blob: 887defe621dae84063aaaccde4c4169794458adc [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator
#include <executorch/kernels/test/TestUtil.h>
#include <executorch/kernels/test/supported_features.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>
#include <gtest/gtest.h>
using namespace ::testing;
using exec_aten::Scalar;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::SupportedFeatures;
using torch::executor::testing::TensorFactory;
class OpLogOutTest : public OperatorTest {
protected:
Tensor& op_log_out(const Tensor& a, Tensor& out) {
return torch::executor::aten::log_outf(context_, a, out);
}
// Common testing for log operator
template <ScalarType DTYPE, ScalarType OUT_DTYPE>
void test__log_out() {
TensorFactory<DTYPE> tf;
TensorFactory<OUT_DTYPE> tf_out;
const std::vector<int32_t> sizes = {2, 2};
Tensor out = tf_out.zeros(sizes);
// Valid input should give the expected output
op_log_out(tf.make(sizes, /*data=*/{0, 1, 2, 4}), out);
EXPECT_TENSOR_CLOSE(
out, tf_out.make(sizes, /*data=*/{-INFINITY, 0, 0.693147, 1.386294}));
}
// Unhandled output dtypes.
template <ScalarType OUTPUT_DTYPE>
void test_log_invalid_output_dtype_dies() {
TensorFactory<ScalarType::Float> tf_float;
TensorFactory<OUTPUT_DTYPE> tf_out;
const std::vector<int32_t> sizes = {2, 5};
Tensor in = tf_float.ones(sizes);
Tensor out = tf_out.zeros(sizes);
ET_EXPECT_KERNEL_FAILURE(context_, op_log_out(in, out));
}
};
TEST_F(OpLogOutTest, AllRealInputHalfOutputSupport) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "Test Half support only for ExecuTorch mode";
}
#define TEST_ENTRY(ctype, dtype) \
test__log_out<ScalarType::dtype, ScalarType::Half>();
ET_FORALL_REALH_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpLogOutTest, AllRealInputFloatOutputSupport) {
#define TEST_ENTRY(ctype, dtype) \
test__log_out<ScalarType::dtype, ScalarType::Float>();
ET_FORALL_REAL_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpLogOutTest, AllRealInputDoubleOutputSupport) {
#define TEST_ENTRY(ctype, dtype) \
test__log_out<ScalarType::dtype, ScalarType::Double>();
ET_FORALL_REAL_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpLogOutTest, HandleBoolInput) {
// op_log_out() handles Bool as input.
TensorFactory<ScalarType::Bool> tf_bool;
TensorFactory<ScalarType::Float> tf_float;
const std::vector<int32_t> sizes = {1, 2};
Tensor a = tf_bool.make(sizes, /*data=*/{true, false});
Tensor out = tf_float.zeros(sizes);
Tensor res = tf_float.make(sizes, /*data=*/{0, -INFINITY});
EXPECT_TENSOR_EQ(op_log_out(a, out), res);
}
// Mismatched shape tests.
TEST_F(OpLogOutTest, MismatchedShapesDies) {
if (SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel can handle mismatched shapes";
}
TensorFactory<ScalarType::Int> tf_int;
TensorFactory<ScalarType::Float> tf_float;
Tensor a = tf_int.ones(/*sizes=*/{4});
Tensor out = tf_float.ones(/*sizes=*/{2, 2});
ET_EXPECT_KERNEL_FAILURE(context_, op_log_out(a, out));
}
TEST_F(OpLogOutTest, AllNonFloatOutputDTypeDies) {
#define TEST_ENTRY(ctype, dtype) \
test_log_invalid_output_dtype_dies<ScalarType::dtype>();
ET_FORALL_INT_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpLogOutTest, SimpleGeneratedCase) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{10, 10},
{1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0});
Tensor expected_result = tf.make(
{10, 10},
{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0});
Tensor out = tf.zeros({10, 10});
Tensor ret = op_log_out(x, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpLogOutTest, DynamicShapeUpperBoundSameAsExpected) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.6879220604896545,
0.8289883136749268,
0.7889447808265686,
0.6339777112007141,
0.8719115853309631,
0.4185197353363037});
Tensor expected_result = tf.make(
{3, 2},
{-0.37407973408699036,
-0.18754921853542328,
-0.23705895245075226,
-0.4557414948940277,
-0.1370672583580017,
-0.8710312247276306});
Tensor out =
tf.zeros({3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor ret = op_log_out(x, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpLogOutTest, DynamicShapeUpperBoundLargerThanExpected) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.6879220604896545,
0.8289883136749268,
0.7889447808265686,
0.6339777112007141,
0.8719115853309631,
0.4185197353363037});
Tensor expected_result = tf.make(
{3, 2},
{-0.37407973408699036,
-0.18754921853542328,
-0.23705895245075226,
-0.4557414948940277,
-0.1370672583580017,
-0.8710312247276306});
Tensor out =
tf.zeros({10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor ret = op_log_out(x, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpLogOutTest, DynamicShapeUnbound) {
GTEST_SKIP() << "Dynamic shape unbound not supported";
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.6879220604896545,
0.8289883136749268,
0.7889447808265686,
0.6339777112007141,
0.8719115853309631,
0.4185197353363037});
Tensor expected_result = tf.make(
{3, 2},
{-0.37407973408699036,
-0.18754921853542328,
-0.23705895245075226,
-0.4557414948940277,
-0.1370672583580017,
-0.8710312247276306});
Tensor out =
tf.zeros({1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND);
Tensor ret = op_log_out(x, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}