blob: ba0ac0527b8a3b794b34e5ff692c35dc92e24ae0 [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator
#include <executorch/kernels/test/TestUtil.h>
#include <executorch/kernels/test/supported_features.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>
#include <executorch/runtime/core/exec_aten/util/scalar_type_util.h>
#include <executorch/test/utils/DeathTest.h>
#include <gtest/gtest.h>
#include <cmath>
using namespace ::testing;
using exec_aten::ArrayRef;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::TensorFactory;
class OpAmaxOutTest : public OperatorTest {
protected:
Tensor& op_amax_out(
const Tensor& in,
ArrayRef<int64_t> dim,
bool keepdim,
Tensor& out) {
return torch::executor::aten::amax_outf(context_, in, dim, keepdim, out);
}
template <ScalarType DTYPE>
void test_amax_out_invalid_dimensions() {
TensorFactory<DTYPE> tf;
// clang-format off
Tensor in = tf.make(
{2, 3, 4},
{
0, 1, 2, 4,
4, 2, 1, 0,
1, 0, 4, 2,
4, 2, 1, 0,
0, 1, 2, 4,
1, 0, 4, 2,
});
// clang-format on
Tensor out = tf.zeros({2, 3, 1});
// out-of-bound dim in dim list
int64_t dims_1[1] = {3};
ArrayRef<int64_t> dim_list{ArrayRef<int64_t>{dims_1, 1}};
ET_EXPECT_KERNEL_FAILURE(
context_, op_amax_out(in, dim_list, /*keepdim=*/true, out));
// the same dim appears multiple times in list of dims
int64_t dims_2[2] = {2, 2};
dim_list = ArrayRef<int64_t>{dims_2, 2};
ET_EXPECT_KERNEL_FAILURE(
context_, op_amax_out(in, dim_list, /*keepdim=*/true, out));
}
template <ScalarType DTYPE>
void test_amax_out_invalid_shape() {
TensorFactory<DTYPE> tf;
// clang-format off
Tensor in = tf.make(
{2, 3, 4},
{
0, 1, 2, 4,
4, 2, 1, 0,
1, 0, 4, 2,
4, 2, 1, 0,
0, 1, 2, 4,
1, 0, 4, 2,
});
// clang-format on
// dimension size mismatch when keepdim is true
Tensor out = tf.zeros({2, 4});
int64_t dims_1[1] = {1};
ArrayRef<int64_t> dim_list{ArrayRef<int64_t>{dims_1, 1}};
ET_EXPECT_KERNEL_FAILURE(
context_, op_amax_out(in, dim_list, /*keepdim=*/true, out));
// dimension size mismatch when keepdim is false
out = tf.zeros({2, 1, 4});
ET_EXPECT_KERNEL_FAILURE(
context_, op_amax_out(in, dim_list, /*keepdim=*/false, out));
}
template <ScalarType DTYPE>
void test_amax_out_dtype() {
TensorFactory<DTYPE> tf;
// clang-format off
Tensor in = tf.make(
{2, 3, 4},
{
0, 1, 2, 4,
4, 2, 1, 0,
1, 5, 4, 2,
4, 2, 1, 0,
5, 1, 2, 4,
7, 5, 4, 2,
});
// clang-format on
// keepdim=true should work
Tensor out = tf.zeros({2, 3, 1});
int64_t dims_1[1] = {2};
ArrayRef<int64_t> dim_list{ArrayRef<int64_t>{dims_1, 1}};
op_amax_out(in, dim_list, /*keepdim=*/true, out);
// clang-format off
EXPECT_TENSOR_CLOSE(out, tf.make(
{2, 3, 1},
{4, 4, 5, 4, 5, 7}));
// clang-format on
// keepdim=false should work
out = tf.zeros({2, 3});
op_amax_out(in, dim_list, /*keepdim=*/false, out);
// clang-format off
EXPECT_TENSOR_CLOSE(out, tf.make(
{2, 3},
{4, 4, 5, 4, 5, 7}));
// clang-format on
// dim list with multiple dimensions should work
out = tf.zeros({1, 1, 4});
int64_t dims_2[2] = {0, 1};
dim_list = ArrayRef<int64_t>{dims_2, 2};
op_amax_out(in, dim_list, /*keepdim=*/true, out);
EXPECT_TENSOR_CLOSE(out, tf.make({1, 1, 4}, {7, 5, 4, 4}));
out = tf.zeros({4});
op_amax_out(in, dim_list, /*keepdim=*/false, out);
EXPECT_TENSOR_CLOSE(out, tf.make({4}, {7, 5, 4, 4}));
// dim list with negative dimensions should work
out = tf.zeros({2, 1, 4});
int64_t dims_3[1] = {-2};
dim_list = ArrayRef<int64_t>{dims_3, 1};
op_amax_out(in, dim_list, /*keepdim=*/true, out);
// clang-format off
EXPECT_TENSOR_CLOSE(out, tf.make(
{2, 1, 4},
{
4, 5, 4, 4,
7, 5, 4, 4,
}));
// clang-format on
// empty/null dim list should work
// clang-format off
in = tf.make(
{2, 2, 4},
{
8, 7, 5, 4,
4, 3, 7, 9,
4, 2, 6, 8,
8, 7, 3, 4,
});
// clang-format on
out = tf.zeros({1, 1, 1});
ArrayRef<int64_t> null_dim_list;
op_amax_out(in, null_dim_list, /*keepdim=*/true, out);
EXPECT_TENSOR_CLOSE(out, tf.make({1, 1, 1}, {9}));
ArrayRef<int64_t> empty_dim_list{ArrayRef<int64_t>{}};
op_amax_out(in, empty_dim_list, /*keepdim=*/true, out);
EXPECT_TENSOR_CLOSE(out, tf.make({1, 1, 1}, {9}));
out = tf.zeros({});
op_amax_out(in, null_dim_list, /*keepdim=*/false, out);
EXPECT_TENSOR_CLOSE(out, tf.make({}, {9}));
op_amax_out(in, empty_dim_list, /*keepdim=*/false, out);
EXPECT_TENSOR_CLOSE(out, tf.make({}, {9}));
}
};
template <>
void OpAmaxOutTest::test_amax_out_dtype<ScalarType::Bool>() {
TensorFactory<ScalarType::Bool> tf_bool;
// clang-format off
Tensor in = tf_bool.make(
{2, 3, 4},
{
true, false, true, false,
false, false, false, false,
false, true, true, false,
false, false, true, false,
false, false, false, true,
true, true, true, true,
});
// clang-format on
Tensor out = tf_bool.zeros({2, 3, 1});
// +/-inf and nan should work
op_amax_out(in, /*dim=*/-1, /*keepdim=*/true, out);
// clang-format off
EXPECT_TENSOR_CLOSE(
out, tf_bool.make(
{2, 3, 1},
{
true,
false,
true,
true,
true,
true
}));
// clang-format on
}
TEST_F(OpAmaxOutTest, InvalidDimensionListDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel test fails";
}
#define TEST_ENTRY(ctype, dtype) \
test_amax_out_invalid_dimensions<ScalarType::dtype>();
ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpAmaxOutTest, InvalidShapeDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel test fails";
}
#define TEST_ENTRY(ctype, dtype) \
test_amax_out_invalid_shape<ScalarType::dtype>();
ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpAmaxOutTest, MismatchedDTypesDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel test fails";
}
TensorFactory<ScalarType::Float> tf_float;
TensorFactory<ScalarType::Int> tf_int;
// clang-format off
Tensor in = tf_int.make(
{2, 3, 4},
{
0, 1, 2, 4,
4, 2, 1, 0,
1, 0, 4, 2,
4, 2, 1, 0,
0, 1, 2, 4,
1, 0, 4, 2,
});
// clang-format on
Tensor out = tf_float.zeros({2, 3, 1});
int64_t dims_1[1] = {2};
ArrayRef<int64_t> dim_list{ArrayRef<int64_t>{dims_1, 1}};
// out tensor should be of the same dtype with dtype when dtype is specified
ET_EXPECT_KERNEL_FAILURE(
context_, op_amax_out(in, dim_list, /*keepdim=*/true, out));
}
TEST_F(OpAmaxOutTest, AllRealInputOutputPasses) {
#define TEST_ENTRY(ctype, dtype) test_amax_out_dtype<ScalarType::dtype>();
ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpAmaxOutTest, InfinityAndNANTest) {
TensorFactory<ScalarType::Float> tf_float;
// clang-format off
Tensor in = tf_float.make(
{2, 3, 4},
{
0, 1, 2, INFINITY,
INFINITY, -INFINITY, 1, 0,
NAN, INFINITY, -INFINITY, 2,
NAN, NAN, 1, 0,
0, INFINITY, NAN, 4,
1, NAN, 3.14, 2,
});
// clang-format on
Tensor out = tf_float.zeros({2, 3, 1});
int64_t dims[1] = {-1};
ArrayRef<int64_t> dim_list{ArrayRef<int64_t>{dims, 1}};
op_amax_out(in, dim_list, /*keepdim=*/true, out);
// clang-format off
EXPECT_TENSOR_CLOSE(
out, tf_float.make({2, 3, 1}, {INFINITY, INFINITY, NAN, NAN, NAN, NAN}));
// clang-format on
}