| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/optimized/vec/functional.h> |
| #include <executorch/kernels/optimized/vec/vec.h> |
| #include <executorch/kernels/portable/cpu/scalar_utils.h> |
| #include <executorch/runtime/kernel/kernel_includes.h> |
| #include <executorch/runtime/platform/assert.h> |
| |
| namespace torch { |
| namespace executor { |
| namespace native { |
| |
| using Tensor = exec_aten::Tensor; |
| using ScalarType = exec_aten::ScalarType; |
| |
| Tensor& opt_le_tensor_out( |
| KernelRuntimeContext& ctx, |
| const Tensor& a, |
| const Tensor& b, |
| Tensor& out) { |
| (void)ctx; |
| |
| ET_KERNEL_CHECK(ctx, tensors_have_same_shape(a, b), InvalidArgument, out); |
| |
| // Resize for dynamic shape |
| auto error = resize_tensor(out, a.sizes()); |
| ET_KERNEL_CHECK_MSG( |
| ctx, |
| error == Error::Ok, |
| InvalidArgument, |
| out, |
| "Failed to resize output tensor."); |
| |
| ScalarType a_type = a.scalar_type(); |
| ScalarType b_type = b.scalar_type(); |
| ScalarType out_type = out.scalar_type(); |
| |
| if (a_type == b_type && a_type == out_type) { |
| ET_SWITCH_REAL_TYPES_AND( |
| Bool, out_type, ctx, "le.Tensor_out", CTYPE, [&]() { |
| using Vec = executorch::vec::Vectorized<CTYPE>; |
| executorch::vec::map2<CTYPE>( |
| [](Vec x, Vec y) { return x.le(y); }, |
| out.mutable_data_ptr<CTYPE>(), |
| a.const_data_ptr<CTYPE>(), |
| b.const_data_ptr<CTYPE>(), |
| a.numel()); |
| }); |
| } else { |
| ET_SWITCH_REAL_TYPES_AND( |
| Bool, a_type, ctx, "le.Tensor_out", CTYPE_A, [&]() { |
| ET_SWITCH_REAL_TYPES_AND( |
| Bool, b_type, ctx, "le.Tensor_out", CTYPE_B, [&]() { |
| using CTYPE_IN = typename torch::executor:: |
| promote_types<CTYPE_A, CTYPE_B>::type; |
| ET_DCHECK( |
| CppTypeToScalarType<CTYPE_IN>::value == |
| promoteTypes(a_type, b_type)); |
| ET_SWITCH_REAL_TYPES_AND( |
| Bool, out_type, ctx, "le.Tensor_out", CTYPE_OUT, [&]() { |
| const size_t n = a.numel(); |
| const CTYPE_A* a_data = a.const_data_ptr<CTYPE_A>(); |
| const CTYPE_B* b_data = b.const_data_ptr<CTYPE_B>(); |
| CTYPE_OUT* out_data = out.mutable_data_ptr<CTYPE_OUT>(); |
| for (auto i = 0; i < n; ++i) { |
| out_data[i] = static_cast<CTYPE_OUT>( |
| static_cast<CTYPE_IN>(a_data[i]) <= |
| static_cast<CTYPE_IN>(b_data[i])); |
| } |
| }); |
| }); |
| }); |
| } |
| |
| return out; |
| } |
| |
| Tensor& opt_le_scalar_out( |
| KernelRuntimeContext& ctx, |
| const Tensor& a, |
| const Scalar& b, |
| Tensor& out) { |
| (void)ctx; |
| |
| // Resize for dynamic shape |
| auto error = resize_tensor(out, a.sizes()); |
| ET_KERNEL_CHECK_MSG( |
| ctx, |
| error == Error::Ok, |
| InvalidArgument, |
| out, |
| "Failed to resize output tensor."); |
| |
| ScalarType a_type = a.scalar_type(); |
| ScalarType b_type = utils::get_scalar_dtype(b); |
| ScalarType common_type = promoteTypes(a_type, b_type); |
| ScalarType out_type = out.scalar_type(); |
| |
| if (a_type == common_type && a_type == out_type) { |
| ET_SWITCH_REAL_TYPES_AND(Bool, a_type, ctx, "le.Scalar_out", CTYPE, [&]() { |
| ET_SWITCH_REAL_TYPES_AND( |
| Bool, b_type, ctx, "le.Scalar_out", CTYPE_B, [&]() { |
| CTYPE_B b_val = 0; |
| ET_EXTRACT_SCALAR(b, b_val); |
| CTYPE b_casted = static_cast<CTYPE>(b_val); |
| using Vec = executorch::vec::Vectorized<CTYPE>; |
| executorch::vec::map<CTYPE>( |
| [b_casted](Vec x) { return x.le(Vec(b_casted)); }, |
| out.mutable_data_ptr<CTYPE>(), |
| a.const_data_ptr<CTYPE>(), |
| a.numel()); |
| }); |
| }); |
| } else { |
| ET_SWITCH_REAL_TYPES_AND( |
| Bool, a_type, ctx, "le.Scalar_out", CTYPE_A, [&]() { |
| ET_SWITCH_REAL_TYPES_AND( |
| Bool, b_type, ctx, "le.Scalar_out", CTYPE_B, [&]() { |
| ET_SWITCH_REAL_TYPES_AND( |
| Bool, common_type, ctx, "le.Scalar_out", CTYPE_IN, [&]() { |
| ET_SWITCH_REAL_TYPES_AND( |
| Bool, |
| out_type, |
| ctx, |
| "le.Scalar_out", |
| CTYPE_OUT, |
| [&]() { |
| CTYPE_B b_val = 0; |
| ET_EXTRACT_SCALAR(b, b_val); |
| CTYPE_IN b_casted = static_cast<CTYPE_IN>(b_val); |
| const size_t n = a.numel(); |
| const CTYPE_A* a_data = a.const_data_ptr<CTYPE_A>(); |
| CTYPE_OUT* out_data = |
| out.mutable_data_ptr<CTYPE_OUT>(); |
| for (auto i = 0; i < n; ++i) { |
| out_data[i] = static_cast<CTYPE_OUT>( |
| static_cast<CTYPE_IN>(a_data[i]) <= b_casted); |
| } |
| }); |
| }); |
| }); |
| }); |
| } |
| |
| return out; |
| } |
| |
| } // namespace native |
| } // namespace executor |
| } // namespace torch |