blob: 53f6329b4d8ea36f516d16080913c30ba346206e [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/examples/models/llava/runner/llava_runner.h>
#include <gflags/gflags.h>
#ifndef LLAVA_NO_TORCH_DUMMY_IMAGE
#include <torch/torch.h>
#else
#include <algorithm> // std::fill
#endif
#if defined(ET_USE_THREADPOOL)
#include <executorch/extension/threadpool/cpuinfo_utils.h>
#include <executorch/extension/threadpool/threadpool.h>
#endif
DEFINE_string(
model_path,
"llava.pte",
"Model serialized in flatbuffer format.");
DEFINE_string(tokenizer_path, "tokenizer.bin", "Tokenizer stuff.");
DEFINE_string(prompt, "The answer to the ultimate question is", "Prompt.");
DEFINE_string(
image_path,
"",
"The path to a .pt file, a serialized torch tensor for an image, longest edge resized to 336.");
DEFINE_double(
temperature,
0.8f,
"Temperature; Default is 0.8f. 0 = greedy argmax sampling (deterministic). Lower temperature = more deterministic");
DEFINE_int32(
seq_len,
1024,
"Total number of tokens to generate (prompt + output). Defaults to max_seq_len. If the number of input tokens + seq_len > max_seq_len, the output will be truncated to max_seq_len tokens.");
DEFINE_int32(
cpu_threads,
-1,
"Number of CPU threads for inference. Defaults to -1, which implies we'll use a heuristic to derive the # of performant cores for a specific device.");
int32_t main(int32_t argc, char** argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
// Create a loader to get the data of the program file. There are other
// DataLoaders that use mmap() or point32_t to data that's already in memory,
// and users can create their own DataLoaders to load from arbitrary sources.
const char* model_path = FLAGS_model_path.c_str();
const char* tokenizer_path = FLAGS_tokenizer_path.c_str();
const char* prompt = FLAGS_prompt.c_str();
std::string image_path = FLAGS_image_path;
double temperature = FLAGS_temperature;
int32_t seq_len = FLAGS_seq_len;
int32_t cpu_threads = FLAGS_cpu_threads;
#if defined(ET_USE_THREADPOOL)
uint32_t num_performant_cores = cpu_threads == -1
? torch::executorch::cpuinfo::get_num_performant_cores()
: static_cast<uint32_t>(cpu_threads);
ET_LOG(
Info, "Resetting threadpool with num threads = %d", num_performant_cores);
if (num_performant_cores > 0) {
torch::executorch::threadpool::get_threadpool()->_unsafe_reset_threadpool(
num_performant_cores);
}
#endif
// create llama runner
torch::executor::LlavaRunner runner(model_path, tokenizer_path, temperature);
// read image and resize the longest edge to 336
std::vector<uint8_t> image_data;
#ifdef LLAVA_NO_TORCH_DUMMY_IMAGE
// Work without torch using a random data
image_data.resize(3 * 240 * 336);
std::fill(image_data.begin(), image_data.end(), 0); // black
std::array<int32_t, 3> image_shape = {3, 240, 336};
std::vector<torch::executor::Image> images = {
{.data = image_data, .width = image_shape[2], .height = image_shape[1]}};
#else // LLAVA_NO_TORCH_DUMMY_IMAGE
// cv::Mat image = cv::imread(image_path, cv::IMREAD_COLOR);
// int longest_edge = std::max(image.rows, image.cols);
// float scale_factor = 336.0f / longest_edge;
// cv::Size new_size(image.cols * scale_factor, image.rows * scale_factor);
// cv::Mat resized_image;
// cv::resize(image, resized_image, new_size);
// image_data.assign(resized_image.datastart, resized_image.dataend);
torch::Tensor image_tensor;
torch::load(image_tensor, image_path); // CHW
ET_LOG(
Info,
"image size(0): %" PRId64 ", size(1): %" PRId64 ", size(2): %" PRId64,
image_tensor.size(0),
image_tensor.size(1),
image_tensor.size(2));
image_data.assign(
image_tensor.data_ptr<uint8_t>(),
image_tensor.data_ptr<uint8_t>() + image_tensor.numel());
std::vector<torch::executor::Image> images = {
{.data = image_data,
.width = static_cast<int32_t>(image_tensor.size(2)),
.height = static_cast<int32_t>(image_tensor.size(1))}};
#endif // LLAVA_NO_TORCH_DUMMY_IMAGE
// generate
runner.generate(std::move(images), prompt, seq_len);
return 0;
}