE( |
| out, tf_bool.make( |
| {2, 3, 1}, |
| { |
| true, |
| false, |
| true, |
| |
| true, |
| true, |
| true |
| })); |
| // clang-format on |
| } |
| |
| TEST_F(OpAmaxOutTest, InvalidDimensionListDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel test fails"; |
| } |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_amax_out_invalid_dimensions<ScalarType::dtype>(); |
| ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpAmaxOutTest, InvalidShapeDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel test fails"; |
| } |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_amax_out_invalid_shape<ScalarType::dtype>(); |
| ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpAmaxOutTest, MismatchedDTypesDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel test fails"; |
| } |
| TensorFactory<ScalarType::Float> tf_float; |
| TensorFactory<ScalarType::Int> tf_int; |
| |
| // clang-format off |
| Tensor in = tf_int.make( |
| {2, 3, 4}, |
| { |
| 0, 1, 2, 4, |
| 4, 2, 1, 0, |
| 1, 0, 4, 2, |
| |
| 4, 2, 1, 0, |
| 0, 1, 2, 4, |
| 1, 0, 4, 2, |
| }); |
| // clang-format on |
| |
| Tensor out = tf_float.zeros({2, 3, 1}); |
| int64_t dims_1[1] = {2}; |
| ArrayRef<int64_t> dim_list{ArrayRef<int64_t>{dims_1, 1}}; |
| |
| // out tensor should be of the same dtype with dtype when dtype is specified |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, op_amax_out(in, dim_list, /*keepdim=*/true, out)); |
| } |
| |
| TEST_F(OpAmaxOutTest, AllRealInputOutputPasses) { |
| #define TEST_ENTRY(ctype, dtype) test_amax_out_dtype<ScalarType::dtype>(); |
| ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpAmaxOutTest, InfinityAndNANTest) { |
| TensorFactory<ScalarType::Float> tf_float; |
| // clang-format off |
| Tensor in = tf_float.make( |
| {2, 3, 4}, |
| { |
| 0, 1, 2, INFINITY, |
| INFINITY, -INFINITY, 1, 0, |
| NAN, INFINITY, -INFINITY, 2, |
| |
| NAN, NAN, 1, 0, |
| 0, INFINITY, NAN, 4, |
| 1, NAN, 3.14, 2, |
| }); |
| // clang-format on |
| |
| Tensor out = tf_float.zeros({2, 3, 1}); |
| int64_t dims[1] = {-1}; |
| ArrayRef<int64_t> dim_list{ArrayRef<int64_t>{dims, 1}}; |
| op_amax_out(in, dim_list, /*keepdim=*/true, out); |
| // clang-format off |
| EXPECT_TENSOR_CLOSE( |
| out, tf_float.make({2, 3, 1}, {INFINITY, INFINITY, NAN, NAN, NAN, NAN})); |
| // clang-format on |
| } |