blob: 9821cb6b479c673078ef57080c99f6666ee03d15 [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator
#include <executorch/kernels/test/TestUtil.h>
#include <executorch/kernels/test/supported_features.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>
#include <executorch/runtime/core/exec_aten/util/scalar_type_util.h>
#include <executorch/test/utils/DeathTest.h>
#include <gtest/gtest.h>
#include <cmath>
using namespace ::testing;
using exec_aten::ArrayRef;
using exec_aten::optional;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::TensorFactory;
class OpMeanOutTest : public OperatorTest {
protected:
Tensor& op_mean_out(
const Tensor& self,
optional<ArrayRef<int64_t>> dim,
bool keepdim,
optional<ScalarType> dtype,
Tensor& out) {
return torch::executor::aten::mean_outf(
context_, self, dim, keepdim, dtype, out);
}
template <ScalarType IN_DTYPE, ScalarType OUT_DTYPE>
void test_mean_dim_out_invalid_dimensions() {
TensorFactory<IN_DTYPE> tf_in;
TensorFactory<OUT_DTYPE> tf_out;
// clang-format off
Tensor self = tf_in.make(
{2, 3, 4},
{
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 18, 19,
20, 21, 22, 23,
});
// clang-format on
Tensor out = tf_out.zeros({2, 3, 1});
optional<ScalarType> dtype = OUT_DTYPE;
// out-of-bound dim in dim list
int64_t dims_1[1] = {3};
optional<ArrayRef<int64_t>> optional_dim_list{ArrayRef<int64_t>{dims_1, 1}};
ET_EXPECT_KERNEL_FAILURE(
context_,
op_mean_out(self, optional_dim_list, /*keepdim=*/true, dtype, out));
// the same dim appears multiple times in list of dims
int64_t dims_2[2] = {2, 2};
optional_dim_list = ArrayRef<int64_t>{dims_2, 2};
ET_EXPECT_KERNEL_FAILURE(
context_,
op_mean_out(self, optional_dim_list, /*keepdim=*/true, dtype, out));
}
template <ScalarType IN_DTYPE, ScalarType OUT_DTYPE>
void test_mean_dim_out_invalid_shape() {
TensorFactory<IN_DTYPE> tf_in;
TensorFactory<OUT_DTYPE> tf_out;
// clang-format off
Tensor self = tf_in.make(
{2, 3, 4},
{
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 18, 19,
20, 21, 22, 23,
});
// clang-format on
// dimension size mismatch when keepdim is true
Tensor out = tf_out.zeros({2, 4});
optional<ScalarType> dtype = OUT_DTYPE;
int64_t dims_1[1] = {1};
optional<ArrayRef<int64_t>> optional_dim_list{ArrayRef<int64_t>{dims_1, 1}};
ET_EXPECT_KERNEL_FAILURE(
context_,
op_mean_out(self, optional_dim_list, /*keepdim=*/true, dtype, out));
// dimension size mismatch when keepdim is false
out = tf_out.zeros({2, 1, 4});
ET_EXPECT_KERNEL_FAILURE(
context_,
op_mean_out(self, optional_dim_list, /*keepdim=*/false, dtype, out));
}
template <ScalarType IN_DTYPE, ScalarType OUT_DTYPE>
void test_mean_dim_out_dtype() {
TensorFactory<IN_DTYPE> tf_in;
TensorFactory<OUT_DTYPE> tf_out;
// clang-format off
Tensor self = tf_in.make(
{2, 3, 4},
{
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 18, 19,
20, 21, 22, 23,
});
// clang-format on
// keepdim=true should work
Tensor out = tf_out.zeros({2, 3, 1});
int64_t dims_1[1] = {2};
optional<ArrayRef<int64_t>> optional_dim_list{ArrayRef<int64_t>{dims_1, 1}};
optional<ScalarType> dtype = OUT_DTYPE;
op_mean_out(self, optional_dim_list, /*keepdim=*/true, dtype, out);
// clang-format off
EXPECT_TENSOR_CLOSE(out, tf_out.make(
{2, 3, 1},
{
1.5,
5.5,
9.5,
13.5,
17.5,
21.5
}));
// clang-format on
// keepdim=false should work
out = tf_out.zeros({2, 3});
op_mean_out(self, optional_dim_list, /*keepdim=*/false, dtype, out);
// clang-format off
EXPECT_TENSOR_CLOSE(out, tf_out.make(
{2, 3},
{
1.5, 5.5, 9.5,
13.5, 17.5, 21.5
}));
// clang-format on
// dim list with multiple dimensions should work
out = tf_out.zeros({1, 1, 4});
int64_t dims_2[2] = {0, 1};
optional_dim_list = ArrayRef<int64_t>{dims_2, 2};
op_mean_out(self, optional_dim_list, /*keepdim=*/true, dtype, out);
EXPECT_TENSOR_CLOSE(out, tf_out.make({1, 1, 4}, {10, 11, 12, 13}));
out = tf_out.zeros({4});
op_mean_out(self, optional_dim_list, false, dtype, out);
EXPECT_TENSOR_CLOSE(out, tf_out.make({4}, {10, 11, 12, 13}));
// dim list with negative dimensions should work
out = tf_out.zeros({2, 1, 4});
int64_t dims_3[1] = {-2};
optional_dim_list = ArrayRef<int64_t>{dims_3, 1};
op_mean_out(self, optional_dim_list, /*keepdim=*/true, dtype, out);
// clang-format off
EXPECT_TENSOR_CLOSE(out, tf_out.make(
{2, 1, 4},
{
4, 5, 6, 7,
16, 17, 18, 19,
}));
// clang-format on
// empty/null dim list should work
out = tf_out.zeros({1, 1, 1});
optional<ArrayRef<int64_t>> null_dim_list;
op_mean_out(self, null_dim_list, /*keepdim=*/true, dtype, out);
EXPECT_TENSOR_CLOSE(out, tf_out.make({1, 1, 1}, {11.5}));
optional<ArrayRef<int64_t>> empty_dim_list{ArrayRef<int64_t>{}};
op_mean_out(self, empty_dim_list, /*keepdim=*/true, dtype, out);
EXPECT_TENSOR_CLOSE(out, tf_out.make({1, 1, 1}, {11.5}));
out = tf_out.zeros({});
op_mean_out(self, null_dim_list, /*keepdim=*/false, dtype, out);
EXPECT_TENSOR_CLOSE(out, tf_out.make({}, {11.5}));
op_mean_out(self, empty_dim_list, /*keepdim=*/false, dtype, out);
EXPECT_TENSOR_CLOSE(out, tf_out.make({}, {11.5}));
}
template <ScalarType OUT_DTYPE>
void test_mean_dim_out_bool() {
TensorFactory<ScalarType::Bool> tf_bool;
TensorFactory<OUT_DTYPE> tf_float;
// clang-format off
Tensor self = tf_bool.make(
{2, 3, 4},
{
true, false, true, false,
false, false, false, false,
false, true, true, false,
false, false, true, false,
false, false, false, true,
true, true, true, true,
});
// clang-format on
Tensor out = tf_float.zeros({1, 1, 4});
int64_t dims[2] = {0, 1};
optional<ArrayRef<int64_t>> optional_dim_list{ArrayRef<int64_t>{dims, 2}};
optional<ScalarType> dtype = OUT_DTYPE;
op_mean_out(self, optional_dim_list, /*keepdim=*/true, dtype, out);
EXPECT_TENSOR_CLOSE(
out,
tf_float.make({1, 1, 4}, {0.333333, 0.333333, 0.666667, 0.333333}));
}
};
template <>
void OpMeanOutTest::
test_mean_dim_out_dtype<ScalarType::Bool, ScalarType::Float>() {
test_mean_dim_out_bool<ScalarType::Float>();
}
template <>
void OpMeanOutTest::
test_mean_dim_out_dtype<ScalarType::Bool, ScalarType::Double>() {
test_mean_dim_out_bool<ScalarType::Double>();
}
TEST_F(OpMeanOutTest, InvalidDimensionListDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel test fails";
}
// Use a two layer switch to hanldle each possible data pair
#define TEST_KERNEL(INPUT_CTYPE, INPUT_DTYPE, OUTPUT_CTYPE, OUTPUT_DTYPE) \
test_mean_dim_out_invalid_dimensions< \
ScalarType::INPUT_DTYPE, \
ScalarType::OUTPUT_DTYPE>();
#define TEST_ENTRY(INPUT_CTYPE, INPUT_DTYPE) \
ET_FORALL_FLOAT_TYPES_WITH2(INPUT_CTYPE, INPUT_DTYPE, TEST_KERNEL);
ET_FORALL_REAL_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
#undef TEST_KERNEL
}
TEST_F(OpMeanOutTest, InvalidShapeDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel test fails";
}
// Use a two layer switch to hanldle each possible data pair
#define TEST_KERNEL(INPUT_CTYPE, INPUT_DTYPE, OUTPUT_CTYPE, OUTPUT_DTYPE) \
test_mean_dim_out_invalid_shape< \
ScalarType::INPUT_DTYPE, \
ScalarType::OUTPUT_DTYPE>();
#define TEST_ENTRY(INPUT_CTYPE, INPUT_DTYPE) \
ET_FORALL_FLOAT_TYPES_WITH2(INPUT_CTYPE, INPUT_DTYPE, TEST_KERNEL);
ET_FORALL_REAL_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
#undef TEST_KERNEL
}
TEST_F(OpMeanOutTest, MismatchedDTypesDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel test fails";
}
TensorFactory<ScalarType::Float> tf_float;
TensorFactory<ScalarType::Int> tf_int;
// clang-format off
Tensor self = tf_int.make(
{2, 3, 4},
{
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 18, 19,
20, 21, 22, 23,
});
// clang-format on
// keepdim=true should work
Tensor out = tf_float.zeros({2, 3, 1});
int64_t dims_1[1] = {2};
optional<ArrayRef<int64_t>> optional_dim_list{ArrayRef<int64_t>{dims_1, 1}};
optional<ScalarType> dtype;
// self tensor must have a floating point dtype when dtype is not specified
ET_EXPECT_KERNEL_FAILURE(
context_,
op_mean_out(self, optional_dim_list, /*keepdim=*/true, dtype, out));
dtype = ScalarType::Double;
// out tensor should be of the same dtype with dtype when dtype is specified
ET_EXPECT_KERNEL_FAILURE(
context_,
op_mean_out(self, optional_dim_list, /*keepdim=*/true, dtype, out));
}
TEST_F(OpMeanOutTest, AllRealInputFloatOutputPasses) {
// Use a two layer switch to hanldle each possible data pair
#define TEST_KERNEL(INPUT_CTYPE, INPUT_DTYPE, OUTPUT_CTYPE, OUTPUT_DTYPE) \
test_mean_dim_out_dtype<ScalarType::INPUT_DTYPE, ScalarType::OUTPUT_DTYPE>();
#define TEST_ENTRY(INPUT_CTYPE, INPUT_DTYPE) \
ET_FORALL_FLOAT_TYPES_WITH2(INPUT_CTYPE, INPUT_DTYPE, TEST_KERNEL);
ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY);
#undef TEST_ENTRY
#undef TEST_KERNEL
}
TEST_F(OpMeanOutTest, HalfSupport) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "Test Half support only for ExecuTorch mode";
}
#define TEST_ENTRY(ctype, dtype) \
test_mean_dim_out_dtype<ScalarType::dtype, ScalarType::Half>();
ET_FORALL_REALH_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
#define TEST_ENTRY(ctype, dtype) \
test_mean_dim_out_dtype<ScalarType::Half, ScalarType::dtype>();
ET_FORALL_FLOATH_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpMeanOutTest, InfinityAndNANTest) {
TensorFactory<ScalarType::Float> tf_float;
// clang-format off
Tensor self = tf_float.make(
{2, 3, 4},
{
0, 1, 2, INFINITY,
INFINITY, -INFINITY, 1, 0,
NAN, INFINITY, -INFINITY, 2,
NAN, NAN, 1, 0,
0, INFINITY, NAN, 4,
1, NAN, 3.14, 2,
});
// clang-format on
Tensor out = tf_float.zeros({2, 3, 1});
int64_t dims[1] = {-1};
optional<ArrayRef<int64_t>> optional_dim_list{ArrayRef<int64_t>{dims, 1}};
optional<ScalarType> dtype;
op_mean_out(self, optional_dim_list, /*keepdim=*/true, dtype, out);
// clang-format off
EXPECT_TENSOR_CLOSE(out, tf_float.make(
{2, 3, 1},
{
INFINITY,
NAN,
NAN,
NAN,
NAN,
NAN
}));
// clang-format on
}
TEST_F(OpMeanOutTest, SimpleGeneratedCase) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{10, 10},
{1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0});
Tensor expected_result =
tf.make({10}, {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0});
Tensor out = tf.zeros({10});
Tensor ret =
op_mean_out(x, ArrayRef<int64_t>{1}, false, ScalarType::Float, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpMeanOutTest, DynamicShapeUpperBoundSameAsExpected) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.49627798795700073,
0.40115922689437866,
0.5627331733703613,
0.3858276605606079,
0.4964867830276489,
0.5637965202331543});
Tensor expected_result = tf.make(
{3}, {0.4487186074256897, 0.4742804169654846, 0.5301416516304016});
Tensor out =
tf.zeros({3}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor ret =
op_mean_out(x, ArrayRef<int64_t>{1}, false, ScalarType::Float, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpMeanOutTest, DynamicShapeUpperBoundLargerThanExpected) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.49627798795700073,
0.40115922689437866,
0.5627331733703613,
0.3858276605606079,
0.4964867830276489,
0.5637965202331543});
Tensor expected_result = tf.make(
{3}, {0.4487186074256897, 0.4742804169654846, 0.5301416516304016});
Tensor out =
tf.zeros({10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor ret =
op_mean_out(x, ArrayRef<int64_t>{1}, false, ScalarType::Float, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpMeanOutTest, DynamicShapeUnbound) {
GTEST_SKIP() << "Dynamic shape unbound not supported";
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.49627798795700073,
0.40115922689437866,
0.5627331733703613,
0.3858276605606079,
0.4964867830276489,
0.5637965202331543});
Tensor expected_result = tf.make(
{3}, {0.4487186074256897, 0.4742804169654846, 0.5301416516304016});
Tensor out =
tf.zeros({1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND);
Tensor ret =
op_mean_out(x, ArrayRef<int64_t>{1}, false, ScalarType::Float, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}