blob: 61a23ffbaba1c6940637f45a3ba6e602f84ec872 [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator
#include <executorch/kernels/test/TestUtil.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>
#include <executorch/runtime/platform/runtime.h>
#include <gtest/gtest.h>
using namespace ::testing;
using exec_aten::ArrayRef;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::TensorFactory;
Tensor& op_replication_pad3d_out(
const Tensor& input,
ArrayRef<int64_t> padding,
Tensor& out) {
executorch::runtime::KernelRuntimeContext context{};
return torch::executor::aten::replication_pad3d_outf(
context, input, padding, out);
}
class OpReplicationPad3DOutTest : public ::testing::Test {
protected:
void SetUp() override {
// Since these tests cause ET_LOG to be called, the PAL must be initialized
// first.
torch::executor::runtime_init();
}
};
TEST_F(OpReplicationPad3DOutTest, SmokeTest) {
TensorFactory<ScalarType::Float> tfFloat;
Tensor self =
tfFloat.make({1, 2, 3, 2}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11});
int64_t padding_data[6] = {1, 2, 2, 1, 1, 0};
ArrayRef<int64_t> padding = ArrayRef<int64_t>(padding_data, 6);
Tensor out = tfFloat.zeros({1, 3, 6, 5});
// clang-format off
Tensor out_expected = tfFloat.make(
{1, 3, 6, 5},
{
0., 0., 1., 1., 1.,
0., 0., 1., 1., 1.,
0., 0., 1., 1., 1.,
2., 2., 3., 3., 3.,
4., 4., 5., 5., 5.,
4., 4., 5., 5., 5.,
0., 0., 1., 1., 1.,
0., 0., 1., 1., 1.,
0., 0., 1., 1., 1.,
2., 2., 3., 3., 3.,
4., 4., 5., 5., 5.,
4., 4., 5., 5., 5.,
6., 6., 7., 7., 7.,
6., 6., 7., 7., 7.,
6., 6., 7., 7., 7.,
8., 8., 9., 9., 9.,
10., 10., 11., 11., 11.,
10., 10., 11., 11., 11.
}
);
// clang-format on
op_replication_pad3d_out(self, padding, out);
EXPECT_TENSOR_CLOSE(out, out_expected);
}
TEST_F(OpReplicationPad3DOutTest, SmokeTestNegFrontPad) {
TensorFactory<ScalarType::Float> tfFloat;
Tensor self =
tfFloat.make({1, 2, 3, 2}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11});
int64_t padding_data[6] = {1, 1, 1, -2, -1, 0};
ArrayRef<int64_t> padding = ArrayRef<int64_t>(padding_data, 6);
Tensor out = tfFloat.zeros({1, 1, 2, 4});
Tensor out_expected = tfFloat.make({1, 1, 2, 4}, {6, 6, 7, 7, 6, 6, 7, 7});
op_replication_pad3d_out(self, padding, out);
EXPECT_TENSOR_CLOSE(out, out_expected);
}
TEST_F(OpReplicationPad3DOutTest, SmokeTestNegBackPad) {
TensorFactory<ScalarType::Float> tfFloat;
Tensor self =
tfFloat.make({1, 2, 3, 2}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11});
int64_t padding_data[6] = {1, 1, 1, 1, 4, -5};
ArrayRef<int64_t> padding = ArrayRef<int64_t>(padding_data, 6);
Tensor out = tfFloat.zeros({1, 1, 5, 4});
// clang-format off
Tensor out_expected = tfFloat.make(
{1, 1, 5, 4},
{
0., 0., 1., 1.,
0., 0., 1., 1.,
2., 2., 3., 3.,
4., 4., 5., 5.,
4., 4., 5., 5.
}
);
op_replication_pad3d_out(self, padding, out);
EXPECT_TENSOR_CLOSE(out, out_expected);
}