blob: 5501635c229768d6535202b43fbcc206d3dc9a61 [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator
#include <executorch/kernels/test/TestUtil.h>
#include <executorch/kernels/test/supported_features.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>
#include <executorch/runtime/core/exec_aten/util/scalar_type_util.h>
#include <executorch/test/utils/DeathTest.h>
#include <gtest/gtest.h>
#include <cmath>
using namespace ::testing;
using exec_aten::ArrayRef;
using exec_aten::optional;
using exec_aten::Scalar;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::TensorFactory;
class OpVarOutTest : public OperatorTest {
protected:
Tensor& op_var_out(
const Tensor& self,
optional<ArrayRef<int64_t>> dim,
bool unbiased,
bool keepdim,
Tensor& out) {
return torch::executor::aten::var_outf(
context_, self, dim, unbiased, keepdim, out);
}
template <ScalarType IN_DTYPE, ScalarType OUT_DTYPE>
void test_var_out_invalid_dimensions() {
TensorFactory<IN_DTYPE> tf_in;
TensorFactory<OUT_DTYPE> tf_out;
// clang-format off
Tensor self = tf_in.make(
{2, 3, 4},
{
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 18, 19,
20, 21, 22, 23,
});
// clang-format on
Tensor out = tf_out.zeros({2, 3, 1});
optional<ScalarType> dtype = OUT_DTYPE;
// out-of-bound dim in dim list
int64_t dims_1[1] = {3};
optional<ArrayRef<int64_t>> optional_dim_list{ArrayRef<int64_t>{dims_1, 1}};
ET_EXPECT_KERNEL_FAILURE(
context_,
op_var_out(
self, optional_dim_list, /*unbiased=*/true, /*keepdim=*/true, out));
// the same dim appears multiple times in list of dims
int64_t dims_2[2] = {2, 2};
optional_dim_list = ArrayRef<int64_t>{dims_2, 2};
ET_EXPECT_KERNEL_FAILURE(
context_,
op_var_out(
self, optional_dim_list, /*unbiased=*/true, /*keepdim=*/true, out));
}
template <ScalarType IN_DTYPE, ScalarType OUT_DTYPE>
void test_var_out_invalid_shape() {
TensorFactory<IN_DTYPE> tf_in;
TensorFactory<OUT_DTYPE> tf_out;
// clang-format off
Tensor self = tf_in.make(
{2, 3, 4},
{
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 18, 19,
20, 21, 22, 23,
});
// clang-format on
// dimension size mismatch when keepdim is true
Tensor out = tf_out.zeros({2, 4});
optional<ScalarType> dtype = OUT_DTYPE;
int64_t dims_1[1] = {1};
optional<ArrayRef<int64_t>> optional_dim_list{ArrayRef<int64_t>{dims_1, 1}};
ET_EXPECT_KERNEL_FAILURE(
context_,
op_var_out(
self, optional_dim_list, /*unbiased=*/true, /*keepdim=*/true, out));
// dimension size mismatch when keepdim is false
out = tf_out.zeros({2, 1, 4});
ET_EXPECT_KERNEL_FAILURE(
context_,
op_var_out(
self,
optional_dim_list,
/*unbiased=*/true,
/*keepdim=*/false,
out));
}
template <ScalarType IN_DTYPE, ScalarType OUT_DTYPE>
void test_var_out_dtype() {
TensorFactory<IN_DTYPE> tf_in;
TensorFactory<OUT_DTYPE> tf_out;
// clang-format off
Tensor self = tf_in.make(
{2, 3, 4},
{
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 18, 19,
20, 21, 22, 23,
});
// clang-format on
// keepdim=true should work
Tensor out = tf_out.zeros({2, 3, 1});
int64_t dims_1[1] = {2};
optional<ArrayRef<int64_t>> optional_dim_list{ArrayRef<int64_t>{dims_1, 1}};
optional<ScalarType> dtype = OUT_DTYPE;
op_var_out(
self, optional_dim_list, /*unbiased=*/true, /*keepdim=*/true, out);
// clang-format off
EXPECT_TENSOR_CLOSE(out, tf_out.make(
{2, 3, 1},
{
1.666667,
1.666667,
1.666667,
1.666667,
1.666667,
1.666667
}));
// clang-format on
// keepdim=false should work
out = tf_out.zeros({2, 3});
op_var_out(
self, optional_dim_list, /*unbiased=*/true, /*keepdim=*/false, out);
// clang-format off
EXPECT_TENSOR_CLOSE(out, tf_out.make(
{2, 3},
{
1.666667, 1.666667, 1.666667,
1.666667, 1.666667, 1.666667
}));
// clang-format on
// dim list with multiple dimensions should work
out = tf_out.zeros({1, 1, 4});
int64_t dims_2[2] = {0, 1};
optional_dim_list = ArrayRef<int64_t>{dims_2, 2};
op_var_out(
self, optional_dim_list, /*unbiased=*/true, /*keepdim=*/true, out);
EXPECT_TENSOR_CLOSE(out, tf_out.make({1, 1, 4}, {56.0, 56.0, 56.0, 56.0}));
out = tf_out.zeros({4});
op_var_out(
self, optional_dim_list, /*unbiased=*/true, /*keepdim=*/false, out);
EXPECT_TENSOR_CLOSE(out, tf_out.make({4}, {56.0, 56.0, 56.0, 56.0}));
// dim list with negative dimensions should work
out = tf_out.zeros({2, 1, 4});
int64_t dims_3[1] = {-2};
optional_dim_list = ArrayRef<int64_t>{dims_3, 1};
op_var_out(
self, optional_dim_list, /*unbiased=*/false, /*keepdim=*/true, out);
// clang-format off
EXPECT_TENSOR_CLOSE(out, tf_out.make(
{2, 1, 4},
{
10.666667, 10.666667, 10.666667, 10.666667,
10.666667, 10.666667, 10.666667, 10.666667,
}));
// clang-format on
// empty/null dim list should work
out = tf_out.zeros({1, 1, 1});
optional<ArrayRef<int64_t>> null_dim_list;
op_var_out(self, null_dim_list, /*unbiased=*/true, /*keepdim=*/true, out);
EXPECT_TENSOR_CLOSE(out, tf_out.make({1, 1, 1}, {50.0}));
optional<ArrayRef<int64_t>> empty_dim_list{ArrayRef<int64_t>{}};
op_var_out(self, empty_dim_list, /*unbiased=*/false, /*keepdim=*/true, out);
EXPECT_TENSOR_CLOSE(out, tf_out.make({1, 1, 1}, {47.916668}));
out = tf_out.zeros({});
op_var_out(self, null_dim_list, /*unbiased=*/false, /*keepdim=*/false, out);
EXPECT_TENSOR_CLOSE(out, tf_out.make({}, {47.916668}));
op_var_out(self, empty_dim_list, /*unbiased=*/true, /*keepdim=*/false, out);
EXPECT_TENSOR_CLOSE(out, tf_out.make({}, {50.0}));
}
};
class OpVarCorrectionOutTest : public OperatorTest {
protected:
Tensor& op_var_correction_out(
const Tensor& self,
optional<ArrayRef<int64_t>> dim,
optional<Scalar>& correction,
bool keepdim,
Tensor& out) {
return torch::executor::aten::var_outf(
context_, self, dim, correction, keepdim, out);
}
};
TEST_F(OpVarOutTest, InvalidDimensionListDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel test fails";
}
// Use a two layer switch to hanldle each possible data pair
#define TEST_KERNEL(INPUT_CTYPE, INPUT_DTYPE, OUTPUT_CTYPE, OUTPUT_DTYPE) \
test_var_out_invalid_dimensions< \
ScalarType::INPUT_DTYPE, \
ScalarType::OUTPUT_DTYPE>();
#define TEST_ENTRY(INPUT_CTYPE, INPUT_DTYPE) \
ET_FORALL_FLOAT_TYPES_WITH2(INPUT_CTYPE, INPUT_DTYPE, TEST_KERNEL);
ET_FORALL_FLOAT_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
#undef TEST_KERNEL
}
TEST_F(OpVarOutTest, InvalidShapeDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel test fails";
}
// Use a two layer switch to hanldle each possible data pair
#define TEST_KERNEL(INPUT_CTYPE, INPUT_DTYPE, OUTPUT_CTYPE, OUTPUT_DTYPE) \
test_var_out_invalid_shape< \
ScalarType::INPUT_DTYPE, \
ScalarType::OUTPUT_DTYPE>();
#define TEST_ENTRY(INPUT_CTYPE, INPUT_DTYPE) \
ET_FORALL_FLOAT_TYPES_WITH2(INPUT_CTYPE, INPUT_DTYPE, TEST_KERNEL);
ET_FORALL_FLOAT_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
#undef TEST_KERNEL
}
TEST_F(OpVarOutTest, InvalidDTypeDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel test fails";
}
TensorFactory<ScalarType::Float> tf_float;
TensorFactory<ScalarType::Int> tf_int;
// clang-format off
Tensor self = tf_int.make(
{2, 3, 4},
{
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 18, 19,
20, 21, 22, 23,
});
// clang-format on
// keepdim=true should work
Tensor out = tf_float.zeros({2, 3, 1});
int64_t dims_1[1] = {2};
optional<ArrayRef<int64_t>> optional_dim_list{ArrayRef<int64_t>{dims_1, 1}};
ET_EXPECT_KERNEL_FAILURE(
context_,
op_var_out(
self, optional_dim_list, /*unbiased=*/true, /*keepdim=*/true, out));
}
TEST_F(OpVarOutTest, AllFloatInputFloatOutputPasses) {
// Use a two layer switch to hanldle each possible data pair
#define TEST_KERNEL(INPUT_CTYPE, INPUT_DTYPE, OUTPUT_CTYPE, OUTPUT_DTYPE) \
test_var_out_dtype<ScalarType::INPUT_DTYPE, ScalarType::OUTPUT_DTYPE>();
#define TEST_ENTRY(INPUT_CTYPE, INPUT_DTYPE) \
ET_FORALL_FLOAT_TYPES_WITH2(INPUT_CTYPE, INPUT_DTYPE, TEST_KERNEL);
ET_FORALL_FLOAT_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
#undef TEST_KERNEL
}
TEST_F(OpVarOutTest, InfinityAndNANTest) {
TensorFactory<ScalarType::Float> tf_float;
// clang-format off
Tensor self = tf_float.make(
{2, 3, 4},
{
0, 1, 2, INFINITY,
INFINITY, -INFINITY, 1, 0,
NAN, INFINITY, -INFINITY, 2,
NAN, NAN, 1, 0,
0, INFINITY, NAN, 4,
1, NAN, 3.14, 2,
});
// clang-format on
Tensor out = tf_float.zeros({2, 3, 1});
int64_t dims[1] = {-1};
optional<ArrayRef<int64_t>> optional_dim_list{ArrayRef<int64_t>{dims, 1}};
optional<ScalarType> dtype;
op_var_out(self, optional_dim_list, /*unbiased=*/true, /*keepdim=*/true, out);
// clang-format off
EXPECT_TENSOR_CLOSE(out, tf_float.make(
{2, 3, 1},
{
NAN,
NAN,
NAN,
NAN,
NAN,
NAN
}));
// clang-format on
}
TEST_F(OpVarOutTest, DynamicShapeUpperBoundSameAsExpected) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make({3, 2}, {0.49, 0.40, 0.56, 0.38, 0.49, 0.56});
Tensor expected_result = tf.make({3}, {0.004050, 0.016200, 0.002450});
Tensor out =
tf.zeros({3}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor ret = op_var_out(
x, ArrayRef<int64_t>{1}, /*unbiased=*/true, /*keepdim=*/false, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpVarOutTest, DynamicShapeUpperBoundLargerThanExpected) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make({3, 2}, {0.49, 0.40, 0.56, 0.38, 0.49, 0.56});
Tensor expected_result = tf.make({3}, {0.004050, 0.016200, 0.002450});
Tensor out =
tf.zeros({10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor ret = op_var_out(
x, ArrayRef<int64_t>{1}, /*unbiased=*/true, /*keepdim=*/false, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpVarOutTest, DynamicShapeUnbound) {
GTEST_SKIP() << "Dynamic shape unbound not supported";
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make({3, 2}, {0.49, 0.40, 0.56, 0.38, 0.49, 0.56});
Tensor expected_result = tf.make({3}, {0.004050, 0.016200, 0.002450});
Tensor out =
tf.zeros({1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND);
Tensor ret = op_var_out(
x, ArrayRef<int64_t>{1}, /*unbiased=*/true, /*keepdim=*/false, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpVarCorrectionOutTest, SmokeTest) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make({2, 3}, {4.9, 4.0, 5.6, 3.8, 4.9, 5.6});
Tensor expected = tf.make({2}, {0.72693, 0.93032});
optional<Scalar> correction(1.23);
Tensor out = tf.zeros({2});
op_var_correction_out(
x, ArrayRef<int64_t>{1}, correction, /*keepdim=*/false, out);
EXPECT_TENSOR_CLOSE(out, expected);
}