| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| #include <gtest/gtest.h> |
| |
| using namespace ::testing; |
| using exec_aten::Scalar; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using executorch::runtime::KernelRuntimeContext; |
| using torch::executor::testing::TensorFactory; |
| |
| class OpNeTest : public OperatorTest { |
| protected: |
| Tensor& op_ne_tensor_out(const Tensor& self, Tensor& other, Tensor& out) { |
| return torch::executor::aten::ne_outf(context_, self, other, out); |
| } |
| |
| template <class CTYPE, ScalarType DTYPE> |
| void test_dtype() { |
| TensorFactory<DTYPE> tf_input; |
| TensorFactory<ScalarType::Bool> tf_bool; |
| Tensor a = tf_input.make(/*sizes=*/{2, 2}, /*data=*/{2, 3, 2, 4}); |
| Tensor b = tf_input.make({2, 2}, {2, 2, 2, 2}); |
| Tensor out = tf_bool.zeros({2, 2}); |
| KernelRuntimeContext context{}; |
| |
| torch::executor::aten::ne_outf(context, a, b, out); |
| EXPECT_TENSOR_EQ(out, tf_bool.make({2, 2}, {false, true, false, true})); |
| } |
| }; |
| |
| class OpNeScalarOutTest : public OperatorTest { |
| protected: |
| Tensor& op_ne_scalar_out(const Tensor& self, Scalar& other, Tensor& out) { |
| return torch::executor::aten::ne_outf(context_, self, other, out); |
| } |
| |
| // Common testing for ne operator |
| template <ScalarType DTYPE> |
| void test_ne_scalar_out() { |
| TensorFactory<DTYPE> tf; |
| TensorFactory<ScalarType::Bool> tf_out; |
| |
| const std::vector<int32_t> sizes = {2, 2}; |
| // Destination for the ne |
| Tensor out = tf_out.ones(sizes); |
| Scalar other = 2; |
| |
| // Valid input should give the expected output |
| op_ne_scalar_out(tf.make(sizes, /*data=*/{2, 3, 2, 3}), other, out); |
| EXPECT_TENSOR_EQ( |
| out, tf_out.make(sizes, /*data=*/{false, true, false, true})); |
| } |
| |
| // Handle all output dtypes. |
| template <ScalarType OUTPUT_DTYPE> |
| void test_ne_all_output_dtypes() { |
| TensorFactory<ScalarType::Float> tf_float; |
| TensorFactory<OUTPUT_DTYPE> tf_out; |
| |
| const std::vector<int32_t> sizes = {2, 5}; |
| |
| Tensor in = tf_float.ones(sizes); |
| Tensor out = tf_out.zeros(sizes); |
| Scalar other = 3; |
| |
| op_ne_scalar_out(in, other, out); |
| EXPECT_TENSOR_EQ(out, tf_out.ones(sizes)); |
| } |
| }; |
| |
| TEST_F(OpNeScalarOutTest, AllRealInputBoolOutputSupport) { |
| #define TEST_ENTRY(ctype, dtype) test_ne_scalar_out<ScalarType::dtype>(); |
| ET_FORALL_REAL_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpNeScalarOutTest, BoolInputDtype) { |
| TensorFactory<ScalarType::Bool> tf_bool; |
| |
| const std::vector<int32_t> sizes = {2, 2}; |
| Tensor a = tf_bool.make(sizes, /*data=*/{false, true, false, true}); |
| Tensor out = tf_bool.zeros(sizes); |
| Scalar other = 1; |
| |
| op_ne_scalar_out(a, other, out); |
| EXPECT_TENSOR_EQ( |
| out, tf_bool.make(sizes, /*data=*/{true, false, true, false})); |
| } |
| |
| // Mismatched shape tests. |
| TEST_F(OpNeScalarOutTest, MismatchedShapesDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle mismatched shapes"; |
| } |
| TensorFactory<ScalarType::Int> tf_int; |
| TensorFactory<ScalarType::Bool> tf_bool; |
| |
| Tensor a = tf_int.ones(/*sizes=*/{4}); |
| Tensor out = tf_bool.ones(/*sizes=*/{2, 2}); |
| Scalar other = 3; |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_ne_scalar_out(a, other, out)); |
| } |
| |
| TEST_F(OpNeScalarOutTest, AllRealOutputDTypesSupported) { |
| #define TEST_ENTRY(ctype, dtype) test_ne_all_output_dtypes<ScalarType::dtype>(); |
| ET_FORALL_REAL_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpNeTest, AllDtypesSupported) { |
| #define TEST_ENTRY(ctype, dtype) test_dtype<ctype, ScalarType::dtype>(); |
| ET_FORALL_REAL_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| /* %python |
| import torch |
| torch.manual_seed(0) |
| x = torch.randint(3, (3, 2)) |
| res = torch.ne(x, 2) |
| op = "op_ne_scalar_out" |
| opt_setup_params = """ |
| Scalar other = 2; |
| """ |
| opt_extra_params = "other," |
| dtype = "ScalarType::Int" |
| out_dtype = "ScalarType::Bool" |
| check = "EXPECT_TENSOR_EQ" */ |
| |
| TEST_F(OpNeScalarOutTest, DynamicShapeUpperBoundSameAsExpected) { |
| /* %python |
| out_args = "{3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND" |
| %rewrite(unary_op_out_dtype) */ |
| |
| TensorFactory<ScalarType::Int> tf; |
| TensorFactory<ScalarType::Bool> tfOut; |
| |
| Tensor x = tf.make({3, 2}, {2, 0, 2, 0, 1, 0}); |
| Tensor expected = tfOut.make({3, 2}, {false, true, false, true, true, true}); |
| |
| Scalar other = 2; |
| |
| Tensor out = |
| tfOut.zeros({3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| op_ne_scalar_out(x, other, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |
| |
| TEST_F(OpNeScalarOutTest, DynamicShapeUpperBoundLargerThanExpected) { |
| /* %python |
| out_args = "{10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND" |
| %rewrite(unary_op_out_dtype) */ |
| |
| TensorFactory<ScalarType::Int> tf; |
| TensorFactory<ScalarType::Bool> tfOut; |
| |
| Tensor x = tf.make({3, 2}, {2, 0, 2, 0, 1, 0}); |
| Tensor expected = tfOut.make({3, 2}, {false, true, false, true, true, true}); |
| |
| Scalar other = 2; |
| |
| Tensor out = tfOut.zeros( |
| {10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| op_ne_scalar_out(x, other, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |
| |
| TEST_F(OpNeScalarOutTest, DynamicShapeUnbound) { |
| if (!torch::executor::testing::SupportedFeatures::get()->output_resize) { |
| GTEST_SKIP() << "Dynamic shape unbound not supported"; |
| } |
| /* %python |
| out_args = "{1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND" |
| %rewrite(unary_op_out_dtype) */ |
| |
| TensorFactory<ScalarType::Int> tf; |
| TensorFactory<ScalarType::Bool> tfOut; |
| |
| Tensor x = tf.make({3, 2}, {2, 0, 2, 0, 1, 0}); |
| Tensor expected = tfOut.make({3, 2}, {false, true, false, true, true, true}); |
| |
| Scalar other = 2; |
| |
| Tensor out = tfOut.zeros( |
| {1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND); |
| op_ne_scalar_out(x, other, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |