| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| #include <executorch/runtime/platform/runtime.h> |
| |
| #include <gtest/gtest.h> |
| |
| using namespace ::testing; |
| using exec_aten::IntArrayRef; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using executorch::runtime::MemoryAllocator; |
| using torch::executor::testing::TensorFactory; |
| |
| class TempMemoryAllocator final : public MemoryAllocator { |
| private: |
| // We allocate a little more than requested and use that memory as a node in |
| // a linked list, pushing the allocated buffers onto a list that's iterated |
| // and freed when the KernelRuntimeContext is destroyed. |
| struct AllocationNode { |
| void* data; |
| AllocationNode* next; |
| }; |
| |
| AllocationNode* head_ = nullptr; |
| |
| public: |
| TempMemoryAllocator() : MemoryAllocator(0, nullptr) {} |
| |
| void* allocate(size_t size, size_t alignment = kDefaultAlignment) override { |
| if (!isPowerOf2(alignment)) { |
| ET_LOG(Error, "Alignment %zu is not a power of 2", alignment); |
| return nullptr; |
| } |
| |
| // Allocate enough memory for the node, the data and the alignment bump. |
| size_t alloc_size = sizeof(AllocationNode) + size + alignment; |
| void* node_memory = malloc(alloc_size); |
| |
| // If allocation failed, log message and return nullptr. |
| if (node_memory == nullptr) { |
| ET_LOG(Error, "Failed to allocate %zu bytes", alloc_size); |
| return nullptr; |
| } |
| |
| // Compute data pointer. |
| uint8_t* data_ptr = |
| reinterpret_cast<uint8_t*>(node_memory) + sizeof(AllocationNode); |
| |
| // Align the data pointer. |
| void* aligned_data_ptr = alignPointer(data_ptr, alignment); |
| |
| // Assert that the alignment didn't overflow the allocated memory. |
| ET_DCHECK_MSG( |
| reinterpret_cast<uintptr_t>(aligned_data_ptr) + size <= |
| reinterpret_cast<uintptr_t>(node_memory) + alloc_size, |
| "aligned_data_ptr %p + size %zu > node_memory %p + alloc_size %zu", |
| aligned_data_ptr, |
| size, |
| node_memory, |
| alloc_size); |
| |
| // Construct the node. |
| AllocationNode* new_node = reinterpret_cast<AllocationNode*>(node_memory); |
| new_node->data = aligned_data_ptr; |
| new_node->next = head_; |
| head_ = new_node; |
| |
| // Return the aligned data pointer. |
| return head_->data; |
| } |
| |
| void reset() override { |
| AllocationNode* current = head_; |
| while (current != nullptr) { |
| AllocationNode* next = current->next; |
| free(current); |
| current = next; |
| } |
| head_ = nullptr; |
| } |
| |
| ~TempMemoryAllocator() override { |
| reset(); |
| } |
| }; |
| |
| std::tuple<Tensor&, Tensor&> op_topk_values( |
| const Tensor& input, |
| int64_t k, |
| int64_t dim, |
| bool largest, |
| bool sorted, |
| Tensor& values, |
| Tensor& indices) { |
| TempMemoryAllocator allocator = TempMemoryAllocator(); |
| executorch::runtime::KernelRuntimeContext context(nullptr, &allocator); |
| return torch::executor::aten::topk_outf( |
| context, input, k, dim, largest, sorted, values, indices); |
| } |
| |
| class OpTopkValuesTest : public ::testing::Test { |
| protected: |
| void SetUp() override { |
| // Since these tests cause ET_LOG to be called, the PAL must be initialized |
| // first. |
| torch::executor::runtime_init(); |
| } |
| }; |
| |
| TEST_F(OpTopkValuesTest, SmokeTest) { |
| TensorFactory<ScalarType::Float> tfFloat; |
| TensorFactory<ScalarType::Long> tfLong; |
| |
| Tensor input = |
| tfFloat.make({3, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); |
| int64_t k = 2; |
| int64_t dim = 0; |
| bool largest = true; |
| bool sorted = true; |
| Tensor values = tfFloat.zeros({2, 2, 2}); |
| Tensor indices = tfLong.zeros({2, 2, 2}); |
| Tensor values_expected = tfFloat.make({2, 2, 2}, {9, 10, 11, 12, 5, 6, 7, 8}); |
| Tensor indices_expected = tfLong.make({2, 2, 2}, {2, 2, 2, 2, 1, 1, 1, 1}); |
| op_topk_values(input, k, dim, largest, sorted, values, indices); |
| EXPECT_TENSOR_CLOSE(values, values_expected); |
| EXPECT_TENSOR_EQ(indices, indices_expected); |
| } |