| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| |
| #include <gtest/gtest.h> |
| |
| using namespace ::testing; |
| using exec_aten::ArrayRef; |
| using exec_aten::IntArrayRef; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using torch::executor::testing::TensorFactory; |
| |
| class OpPermuteCopyTest : public OperatorTest { |
| protected: |
| Tensor& |
| op_permute_copy_out(const Tensor& self, IntArrayRef dims, Tensor& out) { |
| return torch::executor::aten::permute_copy_outf(context_, self, dims, out); |
| } |
| }; |
| |
| TEST_F(OpPermuteCopyTest, OneDPermute) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| const std::vector<int64_t> new_dim = {0}; |
| |
| const std::vector<int32_t> sizes = {2}; |
| Tensor t_int = tf.make(sizes, {1, 2}); |
| |
| Tensor out = tf.zeros(sizes); |
| |
| op_permute_copy_out( |
| t_int, ArrayRef<int64_t>(new_dim.data(), new_dim.size()), out); |
| EXPECT_TENSOR_EQ(out, tf.make(sizes, {1, 2})); |
| } |
| |
| TEST_F(OpPermuteCopyTest, PermuteWithNoDataReorder) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| const std::vector<int64_t> new_dim = {1, 0, 2}; |
| |
| // clang-format off |
| Tensor t_int = tf.make({1,4,5}, { |
| 0, 1, 2, 3, 4, |
| 5, 6, 7, 8, 9, |
| 10, 11, 12, 13, 14, |
| 15, 16, 17,18, 19}); |
| // clang-format on |
| |
| const std::vector<int32_t> new_sizes = {4, 1, 5}; |
| Tensor out = tf.zeros(new_sizes); |
| |
| op_permute_copy_out( |
| t_int, ArrayRef<int64_t>(new_dim.data(), new_dim.size()), out); |
| // clang-format off |
| EXPECT_TENSOR_EQ(out, tf.make(new_sizes, { |
| 0, 1, 2, 3, 4, |
| 5, 6, 7, 8, 9, |
| 10, 11, 12, 13, 14, |
| 15, 16, 17, 18, 19})); |
| // clang-format on |
| } |
| |
| TEST_F(OpPermuteCopyTest, TwoDPermute) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| const std::vector<int64_t> new_dim = {1, 0}; |
| |
| // clang-format off |
| Tensor t_int = tf.make({2, 3}, { |
| // 2x3 data block |
| 0, 1, 2, |
| 3, 4, 5 |
| }); |
| // clang-format on |
| |
| const std::vector<int32_t> new_sizes = {3, 2}; |
| Tensor out = tf.zeros(new_sizes); |
| |
| op_permute_copy_out( |
| t_int, ArrayRef<int64_t>(new_dim.data(), new_dim.size()), out); |
| // clang-format off |
| EXPECT_TENSOR_EQ(out, tf.make(new_sizes, { |
| // 3x2 data block |
| 0, 3, |
| 1, 4, |
| 2, 5 |
| })); |
| // clang-format on |
| } |
| |
| TEST_F(OpPermuteCopyTest, ThreeDPermute) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| const std::vector<int64_t> new_dim = {2, 0, 1}; |
| |
| // clang-format off |
| Tensor t_int = tf.make({2, 1, 3}, { |
| // 2 1x3 data blocks |
| 0, 1, 2, |
| |
| 3, 4, 5 |
| }); |
| // clang-format on |
| |
| const std::vector<int32_t> new_sizes = {3, 2, 1}; |
| Tensor out = tf.zeros(new_sizes); |
| |
| op_permute_copy_out( |
| t_int, ArrayRef<int64_t>(new_dim.data(), new_dim.size()), out); |
| // clang-format off |
| EXPECT_TENSOR_EQ(out, tf.make(new_sizes, { |
| // 3 2x1 data blocks |
| 0, |
| 3, |
| |
| 1, |
| 4, |
| |
| 2, |
| 5 |
| })); |
| // clang-format on |
| } |
| |
| TEST_F(OpPermuteCopyTest, FourDPermute) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| const std::vector<int64_t> new_dim = {0, 3, 2, 1}; |
| |
| // clang-format off |
| Tensor t_int = tf.make( |
| {2, 3, 3, 4}, |
| // 2 groupings of 3 3x4 data blocks |
| {0, 1, 2, 3, |
| 4, 5, 6, 7, |
| 8, 9, 10, 11, |
| |
| 12, 13, 14, 15, |
| 16, 17, 18, 19, |
| 20, 21, 22, 23, |
| |
| 24, 25, 26, 27, |
| 28, 29, 30, 31, |
| 32, 33, 34, 35, |
| |
| |
| 36, 37, 38, 39, |
| 40, 41, 42, 43, |
| 44, 45, 46, 47, |
| |
| 48, 49, 50, 51, |
| 52, 53, 54, 55, |
| 56, 57, 58, 59, |
| |
| 60, 61, 62, 63, |
| 64, 65, 66, 67, |
| 68, 69, 70, 71}); |
| // clang-format on |
| |
| const std::vector<int32_t> new_sizes = {2, 4, 3, 3}; |
| Tensor out = tf.zeros(new_sizes); |
| |
| // Long results like this are gotten by running torch.permute in a notebook |
| // and copy pasting the result. Ex: |
| // import torch |
| // x = torch.arange(0, 72, 1).view(2, 3, 3, 4).contiguous() |
| // print(x.flatten().contiguous()) |
| // z = torch.permute(x, (0, 3, 2, 1)) |
| // print(z.flatten().contiguous()) |
| op_permute_copy_out( |
| t_int, ArrayRef<int64_t>(new_dim.data(), new_dim.size()), out); |
| EXPECT_TENSOR_EQ( |
| out, |
| // clang-format off |
| tf.make(new_sizes, { |
| // 2 groupings of 4 3x3 data blocks |
| 0, 12, 24, |
| 4, 16, 28, |
| 8, 20, 32, |
| |
| 1, 13, 25, |
| 5, 17, 29, |
| 9, 21, 33, |
| |
| 2, 14, 26, |
| 6, 18, 30, |
| 10, 22, 34, |
| |
| 3, 15, 27, |
| 7, 19, 31, |
| 11, 23, 35, |
| |
| |
| 36, 48, 60, |
| 40, 52, 64, |
| 44, 56, 68, |
| |
| 37, 49, 61, |
| 41, 53, 65, |
| 45, 57, 69, |
| |
| 38, 50, 62, |
| 42, 54, 66, |
| 46, 58, 70, |
| |
| 39, 51, 63, |
| 43, 55, 67, |
| 47, 59, 71})); |
| // clang-format on |
| } |
| |
| TEST_F(OpPermuteCopyTest, FiveDPermute) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| const std::vector<int64_t> new_dim = {4, 3, 2, 1, 0}; |
| |
| const std::vector<int32_t> sizes = {2, 2, 2, 2, 2}; |
| // clang-format off |
| Tensor t_int = tf.make( |
| sizes, { |
| 0, 1, |
| 2, 3, |
| |
| 4, 5, |
| 6, 7, |
| |
| |
| 8, 9, |
| 10, 11, |
| |
| 12, 13, |
| 14, 15, |
| |
| |
| 16, 17, |
| 18, 19, |
| |
| 20, 21, |
| 22, 23, |
| |
| |
| 24, 25, |
| 26, 27, |
| |
| 28, 29, |
| 30, 31}); |
| // clang-format on |
| |
| Tensor out = tf.zeros(sizes); |
| |
| op_permute_copy_out( |
| t_int, ArrayRef<int64_t>(new_dim.data(), new_dim.size()), out); |
| // Long results like this are gotten by running torch.permute in a notebook |
| // and copy pasting the result. Ex: |
| // import torch |
| // x = torch.arange(0, 32, 1).view(2, 2, 2, 2, 2).contiguous() |
| // print(x.flatten().contiguous()) |
| // z = torch.permute(x, (4, 3, 2, 1, 0)) |
| // print(z.flatten().contiguous()) |
| // clang-format off |
| EXPECT_TENSOR_EQ( |
| out, tf.make(sizes, { |
| 0, 16, |
| 8, 24, |
| |
| 4, 20, |
| 12, 28, |
| |
| |
| 2, 18, |
| 10, 26, |
| |
| 6, 22, |
| 14, 30, |
| |
| |
| 1, 17, |
| 9, 25, |
| |
| 5, 21, |
| 13, 29, |
| |
| |
| 3, 19, |
| 11, 27, |
| |
| 7, 23, |
| 15, 31})); |
| // clang-format on |
| } |
| |
| TEST_F(OpPermuteCopyTest, AllDimensionsSizeOne) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| const std::vector<int64_t> new_dim = {4, 3, 2, 1, 0}; |
| |
| const std::vector<int32_t> sizes = {1, 1, 1, 1, 1}; |
| Tensor t_int = tf.make(sizes, {1}); |
| |
| Tensor out = tf.zeros(sizes); |
| |
| op_permute_copy_out( |
| t_int, ArrayRef<int64_t>(new_dim.data(), new_dim.size()), out); |
| EXPECT_TENSOR_EQ(out, tf.make(sizes, {1})); |
| } |
| |
| TEST_F(OpPermuteCopyTest, DupeDimensionPos) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| const std::vector<int64_t> new_dim = {0, 1, 1}; |
| |
| const std::vector<int32_t> sizes = {1, 1, 1}; |
| Tensor t_int = tf.make(sizes, {1}); |
| |
| Tensor out = tf.zeros(sizes); |
| |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_permute_copy_out( |
| t_int, ArrayRef<int64_t>(new_dim.data(), new_dim.size()), out)); |
| } |
| |
| TEST_F(OpPermuteCopyTest, DupeDimensionPos2) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| const std::vector<int64_t> new_dim = {1, 1, 1}; |
| |
| const std::vector<int32_t> sizes = {1, 1, 1}; |
| Tensor t_int = tf.make(sizes, {1}); |
| |
| Tensor out = tf.zeros(sizes); |
| |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_permute_copy_out( |
| t_int, ArrayRef<int64_t>(new_dim.data(), new_dim.size()), out)); |
| } |
| |
| TEST_F(OpPermuteCopyTest, DupeDimensionNeg) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| const std::vector<int64_t> new_dim = {0, 1, -2}; |
| |
| const std::vector<int32_t> sizes = {1, 1, 1}; |
| Tensor t_int = tf.make(sizes, {1}); |
| |
| Tensor out = tf.zeros(sizes); |
| |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_permute_copy_out( |
| t_int, ArrayRef<int64_t>(new_dim.data(), new_dim.size()), out)); |
| } |
| |
| TEST_F(OpPermuteCopyTest, DupeDimensionNeg2) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| const std::vector<int64_t> new_dim = {0, 1, -5}; |
| |
| const std::vector<int32_t> sizes = {1, 1, 1}; |
| Tensor t_int = tf.make(sizes, {1}); |
| |
| Tensor out = tf.zeros(sizes); |
| |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_permute_copy_out( |
| t_int, ArrayRef<int64_t>(new_dim.data(), new_dim.size()), out)); |
| } |
| |
| TEST_F(OpPermuteCopyTest, MismatchDim) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| const std::vector<int64_t> new_dim = {0, 1, 2}; |
| |
| const std::vector<int32_t> sizes = {1, 1}; |
| Tensor t_int = tf.make(sizes, {1}); |
| |
| Tensor out = tf.zeros(sizes); |
| |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_permute_copy_out( |
| t_int, ArrayRef<int64_t>(new_dim.data(), new_dim.size()), out)); |
| } |
| |
| /* %python |
| import torch |
| torch.manual_seed(0) |
| x = torch.randint(10, (2, 3, 4)) |
| res = torch.permute(x, (2, 0, 1)) |
| op = "op_permute_copy_out" |
| opt_setup_params = f""" |
| {declare_array_ref([2, 0, 1], "int64_t", "perm_aref")} |
| """ |
| opt_extra_params = "perm_aref," |
| dtype = "ScalarType::Int" |
| check = "EXPECT_TENSOR_EQ" */ |
| |
| TEST_F(OpPermuteCopyTest, DynamicShapeUpperBoundSameAsExpected) { |
| /* %python |
| out_args = "{4, 2, 3}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND" |
| %rewrite(unary_op) */ |
| |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.make({2, 3, 4}, {4, 9, 3, 0, 3, 9, 7, 3, 7, 3, 1, 6, |
| 6, 9, 8, 6, 6, 8, 4, 3, 6, 9, 1, 4}); |
| Tensor expected = tf.make({4, 2, 3}, {4, 3, 7, 6, 6, 6, 9, 9, 3, 9, 8, 9, |
| 3, 7, 1, 8, 4, 1, 0, 3, 6, 6, 3, 4}); |
| |
| std::vector<int64_t> perm_arefv = {2, 0, 1}; |
| ArrayRef<int64_t> perm_aref(perm_arefv.data(), perm_arefv.size()); |
| |
| Tensor out = |
| tf.zeros({4, 2, 3}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| op_permute_copy_out(x, perm_aref, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |
| |
| TEST_F(OpPermuteCopyTest, DynamicShapeUpperBoundLargerThanExpected) { |
| /* %python |
| out_args = "{5, 5, 5}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND" |
| %rewrite(unary_op) */ |
| |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.make({2, 3, 4}, {4, 9, 3, 0, 3, 9, 7, 3, 7, 3, 1, 6, |
| 6, 9, 8, 6, 6, 8, 4, 3, 6, 9, 1, 4}); |
| Tensor expected = tf.make({4, 2, 3}, {4, 3, 7, 6, 6, 6, 9, 9, 3, 9, 8, 9, |
| 3, 7, 1, 8, 4, 1, 0, 3, 6, 6, 3, 4}); |
| |
| std::vector<int64_t> perm_arefv = {2, 0, 1}; |
| ArrayRef<int64_t> perm_aref(perm_arefv.data(), perm_arefv.size()); |
| |
| Tensor out = |
| tf.zeros({5, 5, 5}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| op_permute_copy_out(x, perm_aref, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |
| |
| TEST_F(OpPermuteCopyTest, DynamicShapeUnbound) { |
| if (!torch::executor::testing::SupportedFeatures::get()->output_resize) { |
| GTEST_SKIP() << "Dynamic shape unbound not supported"; |
| } |
| /* %python |
| out_args = "{1, 1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND" |
| %rewrite(unary_op) */ |
| |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.make({2, 3, 4}, {4, 9, 3, 0, 3, 9, 7, 3, 7, 3, 1, 6, |
| 6, 9, 8, 6, 6, 8, 4, 3, 6, 9, 1, 4}); |
| Tensor expected = tf.make({4, 2, 3}, {4, 3, 7, 6, 6, 6, 9, 9, 3, 9, 8, 9, |
| 3, 7, 1, 8, 4, 1, 0, 3, 6, 6, 3, 4}); |
| |
| std::vector<int64_t> perm_arefv = {2, 0, 1}; |
| ArrayRef<int64_t> perm_aref(perm_arefv.data(), perm_arefv.size()); |
| |
| Tensor out = tf.zeros( |
| {1, 1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND); |
| op_permute_copy_out(x, perm_aref, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |