| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| #include <executorch/runtime/core/exec_aten/util/scalar_type_util.h> |
| #include <executorch/test/utils/DeathTest.h> |
| #include <gtest/gtest.h> |
| #include <cmath> |
| |
| using namespace ::testing; |
| using exec_aten::ArrayRef; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using torch::executor::testing::TensorFactory; |
| |
| class OpMaxOutTest : public OperatorTest { |
| protected: |
| std::tuple<Tensor&, Tensor&> op_max_dim_max( |
| const Tensor& self, |
| int64_t dim, |
| bool keepdim, |
| Tensor& max, |
| Tensor& max_indices) { |
| return torch::executor::aten::max_outf( |
| context_, self, dim, keepdim, max, max_indices); |
| } |
| |
| template <ScalarType IN_DTYPE> |
| void test_max_out_invalid_dimensions() { |
| TensorFactory<IN_DTYPE> tf_in; |
| TensorFactory<ScalarType::Long> tf_long; |
| |
| Tensor self = tf_in.ones(/*sizes=*/{2, 3, 4}); |
| Tensor max = tf_in.zeros({2, 3, 2}); |
| Tensor max_indices = tf_in.zeros({2, 3}); |
| |
| // output tensor dim mismatch |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_max_dim_max(self, /*dim=*/-1, /*keepdim=*/true, max, max_indices)); |
| |
| // output tensor shape incorrect: size of dimension: dim should be 1 |
| max = tf_in.zeros({2, 3, 2}); |
| max_indices = tf_in.zeros({2, 3, 2}); |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_max_dim_max(self, /*dim=*/-1, /*keepdim=*/true, max, max_indices)); |
| |
| // output tensor shape should be squeezed when keepdim is false |
| max = tf_in.zeros({2, 3, 1}); |
| max_indices = tf_in.zeros({2, 3, 1}); |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_max_dim_max(self, /*dim=*/-1, /*keepdim=*/false, max, max_indices)); |
| |
| // invalid dim |
| max = tf_in.zeros({2, 3, 1}); |
| max_indices = tf_in.zeros({2, 3, 1}); |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_max_dim_max(self, /*dim=*/3, /*keepdim=*/true, max, max_indices)); |
| } |
| |
| void test_dynamic_shape( |
| const std::vector<int32_t>& out_shape, |
| enum torch::executor::TensorShapeDynamism dynamism) { |
| /* %python |
| %rewrite(max_template) */ |
| |
| TensorFactory<ScalarType::Float> tf; |
| TensorFactory<ScalarType::Long> tfl; |
| |
| Tensor input = tf.make( |
| {2, 3, 4}, |
| {0.49625658988952637, 0.7682217955589294, 0.08847743272781372, |
| 0.13203048706054688, 0.30742281675338745, 0.6340786814689636, |
| 0.4900934100151062, 0.8964447379112244, 0.455627977848053, |
| 0.6323062777519226, 0.3488934636116028, 0.40171730518341064, |
| 0.022325754165649414, 0.16885894536972046, 0.2938884496688843, |
| 0.518521785736084, 0.6976675987243652, 0.800011396408081, |
| 0.16102945804595947, 0.28226858377456665, 0.6816085577011108, |
| 0.9151939749717712, 0.39709991216659546, 0.8741558790206909}); |
| Tensor expected_max = tf.make( |
| {2, 4}, |
| {0.49625658988952637, |
| 0.7682217955589294, |
| 0.4900934100151062, |
| 0.8964447379112244, |
| 0.6976675987243652, |
| 0.9151939749717712, |
| 0.39709991216659546, |
| 0.8741558790206909}); |
| Tensor expected_max_indices = tfl.make({2, 4}, {0, 0, 1, 1, 1, 2, 2, 2}); |
| Tensor max = tf.zeros(out_shape, dynamism); |
| Tensor max_indices = tfl.zeros(out_shape, dynamism); |
| |
| op_max_dim_max(input, 1, false, max, max_indices); |
| EXPECT_TENSOR_EQ(max, expected_max); |
| EXPECT_TENSOR_EQ(max_indices, expected_max_indices); |
| } |
| |
| template <ScalarType IN_DTYPE> |
| void test_max_out_dtype() { |
| TensorFactory<IN_DTYPE> tf_in; |
| TensorFactory<ScalarType::Long> tf_long; |
| // clang-format off |
| Tensor self = tf_in.make( |
| {2, 3, 4}, |
| { |
| 0, 1, 2, 4, |
| 4, 2, 1, 0, |
| 1, 0, 4, 2, |
| |
| 4, 2, 1, 0, |
| 0, 1, 2, 4, |
| 1, 0, 4, 2, |
| }); |
| // clang-format on |
| |
| Tensor max = tf_in.zeros({2, 4}); |
| Tensor max_indices = tf_long.zeros({2, 4}); |
| op_max_dim_max(self, /*dim=*/1, /*keepdim=*/false, max, max_indices); |
| // clang-format off |
| EXPECT_TENSOR_CLOSE(max, tf_in.make( |
| {2, 4}, |
| { |
| 4, 2, 4, 4, |
| 4, 2, 4, 4 |
| })); |
| |
| EXPECT_TENSOR_EQ(max_indices, tf_long.make( |
| {2, 4}, |
| { |
| 1, 1, 2, 0, |
| 0, 0, 2, 1 |
| })); |
| // clang-format on |
| |
| // negative dim should work |
| op_max_dim_max(self, /*dim=*/-2, /*keepdim=*/false, max, max_indices); |
| // clang-format off |
| EXPECT_TENSOR_CLOSE(max, tf_in.make( |
| {2, 4}, |
| { |
| 4, 2, 4, 4, |
| 4, 2, 4, 4 |
| })); |
| EXPECT_TENSOR_EQ(max_indices, tf_long.make( |
| {2, 4}, |
| { |
| 1, 1, 2, 0, |
| 0, 0, 2, 1 |
| })); |
| // clang-format on |
| |
| // keepdim should work |
| max = tf_in.zeros({2, 3, 1}); |
| max_indices = tf_long.zeros({2, 3, 1}); |
| op_max_dim_max(self, /*dim=*/-1, /*keepdim=*/true, max, max_indices); |
| EXPECT_TENSOR_CLOSE(max, tf_in.make({2, 3, 1}, {4, 4, 4, 4, 4, 4})); |
| EXPECT_TENSOR_EQ(max_indices, tf_long.make({2, 3, 1}, {3, 0, 2, 0, 3, 2})); |
| } |
| }; |
| |
| template <> |
| void OpMaxOutTest::test_max_out_dtype<ScalarType::Bool>() { |
| TensorFactory<ScalarType::Bool> tf_bool; |
| TensorFactory<ScalarType::Long> tf_long; |
| // clang-format off |
| Tensor self = tf_bool.make( |
| {2, 3, 4}, |
| { |
| true, false, true, false, |
| false, false, false, false, |
| false, true, true, false, |
| |
| false, false, true, false, |
| false, false, false, true, |
| true, true, true, true, |
| }); |
| // clang-format on |
| |
| Tensor max = tf_bool.zeros({2, 3, 1}); |
| Tensor max_indices = tf_long.zeros({2, 3, 1}); |
| |
| // +/-inf and nan should work |
| op_max_dim_max(self, /*dim=*/-1, /*keepdim=*/true, max, max_indices); |
| // clang-format off |
| EXPECT_TENSOR_CLOSE( |
| max, tf_bool.make( |
| {2, 3, 1}, |
| { |
| true, |
| false, |
| true, |
| |
| true, |
| true, |
| true |
| })); |
| EXPECT_TENSOR_EQ(max_indices, tf_long.make( |
| {2, 3, 1}, |
| { |
| 0, |
| 0, |
| 1, |
| |
| 2, |
| 3, |
| 0 |
| })); |
| // clang-format on |
| } |
| |
| TEST_F(OpMaxOutTest, MismatchedDimensionsDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel test fails"; |
| } |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_max_out_invalid_dimensions<ScalarType::dtype>(); |
| ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpMaxOutTest, MismatchedDTypesDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel test fails"; |
| } |
| TensorFactory<ScalarType::Float> tf_float; |
| TensorFactory<ScalarType::Long> tf_long; |
| |
| Tensor self = tf_float.ones(/*sizes=*/{2, 3, 4}); |
| Tensor max = tf_long.zeros({2, 3, 1}); |
| Tensor max_indices = tf_long.zeros({2, 3, 1}); |
| |
| // dtype of self and max should match |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_max_dim_max(self, /*dim=*/-1, /*keepdim=*/true, max, max_indices)); |
| |
| // max_value tensor should have long as dtype |
| max = tf_float.zeros({2, 3, 1}); |
| max_indices = tf_float.zeros({2, 3, 1}); |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_max_dim_max(self, /*dim=*/-1, /*keepdim=*/true, max, max_indices)); |
| } |
| |
| TEST_F(OpMaxOutTest, AllRealInputLongOutputPasses) { |
| #define TEST_ENTRY(ctype, dtype) test_max_out_dtype<ScalarType::dtype>(); |
| ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpMaxOutTest, InfinityAndNANTest) { |
| TensorFactory<ScalarType::Float> tf_float; |
| TensorFactory<ScalarType::Long> tf_long; |
| // clang-format off |
| Tensor self = tf_float.make( |
| {2, 3, 4}, |
| { |
| 0, 1, 2, INFINITY, |
| INFINITY, -INFINITY, 1, 0, |
| NAN, INFINITY, -INFINITY, 2, |
| |
| NAN, NAN, 1, 0, |
| 0, INFINITY, NAN, 4, |
| 1, NAN, 3.14, 2, |
| }); |
| // clang-format on |
| |
| Tensor max = tf_float.zeros({2, 3, 1}); |
| Tensor max_indices = tf_long.zeros({2, 3, 1}); |
| |
| // +/-inf and nan should work |
| op_max_dim_max(self, /*dim=*/-1, /*keepdim=*/true, max, max_indices); |
| EXPECT_TENSOR_CLOSE( |
| max, tf_float.make({2, 3, 1}, {INFINITY, INFINITY, NAN, NAN, NAN, NAN})); |
| // clang-format off |
| EXPECT_TENSOR_EQ(max_indices, tf_long.make( |
| {2, 3, 1}, |
| { |
| 3, |
| 0, |
| 0, |
| |
| 0, |
| 2, |
| 1 |
| })); |
| // clang-format on |
| } |
| |
| /* %python |
| import torch |
| torch.manual_seed(0) |
| input = torch.rand(2, 3, 4) |
| dim = 1 |
| keepdim = False |
| (values, indices) = torch.max(input, dim, keepdim=keepdim) |
| |
| max_template = f""" |
| {declare_tensor_factory("ScalarType::Float", "tf")} |
| {declare_tensor_factory("ScalarType::Long", "tfl")} |
| |
| {declare_tensor_make_t("input", "tf")} |
| {declare_tensor_make_t("values", "tf", "expected_max")} |
| {declare_tensor_make_t("indices", "tfl", "expected_max_indices")} |
| {declare_tensor_zeros("out_shape, dynamism", "tf", "max")} |
| {declare_tensor_zeros("out_shape, dynamism", "tfl", "max_indices")} |
| |
| op_max_dim_max(input, $dim$, $keepdim$, max, max_indices); |
| EXPECT_TENSOR_EQ(max, expected_max); |
| EXPECT_TENSOR_EQ(max_indices, expected_max_indices);""" */ |
| |
| TEST_F(OpMaxOutTest, DynamicShapeUpperBoundSameAsExpected) { |
| test_dynamic_shape( |
| {2, 4}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| } |
| |
| TEST_F(OpMaxOutTest, DynamicShapeUpperBoundLargerThanExpected) { |
| test_dynamic_shape( |
| {10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| } |
| |
| TEST_F(OpMaxOutTest, DynamicShapeUnbound) { |
| if (!torch::executor::testing::SupportedFeatures::get()->output_resize) { |
| GTEST_SKIP() << "Dynamic shape unbound not supported"; |
| } |
| test_dynamic_shape( |
| {1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND); |
| } |