| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| #include <gtest/gtest.h> |
| |
| using namespace ::testing; |
| using exec_aten::Scalar; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using executorch::runtime::KernelRuntimeContext; |
| using torch::executor::testing::TensorFactory; |
| |
| class OpLtScalarOutTest : public OperatorTest { |
| protected: |
| Tensor& op_lt_scalar_out(const Tensor& self, Scalar& other, Tensor& out) { |
| return torch::executor::aten::lt_outf(context_, self, other, out); |
| } |
| |
| template <ScalarType DTYPE_IN, ScalarType DTYPE_OUT> |
| void test_lt_scalar_out() { |
| TensorFactory<DTYPE_IN> tf; |
| TensorFactory<DTYPE_OUT> tf_out; |
| |
| const std::vector<int32_t> sizes = {2, 2}; |
| Tensor out = tf_out.ones(sizes); |
| Scalar other = 2; |
| |
| // Valid input should give the expected output |
| op_lt_scalar_out(tf.make(sizes, /*data=*/{3, 1, 2, 4}), other, out); |
| EXPECT_TENSOR_EQ( |
| out, tf_out.make(sizes, /*data=*/{false, true, false, false})); |
| } |
| }; |
| |
| class OpLtTensorOutTest : public OperatorTest { |
| protected: |
| Tensor& |
| op_lt_tensor_out(const Tensor& self, const Tensor& other, Tensor& out) { |
| return torch::executor::aten::lt_outf(context_, self, other, out); |
| } |
| |
| template <ScalarType DTYPE_IN, ScalarType DTYPE_OUT> |
| void test_dtype() { |
| TensorFactory<DTYPE_IN> tf_input; |
| TensorFactory<DTYPE_OUT> tf_out; |
| Tensor a = tf_input.make(/*sizes=*/{2, 2}, /*data=*/{2, 3, 2, 4}); |
| Tensor b = tf_input.make({2, 2}, {1, 4, 2, 3}); |
| Tensor out = tf_out.zeros({2, 2}); |
| |
| op_lt_tensor_out(a, b, out); |
| EXPECT_TENSOR_EQ(out, tf_out.make({2, 2}, {false, true, false, false})); |
| } |
| }; |
| |
| TEST_F(OpLtScalarOutTest, AllRealInputBoolOutputSupport) { |
| #define TEST_ENTRY(ctype_in, dtype_in, ctype_out, dtype_out) \ |
| test_lt_scalar_out<ScalarType::dtype_in, ScalarType::dtype_out>(); |
| |
| #define TEST_FORALL_OUT_TYPES(ctype_in, dtype_in) \ |
| ET_FORALL_REAL_TYPES_WITH2(ctype_in, dtype_in, TEST_ENTRY) \ |
| test_lt_scalar_out<ScalarType::dtype_in, ScalarType::Bool>(); |
| |
| ET_FORALL_REAL_TYPES(TEST_FORALL_OUT_TYPES) |
| |
| #undef TEST_FORALL_OUT_TYPES |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpLtScalarOutTest, BoolInputDtype) { |
| TensorFactory<ScalarType::Bool> tf_bool; |
| |
| const std::vector<int32_t> sizes = {2, 2}; |
| Tensor a = tf_bool.make(sizes, /*data=*/{false, true, false, true}); |
| Tensor out = tf_bool.zeros(sizes); |
| Scalar other = 0.5; |
| |
| op_lt_scalar_out(a, other, out); |
| EXPECT_TENSOR_EQ( |
| out, tf_bool.make(sizes, /*data=*/{true, false, true, false})); |
| } |
| |
| // Mismatched shape tests. |
| TEST_F(OpLtScalarOutTest, MismatchedInOutShapesDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle mismatched shapes"; |
| } |
| TensorFactory<ScalarType::Int> tf_int; |
| TensorFactory<ScalarType::Bool> tf_bool; |
| |
| Tensor a = tf_int.ones(/*sizes=*/{4}); |
| Tensor out = tf_bool.ones(/*sizes=*/{2, 2}); |
| Scalar other = 3; |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_lt_scalar_out(a, other, out)); |
| } |
| |
| TEST_F(OpLtScalarOutTest, DynamicOutShapeTest) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| const std::vector<int32_t> sizes = {2, 2}; |
| const std::vector<int32_t> out_sizes = {4, 1}; |
| |
| Tensor out = |
| tf.zeros(out_sizes, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| Scalar other = 2; |
| |
| // Valid input should give the expected output |
| op_lt_scalar_out(tf.make(sizes, /*data=*/{3, 1, 2, 4}), other, out); |
| EXPECT_TENSOR_EQ(out, tf.make(sizes, /*data=*/{false, true, false, false})); |
| } |
| |
| TEST_F(OpLtTensorOutTest, AllDtypesSupported) { |
| #define TEST_ENTRY(ctype_in, dtype_in, ctype_out, dtype_out) \ |
| test_dtype<ScalarType::dtype_in, ScalarType::dtype_out>(); |
| |
| #define TEST_FORALL_OUT_TYPES(ctype_in, dtype_in) \ |
| ET_FORALL_REAL_TYPES_WITH2(ctype_in, dtype_in, TEST_ENTRY) \ |
| test_dtype<ScalarType::dtype_in, ScalarType::Bool>(); |
| |
| ET_FORALL_REAL_TYPES(TEST_FORALL_OUT_TYPES); |
| |
| #undef TEST_FORALL_OUT_TYPES |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpLtTensorOutTest, MismatchedInShapesDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle mismatched shapes"; |
| } |
| TensorFactory<ScalarType::Int> tf_int; |
| TensorFactory<ScalarType::Bool> tf_bool; |
| |
| Tensor a = tf_int.ones(/*sizes=*/{4}); |
| Tensor b = tf_int.ones(/*sizes=*/{2, 2}); |
| Tensor out = tf_bool.ones(/*sizes=*/{4}); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_lt_tensor_out(a, b, out)); |
| } |
| |
| TEST_F(OpLtTensorOutTest, MismatchedInOutShapesDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle mismatched shapes"; |
| } |
| TensorFactory<ScalarType::Int> tf_int; |
| TensorFactory<ScalarType::Bool> tf_bool; |
| |
| Tensor a = tf_int.ones(/*sizes=*/{4}); |
| Tensor b = tf_int.ones(/*sizes=*/{4}); |
| Tensor out = tf_bool.ones(/*sizes=*/{2, 2}); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_lt_tensor_out(a, b, out)); |
| } |
| |
| TEST_F(OpLtTensorOutTest, DynamicOutShapeTest) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor a = tf.make(/*sizes=*/{2, 2}, /*data=*/{2, 3, 2, 4}); |
| Tensor b = tf.make({2, 2}, {1, 4, 2, 3}); |
| |
| Tensor out = |
| tf.zeros({1, 4}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| |
| op_lt_tensor_out(a, b, out); |
| EXPECT_TENSOR_EQ(out, tf.make({2, 2}, {false, true, false, false})); |
| } |