blob: f65f9b73a58bd46025ef73f49612edbc2f0e5894 [file] [log] [blame]
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
# Example script for exporting simple models to flatbuffer
import argparse
import copy
import logging
import torch
from executorch.backends.xnnpack.partition.xnnpack_partitioner import XnnpackPartitioner
from executorch.devtools import generate_etrecord
from executorch.exir import (
EdgeCompileConfig,
ExecutorchBackendConfig,
to_edge_transform_and_lower,
)
from executorch.extension.export_util.utils import save_pte_program
from ..models import MODEL_NAME_TO_MODEL
from ..models.model_factory import EagerModelFactory
from . import MODEL_NAME_TO_OPTIONS
from .quantization.utils import quantize
FORMAT = "[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s"
logging.basicConfig(level=logging.INFO, format=FORMAT)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model_name",
required=True,
help=f"Model name. Valid ones: {list(MODEL_NAME_TO_OPTIONS.keys())}",
)
parser.add_argument(
"-q",
"--quantize",
action="store_true",
required=False,
default=False,
help="Produce an 8-bit quantized model",
)
parser.add_argument(
"-d",
"--delegate",
action="store_true",
required=False,
default=True,
help="Produce an XNNPACK delegated model",
)
parser.add_argument(
"-r",
"--etrecord",
required=False,
help="Generate and save an ETRecord to the given file location",
)
parser.add_argument("-o", "--output_dir", default=".", help="output directory")
args = parser.parse_args()
if not args.delegate:
raise NotImplementedError(
"T161880157: Quantization-only without delegation is not supported yet"
)
if args.model_name not in MODEL_NAME_TO_OPTIONS and args.quantize:
raise RuntimeError(
f"Model {args.model_name} is not a valid name. or not quantizable right now, "
"please contact executorch team if you want to learn why or how to support "
"quantization for the requested model"
f"Available models are {list(MODEL_NAME_TO_OPTIONS.keys())}."
)
model, example_inputs, _ = EagerModelFactory.create_model(
*MODEL_NAME_TO_MODEL[args.model_name]
)
model = model.eval()
# pre-autograd export. eventually this will become torch.export
ep = torch.export.export_for_training(model, example_inputs)
model = ep.module()
if args.quantize:
logging.info("Quantizing Model...")
# TODO(T165162973): This pass shall eventually be folded into quantizer
model = quantize(model, example_inputs)
edge = to_edge_transform_and_lower(
ep,
partitioner=[XnnpackPartitioner()],
compile_config=EdgeCompileConfig(
_check_ir_validity=False if args.quantize else True,
_skip_dim_order=True, # TODO(T182187531): enable dim order in xnnpack
),
)
logging.info(f"Exported and lowered graph:\n{edge.exported_program().graph}")
# this is needed for the ETRecord as lowering modifies the graph in-place
edge_copy = copy.deepcopy(edge)
exec_prog = edge.to_executorch(
config=ExecutorchBackendConfig(extract_delegate_segments=False)
)
if args.etrecord is not None:
generate_etrecord(args.etrecord, edge_copy, exec_prog)
logging.info(f"Saved ETRecord to {args.etrecord}")
quant_tag = "q8" if args.quantize else "fp32"
model_name = f"{args.model_name}_xnnpack_{quant_tag}"
save_pte_program(exec_prog, model_name, args.output_dir)