blob: 3f4a1fec8bb0f5898f82d7befba8cf6b6d848ee7 [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/kernels/optimized/vec/functional.h>
#include <executorch/kernels/optimized/vec/vec.h>
#include <executorch/kernels/portable/cpu/scalar_utils.h>
#include <executorch/runtime/kernel/kernel_includes.h>
#include <executorch/runtime/platform/assert.h>
namespace torch {
namespace executor {
namespace native {
using Tensor = exec_aten::Tensor;
using ScalarType = exec_aten::ScalarType;
Tensor& opt_le_tensor_out(
KernelRuntimeContext& ctx,
const Tensor& a,
const Tensor& b,
Tensor& out) {
(void)ctx;
ET_KERNEL_CHECK(ctx, tensors_have_same_shape(a, b), InvalidArgument, out);
// Resize for dynamic shape
auto error = resize_tensor(out, a.sizes());
ET_KERNEL_CHECK_MSG(
ctx,
error == Error::Ok,
InvalidArgument,
out,
"Failed to resize output tensor.");
ScalarType a_type = a.scalar_type();
ScalarType b_type = b.scalar_type();
ScalarType out_type = out.scalar_type();
if (a_type == b_type && a_type == out_type) {
ET_SWITCH_REAL_TYPES_AND(
Bool, out_type, ctx, "le.Tensor_out", CTYPE, [&]() {
using Vec = executorch::vec::Vectorized<CTYPE>;
executorch::vec::map2<CTYPE>(
[](Vec x, Vec y) { return x.le(y); },
out.mutable_data_ptr<CTYPE>(),
a.const_data_ptr<CTYPE>(),
b.const_data_ptr<CTYPE>(),
a.numel());
});
} else {
ET_SWITCH_REAL_TYPES_AND(
Bool, a_type, ctx, "le.Tensor_out", CTYPE_A, [&]() {
ET_SWITCH_REAL_TYPES_AND(
Bool, b_type, ctx, "le.Tensor_out", CTYPE_B, [&]() {
using CTYPE_IN = typename torch::executor::
promote_types<CTYPE_A, CTYPE_B>::type;
ET_DCHECK(
CppTypeToScalarType<CTYPE_IN>::value ==
promoteTypes(a_type, b_type));
ET_SWITCH_REAL_TYPES_AND(
Bool, out_type, ctx, "le.Tensor_out", CTYPE_OUT, [&]() {
const size_t n = a.numel();
const CTYPE_A* a_data = a.const_data_ptr<CTYPE_A>();
const CTYPE_B* b_data = b.const_data_ptr<CTYPE_B>();
CTYPE_OUT* out_data = out.mutable_data_ptr<CTYPE_OUT>();
for (auto i = 0; i < n; ++i) {
out_data[i] = static_cast<CTYPE_OUT>(
static_cast<CTYPE_IN>(a_data[i]) <=
static_cast<CTYPE_IN>(b_data[i]));
}
});
});
});
}
return out;
}
Tensor& opt_le_scalar_out(
KernelRuntimeContext& ctx,
const Tensor& a,
const Scalar& b,
Tensor& out) {
(void)ctx;
// Resize for dynamic shape
auto error = resize_tensor(out, a.sizes());
ET_KERNEL_CHECK_MSG(
ctx,
error == Error::Ok,
InvalidArgument,
out,
"Failed to resize output tensor.");
ScalarType a_type = a.scalar_type();
ScalarType b_type = utils::get_scalar_dtype(b);
ScalarType common_type = promoteTypes(a_type, b_type);
ScalarType out_type = out.scalar_type();
if (a_type == common_type && a_type == out_type) {
ET_SWITCH_REAL_TYPES_AND(Bool, a_type, ctx, "le.Scalar_out", CTYPE, [&]() {
ET_SWITCH_REAL_TYPES_AND(
Bool, b_type, ctx, "le.Scalar_out", CTYPE_B, [&]() {
CTYPE_B b_val = 0;
ET_EXTRACT_SCALAR(b, b_val);
CTYPE b_casted = static_cast<CTYPE>(b_val);
using Vec = executorch::vec::Vectorized<CTYPE>;
executorch::vec::map<CTYPE>(
[b_casted](Vec x) { return x.le(Vec(b_casted)); },
out.mutable_data_ptr<CTYPE>(),
a.const_data_ptr<CTYPE>(),
a.numel());
});
});
} else {
ET_SWITCH_REAL_TYPES_AND(
Bool, a_type, ctx, "le.Scalar_out", CTYPE_A, [&]() {
ET_SWITCH_REAL_TYPES_AND(
Bool, b_type, ctx, "le.Scalar_out", CTYPE_B, [&]() {
ET_SWITCH_REAL_TYPES_AND(
Bool, common_type, ctx, "le.Scalar_out", CTYPE_IN, [&]() {
ET_SWITCH_REAL_TYPES_AND(
Bool,
out_type,
ctx,
"le.Scalar_out",
CTYPE_OUT,
[&]() {
CTYPE_B b_val = 0;
ET_EXTRACT_SCALAR(b, b_val);
CTYPE_IN b_casted = static_cast<CTYPE_IN>(b_val);
const size_t n = a.numel();
const CTYPE_A* a_data = a.const_data_ptr<CTYPE_A>();
CTYPE_OUT* out_data =
out.mutable_data_ptr<CTYPE_OUT>();
for (auto i = 0; i < n; ++i) {
out_data[i] = static_cast<CTYPE_OUT>(
static_cast<CTYPE_IN>(a_data[i]) <= b_casted);
}
});
});
});
});
}
return out;
}
} // namespace native
} // namespace executor
} // namespace torch