blob: 9f7955167234830f45f304be53aaec27e1e46437 [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator
#include <executorch/kernels/test/TestUtil.h>
#include <executorch/kernels/test/supported_features.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>
#include <gtest/gtest.h>
using namespace ::testing;
using exec_aten::Scalar;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::SupportedFeatures;
using torch::executor::testing::TensorFactory;
class OpSubOutTest : public OperatorTest {
protected:
Tensor& op_sub_out(
const Tensor& self,
const Tensor& other,
const Scalar& alpha,
Tensor& out) {
return torch::executor::aten::sub_outf(context_, self, other, alpha, out);
}
template <ScalarType DTYPE_A, ScalarType DTYPE_B, ScalarType DTYPE_OUT>
void test_sub() {
TensorFactory<DTYPE_A> tf_a;
TensorFactory<DTYPE_B> tf_b;
TensorFactory<DTYPE_OUT> tf_out;
const std::vector<int32_t> sizes = {2, 2};
// Destination for the sum.
Tensor out = tf_out.zeros(sizes);
// sub two tensors.
op_sub_out(
tf_a.make(sizes, /*data=*/{1, 2, 4, 8}),
tf_b.ones(sizes),
/*alpha=*/1,
out);
// Check that it matches the expected output.
EXPECT_TENSOR_EQ(out, tf_out.make(sizes, /*data=*/{0, 1, 3, 7}));
}
template <ScalarType DTYPE_A, ScalarType DTYPE_B>
void test_sub_enumerate_out_types() {
test_sub<DTYPE_A, DTYPE_B, ScalarType::Half>();
test_sub<DTYPE_A, DTYPE_B, ScalarType::Float>();
test_sub<DTYPE_A, DTYPE_B, ScalarType::Double>();
// Integral out type is only allowed if both inputs are integral types
if (isIntegralType(DTYPE_A, false) && isIntegralType(DTYPE_B, false)) {
test_sub<DTYPE_A, DTYPE_B, ScalarType::Int>();
test_sub<DTYPE_A, DTYPE_B, ScalarType::Long>();
}
}
template <ScalarType DTYPE_A>
void test_sub_enumerate_b_types() {
#define ENUMERATE_TEST_ENTRY(ctype, dtype) \
test_sub_enumerate_out_types<DTYPE_A, ScalarType::dtype>();
ET_FORALL_REAL_TYPES_AND(Half, ENUMERATE_TEST_ENTRY)
#undef ENUMERATE_TEST_ENTRY
}
// Common testing for substraction between two floating point Tensors.
template <ScalarType DTYPE>
void test_floating_point_sub_out() {
TensorFactory<DTYPE> tf;
const std::vector<int32_t> sizes = {2, 2};
// Destination for the subtraction.
Tensor out = tf.zeros(sizes);
// Performs substraction on two tensors.
op_sub_out(
tf.make(sizes, /*data=*/{1.1, 2.2, 4.4, 8.8}),
tf.ones(sizes),
/*alpha=*/1,
out);
// Check that it matches the expected output.
EXPECT_TENSOR_CLOSE(out, tf.make(sizes, /*data=*/{0.1, 1.2, 3.4, 7.8}));
}
void test_sub_enumerate_a_types() {
#define ENUMERATE_TEST_ENTRY(ctype, dtype) \
test_sub_enumerate_b_types<ScalarType::dtype>();
ET_FORALL_REAL_TYPES_AND(Half, ENUMERATE_TEST_ENTRY)
#undef ENUMERATE_TEST_ENTRY
}
};
class OpSubScalarOutTest : public OperatorTest {
protected:
Tensor& op_sub_scalar_out(
const Tensor& self,
const Scalar& other,
const Scalar& alpha,
Tensor& out) {
return torch::executor::aten::sub_outf(context_, self, other, alpha, out);
}
};
/**
* Uses the function templates above to test all valid combinations of inputs
* and output dtypes
*/
TEST_F(OpSubOutTest, AllRealDtypesSupported) {
test_sub_enumerate_a_types();
}
TEST_F(OpSubOutTest, FloatTensors) {
test_floating_point_sub_out<ScalarType::Float>();
}
TEST_F(OpSubOutTest, DoubleTensors) {
test_floating_point_sub_out<ScalarType::Double>();
}
TEST_F(OpSubOutTest, BroadcastSupported) {
TensorFactory<ScalarType::Float> tf;
Tensor a = tf.make({2, 1, 2, 1}, {7, 8, 9, 10});
Tensor b = tf.make({2, 1, 4}, {1, 1, 1, 1, 2, 2, 2, 2});
Tensor ref =
tf.make({2, 2, 2, 4}, {6, 6, 6, 6, 7, 7, 7, 7, 5, 5, 5, 5, 6, 6, 6, 6,
8, 8, 8, 8, 9, 9, 9, 9, 7, 7, 7, 7, 8, 8, 8, 8});
// Destination for the broadcasting sum. Follow the broadcasting rules in
// https://fburl.com/n9wl4d0o
Tensor out = tf.zeros({2, 2, 2, 4});
op_sub_out(a, b, 1, out);
EXPECT_TENSOR_EQ(out, ref);
}
TEST_F(OpSubOutTest, BroadcastSupported2) {
TensorFactory<ScalarType::Float> tf;
Tensor a = tf.make({3, 2, 1}, {2, 3, 4, 5, 6, 7});
Tensor b = tf.make({1, 2, 1}, {2, 3});
// Destination for the broadcasting div. Follow the broadcasting rules in
// https://fburl.com/n9wl4d0o
Tensor out = tf.zeros({3, 2, 1});
op_sub_out(a, b, 1, out);
Tensor ret = tf.make({3, 2, 1}, {0, 0, 2, 2, 4, 4});
EXPECT_TENSOR_EQ(out, ret);
}
TEST_F(OpSubOutTest, BroadcastScalarSupported1) {
TensorFactory<ScalarType::Float> tf;
Tensor a = tf.make({2, 1, 3}, {2, 3, 4, 5, 6, 7});
Tensor b = tf.make({1}, {2});
// Destination for the broadcasting div. Follow the broadcasting rules in
// https://fburl.com/n9wl4d0o
Tensor out = tf.zeros({2, 1, 3});
op_sub_out(a, b, 1, out);
Tensor ret = tf.make({2, 1, 3}, {0, 1, 2, 3, 4, 5});
EXPECT_TENSOR_EQ(out, ret);
}
TEST_F(OpSubOutTest, BroadcastScalarSupported2) {
TensorFactory<ScalarType::Float> tf;
Tensor a = tf.make({1, 1, 1}, {8});
Tensor b = tf.make({3, 1, 1}, {2, 4, 8});
// Destination for the broadcasting div. Follow the broadcasting rules in
// https://fburl.com/n9wl4d0o
Tensor out = tf.zeros({3, 1, 1});
op_sub_out(a, b, 1, out);
Tensor ret = tf.make({3, 1, 1}, {6, 4, 0});
EXPECT_TENSOR_EQ(out, ret);
std::swap(a, b);
out = tf.zeros({3, 1, 1});
op_sub_out(a, b, 1, out);
ret = tf.make({3, 1, 1}, {-6, -4, 0});
EXPECT_TENSOR_EQ(out, ret);
}
TEST_F(OpSubOutTest, BroadcastScalarRank0Supported) {
TensorFactory<ScalarType::Float> tf;
Tensor a = tf.make({1}, {5});
Tensor b = tf.make({}, {2});
Tensor out = tf.zeros({1});
op_sub_out(a, b, 1, out);
Tensor ret = tf.make({1}, {3});
EXPECT_TENSOR_EQ(out, ret);
op_sub_out(b, a, 1, out);
ret = tf.make({1}, {-3});
EXPECT_TENSOR_EQ(out, ret);
}
//
// Death Tests
//
TEST_F(OpSubOutTest, IntTensorFloatAlphaDies) {
// op_sub_out() doesn't handle floating alpha for intergal inputs
TensorFactory<ScalarType::Int> tf;
const std::vector<int32_t> sizes = {2, 2};
// Destination for the op.
Tensor out = tf.zeros(sizes);
// Subtraction operation on two integral tensor with floating alpha
// should cause an assertion and kill the test process.
ET_EXPECT_KERNEL_FAILURE(
context_, op_sub_out(tf.ones(sizes), tf.ones(sizes), /*alpha=*/.7, out));
}
TEST_F(OpSubOutTest, BoolInputTensorsFail) {
TensorFactory<ScalarType::Bool> tf;
const std::vector<int32_t> sizes = {2, 2};
Tensor a = tf.make(sizes, /*data=*/{false, true, false, true});
Tensor b = tf.make(sizes, /*data=*/{false, true, true, true});
Tensor out = tf.zeros(sizes);
ET_EXPECT_KERNEL_FAILURE(context_, op_sub_out(a, b, /*alpha=*/1, out));
}
TEST_F(OpSubOutTest, IntOutputWithFloatInputDies) {
TensorFactory<ScalarType::Int> tfi;
TensorFactory<ScalarType::Float> tff;
const std::vector<int32_t> sizes = {2, 2};
// Addends.
Tensor a = tfi.make(sizes, /*data=*/{2, 4, 3, 3});
Tensor b = tff.make(sizes, /*data=*/{2, 4, 3, 3});
// Destination for the sum.
Tensor out = tfi.zeros(sizes);
ET_EXPECT_KERNEL_FAILURE(context_, op_sub_out(a, b, /*alpha=*/1, out));
}
TEST_F(OpSubOutTest, BoolOutputWithIntegralInput) {
// add_out() doesn't handle Bool.
TensorFactory<ScalarType::Bool> tf;
TensorFactory<ScalarType::Int> tfi;
const std::vector<int32_t> sizes = {2, 2};
// Addends.
Tensor a = tfi.make(sizes, /*data=*/{false, true, true, false});
Tensor b = tfi.make(sizes, /*data=*/{2, 3, 4, 3});
// Destination for the sum.
Tensor out = tf.zeros(sizes);
ET_EXPECT_KERNEL_FAILURE(context_, op_sub_out(a, b, /*alpha=*/1, out));
}
TEST_F(OpSubOutTest, MismatchedNonBroadcastableInputShapesDies) {
TensorFactory<ScalarType::Int> tf;
// Subtrahend and minuend with different shapes.
Tensor a = tf.ones(/*sizes=*/{4, 2});
Tensor b = tf.ones(/*sizes=*/{2, 2});
// Destination for the subtraction; matches the shape of one of the inputs.
Tensor out = tf.zeros(/*sizes=*/{8});
// Performing substraction on two mismatched tensors should cause an assertion
// and kill the test process.
ET_EXPECT_KERNEL_FAILURE(context_, op_sub_out(a, b, /*alpha=*/0, out));
}
TEST_F(OpSubOutTest, MismatchedOutputShapesDies) {
if (SupportedFeatures::get()->output_resize) {
GTEST_SKIP()
<< "The current kernel supports implicitly resizing output tensor";
}
TensorFactory<ScalarType::Int> tf;
const std::vector<int32_t> sizes = {2, 2};
// Subtrahend and minuend with the same shapes.
Tensor a = tf.ones(sizes);
Tensor b = tf.ones(sizes);
// Destination with a different shape.
Tensor out = tf.zeros(/*sizes=*/{4});
// Performing substraction two tensors into a mismatched output should cause
// an assertion and kill the test process.
ET_EXPECT_KERNEL_FAILURE(context_, op_sub_out(a, b, /*alpha=*/0, out));
}
TEST_F(OpSubOutTest, BroadcastDimSizeIsOneAB) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.20342785120010376,
0.8211539387702942,
0.12307500839233398,
0.8268751502037048,
0.6484894752502441,
0.8079752326011658});
Tensor y = tf.make({1, 2}, {0.22279858589172363, 0.3636378049850464});
Tensor expected_result = tf.make(
{3, 2},
{-0.019370734691619873,
0.4575161337852478,
-0.09972357749938965,
0.46323734521865845,
0.4256908893585205,
0.4443374276161194});
Tensor out = tf.zeros({3, 2});
Tensor ret = op_sub_out(x, y, 1, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpSubOutTest, BroadcastDimSizeMissingAB) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.20342785120010376,
0.8211539387702942,
0.12307500839233398,
0.8268751502037048,
0.6484894752502441,
0.8079752326011658});
Tensor y = tf.make({2}, {0.22279858589172363, 0.3636378049850464});
Tensor expected_result = tf.make(
{3, 2},
{-0.019370734691619873,
0.4575161337852478,
-0.09972357749938965,
0.46323734521865845,
0.4256908893585205,
0.4443374276161194});
Tensor out = tf.zeros({3, 2});
Tensor ret = op_sub_out(x, y, 1, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpSubOutTest, BroadcastDimSizeIsOneBA) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make({1, 2}, {0.22279858589172363, 0.3636378049850464});
Tensor y = tf.make(
{3, 2},
{0.20342785120010376,
0.8211539387702942,
0.12307500839233398,
0.8268751502037048,
0.6484894752502441,
0.8079752326011658});
Tensor expected_result = tf.make(
{3, 2},
{0.019370734691619873,
-0.4575161337852478,
0.09972357749938965,
-0.46323734521865845,
-0.4256908893585205,
-0.4443374276161194});
Tensor out = tf.zeros({3, 2});
Tensor ret = op_sub_out(x, y, 1, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpSubOutTest, BroadcastDimSizeMissingBA) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make({1, 2}, {0.22279858589172363, 0.3636378049850464});
Tensor y = tf.make(
{3, 2},
{0.20342785120010376,
0.8211539387702942,
0.12307500839233398,
0.8268751502037048,
0.6484894752502441,
0.8079752326011658});
Tensor expected_result = tf.make(
{3, 2},
{0.019370734691619873,
-0.4575161337852478,
0.09972357749938965,
-0.46323734521865845,
-0.4256908893585205,
-0.4443374276161194});
Tensor out = tf.zeros({3, 2});
Tensor ret = op_sub_out(x, y, 1, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpSubOutTest, DynamicShapeUpperBoundSameAsExpected) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.44215160608291626,
0.17627692222595215,
0.46265703439712524,
0.04357701539993286,
0.838569700717926,
0.06833052635192871});
Tensor y = tf.make(
{3, 2},
{0.06382524967193604,
0.18627053499221802,
0.5863531231880188,
0.12181782722473145,
0.5662856698036194,
0.930520236492157});
Tensor expected_result = tf.make(
{3, 2},
{0.3783263564109802,
-0.00999361276626587,
-0.12369608879089355,
-0.07824081182479858,
0.27228403091430664,
-0.8621897101402283});
Tensor out =
tf.zeros({3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor ret = op_sub_out(x, y, 1, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpSubOutTest, DynamicShapeUpperBoundLargerThanExpected) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.44215160608291626,
0.17627692222595215,
0.46265703439712524,
0.04357701539993286,
0.838569700717926,
0.06833052635192871});
Tensor y = tf.make(
{3, 2},
{0.06382524967193604,
0.18627053499221802,
0.5863531231880188,
0.12181782722473145,
0.5662856698036194,
0.930520236492157});
Tensor expected_result = tf.make(
{3, 2},
{0.3783263564109802,
-0.00999361276626587,
-0.12369608879089355,
-0.07824081182479858,
0.27228403091430664,
-0.8621897101402283});
Tensor out =
tf.zeros({10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor ret = op_sub_out(x, y, 1, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpSubOutTest, DynamicShapeUnbound) {
GTEST_SKIP() << "Dynamic shape not supported";
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.44215160608291626,
0.17627692222595215,
0.46265703439712524,
0.04357701539993286,
0.838569700717926,
0.06833052635192871});
Tensor y = tf.make(
{3, 2},
{0.06382524967193604,
0.18627053499221802,
0.5863531231880188,
0.12181782722473145,
0.5662856698036194,
0.930520236492157});
Tensor expected_result = tf.make(
{3, 2},
{0.3783263564109802,
-0.00999361276626587,
-0.12369608879089355,
-0.07824081182479858,
0.27228403091430664,
-0.8621897101402283});
Tensor out =
tf.zeros({1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND);
Tensor ret = op_sub_out(x, y, 1, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpSubScalarOutTest, SanityCheck) {
TensorFactory<ScalarType::Int> tf_a;
TensorFactory<ScalarType::Float> tf_out;
const std::vector<int32_t> sizes = {2, 2};
Tensor out = tf_out.zeros(sizes);
op_sub_scalar_out(tf_a.make(sizes, {1, 2, 4, 8}), 0.5, /*alpha=*/1.5, out);
// Check that it matches the expected output.
EXPECT_TENSOR_EQ(out, tf_out.make(sizes, {0.25, 1.25, 3.25, 7.25}));
}
TEST_F(OpSubScalarOutTest, OptimizedSanityCheck) {
TensorFactory<ScalarType::Float> tf;
const std::vector<int32_t> sizes = {2, 2};
Tensor out = tf.zeros(sizes);
op_sub_scalar_out(
tf.make(sizes, {6.3, 2.1, 5.6, 8.2}), 1.9, /*alpha=*/2.8, out);
// Check that it matches the expected output.
EXPECT_TENSOR_CLOSE(out, tf.make(sizes, {0.98, -3.22, 0.28, 2.88}));
}
TEST_F(OpSubScalarOutTest, DtypeTest_float16_float_int_float16) {
torch::executor::testing::TensorFactory<exec_aten::ScalarType::Half> tfHalf;
exec_aten::Tensor self = tfHalf.ones({2, 2});
exec_aten::Scalar other = exec_aten::Scalar(-1.0);
exec_aten::Scalar alpha = exec_aten::Scalar(1);
exec_aten::Tensor out = tfHalf.zeros({2, 2});
exec_aten::Tensor out_expected = tfHalf.full({2, 2}, 2.0);
op_sub_scalar_out(self, other, alpha, out);
EXPECT_TENSOR_CLOSE(out, out_expected);
}