| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| |
| #include <gtest/gtest.h> |
| #include <cmath> |
| |
| using namespace ::testing; |
| using exec_aten::Scalar; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using torch::executor::testing::TensorFactory; |
| |
| class OpGluOutTest : public OperatorTest { |
| protected: |
| Tensor& op_glu_out(const Tensor& self, int64_t dim, Tensor& out) { |
| return torch::executor::aten::glu_outf(context_, self, dim, out); |
| } |
| |
| // Common testing for glu operator |
| template <ScalarType DTYPE, ScalarType OUT_DTYPE> |
| void test_glu_out() { |
| TensorFactory<DTYPE> tf; |
| TensorFactory<OUT_DTYPE> tf_out; |
| |
| const std::vector<int32_t> sizes = {4, 2}; |
| const std::vector<int32_t> out_sizes_1 = {2, 2}; |
| |
| // Valid input should give the expected output |
| Tensor in = tf.ones(sizes); |
| Tensor out = tf_out.zeros(out_sizes_1); |
| op_glu_out(in, 0, out); |
| EXPECT_TENSOR_CLOSE( |
| out, |
| tf_out.make( |
| out_sizes_1, /*data=*/{0.731059, 0.731059, 0.731059, 0.731059})); |
| const std::vector<int32_t> out_sizes_2 = {4, 1}; |
| out = tf_out.zeros(out_sizes_2); |
| op_glu_out(in, 1, out); |
| EXPECT_TENSOR_CLOSE( |
| out, |
| tf_out.make( |
| out_sizes_2, /*data=*/{0.731059, 0.731059, 0.731059, 0.731059})); |
| } |
| |
| // Mismatched shape tests. |
| template <ScalarType INPUT_DTYPE> |
| void test_glu_out_mismatched_shape() { |
| TensorFactory<INPUT_DTYPE> tf_in; |
| |
| // Input tensor and out tensor dimension size mismatch |
| Tensor in = tf_in.zeros(/*sizes=*/{4, 4, 4}); |
| Tensor out = tf_in.zeros(/*sizes=*/{2, 4, 2}); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_glu_out(in, 0, out)); |
| |
| out = tf_in.zeros(/*sizes=*/{4, 4, 4}); |
| ET_EXPECT_KERNEL_FAILURE(context_, op_glu_out(in, 0, out)); |
| } |
| |
| // Invalid dimensions tests. |
| template <ScalarType INPUT_DTYPE> |
| void test_glu_out_invalid_dim() { |
| TensorFactory<INPUT_DTYPE> tf_in; |
| Tensor in = tf_in.zeros(/*sizes=*/{2, 2}); |
| const std::vector<int32_t> out_sizes = {1, 2}; |
| Tensor out = tf_in.zeros(out_sizes); |
| |
| // Dim is not valid |
| ET_EXPECT_KERNEL_FAILURE(context_, op_glu_out(in, 3, out)); |
| |
| // Dim size is not even |
| in = tf_in.zeros(/*sizes=*/{3, 2}); |
| ET_EXPECT_KERNEL_FAILURE(context_, op_glu_out(in, 0, out)); |
| } |
| |
| // Unhandled input dtypes. |
| template <ScalarType INPUT_DTYPE> |
| void test_div_invalid_input_dtype_dies() { |
| TensorFactory<INPUT_DTYPE> tf_in; |
| TensorFactory<ScalarType::Float> tf_float; |
| |
| const std::vector<int32_t> sizes = {2, 2}; |
| const std::vector<int32_t> out_sizes = {1, 2}; |
| Tensor in = tf_in.ones(sizes); |
| Tensor out = tf_float.zeros(out_sizes); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_glu_out(in, 0, out)); |
| } |
| |
| // Unhandled output dtypes. |
| template <ScalarType OUTPUT_DTYPE> |
| void test_div_invalid_output_dtype_dies() { |
| TensorFactory<ScalarType::Float> tf_float; |
| TensorFactory<OUTPUT_DTYPE> tf_out; |
| |
| const std::vector<int32_t> sizes = {2, 2}; |
| const std::vector<int32_t> out_sizes = {1, 2}; |
| Tensor in = tf_float.ones(sizes); |
| Tensor out = tf_out.zeros(out_sizes); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_glu_out(in, 0, out)); |
| } |
| }; |
| |
| TEST_F(OpGluOutTest, AllInputFloatOutputSupport) { |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_glu_out<ScalarType::dtype, ScalarType::Float>(); |
| ET_FORALL_FLOAT_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpGluOutTest, AllInputDoubleOutputSupport) { |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_glu_out<ScalarType::dtype, ScalarType::Double>(); |
| ET_FORALL_FLOAT_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpGluOutTest, InfinityAndNANTest) { |
| TensorFactory<ScalarType::Float> tf; |
| const std::vector<int32_t> sizes = {4, 2}; |
| const std::vector<int32_t> out_sizes = {4, 1}; |
| Tensor in = tf.make( |
| sizes, /*data=*/{INFINITY, 1, -INFINITY, 1, INFINITY, -INFINITY, NAN, 1}); |
| Tensor out = tf.zeros(out_sizes); |
| op_glu_out(in, 1, out); |
| EXPECT_TENSOR_CLOSE( |
| out, |
| tf.make( |
| /*sizes=*/out_sizes, /*data=*/{INFINITY, -INFINITY, NAN, NAN})); |
| } |
| |
| TEST_F(OpGluOutTest, MismatchedShapesDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle mismatched shapes"; |
| } |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_glu_out_mismatched_shape<ScalarType::dtype>(); |
| ET_FORALL_FLOAT_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpGluOutTest, InvalidDimDies) { |
| #define TEST_ENTRY(ctype, dtype) test_glu_out_invalid_dim<ScalarType::dtype>(); |
| ET_FORALL_FLOAT_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpGluOutTest, AllNonFloatInputDTypeDies) { |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_div_invalid_input_dtype_dies<ScalarType::dtype>(); |
| ET_FORALL_INT_TYPES_AND(Bool, TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpGluOutTest, AllNonFloatOutputDTypeDies) { |
| #define TEST_ENTRY(ctype, dtype) \ |
| test_div_invalid_output_dtype_dies<ScalarType::dtype>(); |
| ET_FORALL_INT_TYPES_AND(Bool, TEST_ENTRY); |
| #undef TEST_ENTRY |
| } |
| |
| TEST_F(OpGluOutTest, DynamicShapeUpperBoundSameAsExpected) { |
| GTEST_SKIP() << "Dynamic shape not supported"; |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {4, 2}, |
| {0.057747602462768555, |
| 0.8781633377075195, |
| 0.4503108263015747, |
| 0.40363800525665283, |
| 0.3379024863243103, |
| 0.13906866312026978, |
| 0.6991606950759888, |
| 0.4374786615371704}); |
| Tensor expected_result = tf.make( |
| {2, 2}, |
| {0.0337061733007431, |
| 0.4695638120174408, |
| 0.3008083701133728, |
| 0.2452739030122757}); |
| |
| Tensor out = |
| tf.zeros({4, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| Tensor ret = op_glu_out(x, 0, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST_F(OpGluOutTest, DynamicShapeUpperBoundLargerThanExpected) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {4, 2}, |
| {0.057747602462768555, |
| 0.8781633377075195, |
| 0.4503108263015747, |
| 0.40363800525665283, |
| 0.3379024863243103, |
| 0.13906866312026978, |
| 0.6991606950759888, |
| 0.4374786615371704}); |
| Tensor expected_result = tf.make( |
| {2, 2}, |
| {0.0337061733007431, |
| 0.4695638120174408, |
| 0.3008083701133728, |
| 0.2452739030122757}); |
| |
| Tensor out = |
| tf.zeros({10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| Tensor ret = op_glu_out(x, 0, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST_F(OpGluOutTest, DynamicShapeUnbound) { |
| GTEST_SKIP() << "Dynamic shape unbound not supported"; |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {4, 2}, |
| {0.057747602462768555, |
| 0.8781633377075195, |
| 0.4503108263015747, |
| 0.40363800525665283, |
| 0.3379024863243103, |
| 0.13906866312026978, |
| 0.6991606950759888, |
| 0.4374786615371704}); |
| Tensor expected_result = tf.make( |
| {2, 2}, |
| {0.0337061733007431, |
| 0.4695638120174408, |
| 0.3008083701133728, |
| 0.2452739030122757}); |
| |
| Tensor out = |
| tf.zeros({1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND); |
| Tensor ret = op_glu_out(x, 0, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |