blob: 9d637560eda03aaabdab97cc2a1477244514751e [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator
#include <executorch/kernels/test/TestUtil.h>
#include <executorch/kernels/test/supported_features.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>
#include <gtest/gtest.h>
#include <cmath>
using namespace ::testing;
using exec_aten::Scalar;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::TensorFactory;
class OpGatherOutTest : public OperatorTest {
protected:
Tensor& op_gather_out(
const Tensor& self,
int64_t dim,
const Tensor& index,
bool sparse_grad,
Tensor& out) {
return torch::executor::aten::gather_outf(
context_, self, dim, index, sparse_grad, out);
}
// Common testing for the operator
template <ScalarType DATA_DTYPE>
void test_gather_out() {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<DATA_DTYPE> tf_data;
const std::vector<int32_t> sizes = {2, 3};
// clang-format off
Tensor self = tf_data.make(
/*sizes=*/{2, 5},
{
1, 2, 3, 4, 5,
6, 7, 8, 9, 10
});
// clang-format on
Tensor out = tf_data.zeros(sizes);
// clang-format off
bool sparse_grad = false;
Tensor index = tf_index.make(sizes,
{
0, 1, 0,
1, 0, 1,
});
// clang-format on
// Valid input should give the expected output
op_gather_out(self, 0, index, sparse_grad, out);
// clang-format off
EXPECT_TENSOR_EQ(
out, tf_data.make(
sizes,
{
1, 7, 3,
6, 2, 8,
}));
// clang-format on
// Valid input should give the expected output
op_gather_out(self, 1, index, sparse_grad, out);
// clang-format off
EXPECT_TENSOR_EQ(
out, tf_data.make(sizes,
{
1, 2, 1,
7, 6, 7,
}));
self = tf_data.make(
/*sizes=*/{2, 3, 3},
{
// [0, :, :]
1, 2, 3,
4, 5, 6,
7, 8, 9,
// [1, :, :]
10, 11, 12,
13, 14, 15,
16, 17, 18
});
index = tf_index.make(
/*sizes=*/{1, 3, 2},
{
0, 1,
1, 2,
0, 2
});
// clang-format on
out = tf_data.zeros(/*sizes=*/{1, 3, 2});
op_gather_out(self, 1, index, sparse_grad, out);
// clang-format off
EXPECT_TENSOR_EQ(
out,
tf_data.make(
/*sizes=*/{1, 3, 2},
{
1, 5,
4, 8,
1, 8,
}));
// clang-format on
out = tf_data.zeros(/*sizes=*/{1, 3, 2});
op_gather_out(self, 2, index, sparse_grad, out);
// clang-format off
EXPECT_TENSOR_EQ(
out,
tf_data.make(
/*sizes=*/{1, 3, 2},
{
1, 2,
5, 6,
7, 9,
}));
// clang-format on
}
// Invalid dimensions
template <ScalarType DATA_DTYPE>
void test_gather_out_invalid_dim() {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<DATA_DTYPE> tf_data;
// clang-format off
Tensor self = tf_data.make(/*sizes=*/{2, 5},
{
1, 2, 3, 4, 5,
6, 7, 8, 9, 10
});
const std::vector<int32_t> sizes = {2, 3};
Tensor index = tf_index.make(sizes,
{
0, 1, 0,
1, 0, 1,
});
// clang-format on
bool sparse_grad = false;
Tensor out = tf_data.zeros(sizes);
// Invalid dim should die
ET_EXPECT_KERNEL_FAILURE(
context_, op_gather_out(self, -3, index, sparse_grad, out));
ET_EXPECT_KERNEL_FAILURE(
context_, op_gather_out(self, 2, index, sparse_grad, out));
// Self and index hsould have same number of dimensions
index = tf_index.zeros(/*sizes=*/{2, 2, 2});
ET_EXPECT_KERNEL_FAILURE(
context_, op_gather_out(self, 0, index, sparse_grad, out));
// Size of dimension of index should be smaller than the size of that
// dimension of self if dimension != dim
index = tf_index.zeros(/*sizes=*/{3, 5});
ET_EXPECT_KERNEL_FAILURE(
context_, op_gather_out(self, 1, index, sparse_grad, out));
// Index out of bound for self in dim
index = tf_index.make(/*sizes=*/{2, 3}, {0, 1, 2, 0, 1, 2});
ET_EXPECT_KERNEL_FAILURE(
context_, op_gather_out(self, 0, index, sparse_grad, out));
}
void test_dynamic_shape(
const std::vector<int32_t>& out_shape,
enum torch::executor::TensorShapeDynamism dynamism) {
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Long> tf_index;
Tensor input = tf.ones({2, 3, 4});
Tensor index = tf_index.zeros({2, 3, 4});
bool sparse_grad = false;
Tensor expected = tf.ones({2, 3, 4});
Tensor out = tf.zeros(out_shape, dynamism);
op_gather_out(input, 2, index, sparse_grad, out);
EXPECT_TENSOR_EQ(out, expected);
}
};
TEST_F(OpGatherOutTest, AllValidInputOutputSupport) {
#define TEST_ENTRY(CTYPE, DTYPE) test_gather_out<ScalarType::DTYPE>();
ET_FORALL_REAL_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpGatherOutTest, InfinityAndNANTest) {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<ScalarType::Float> tf_data;
// clang-format off
Tensor self = tf_data.make(
/*sizes=*/{2, 5},
{
INFINITY, -INFINITY, NAN, 2.33, 3.14,
NAN, INFINITY, -INFINITY, 3.14, 2.33
});
// clang-format on
const std::vector<int32_t> sizes = {2, 3};
Tensor index = tf_index.make(sizes, {0, 1, 0, 1, 0, 1});
bool sparse_grad = false;
Tensor out = tf_data.zeros(sizes);
// Valid input should give the expected output
op_gather_out(self, 0, index, sparse_grad, out);
// clang-format off
EXPECT_TENSOR_CLOSE(
out,
tf_data.make(sizes,
{
INFINITY, INFINITY, NAN,
NAN, -INFINITY, -INFINITY,
}));
// clang-format on
}
TEST_F(OpGatherOutTest, InvalidDimensionsDies) {
#define TEST_ENTRY(CTYPE, DTYPE) \
test_gather_out_invalid_dim<ScalarType::DTYPE>();
ET_FORALL_REAL_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpGatherOutTest, MismatchedInputDtypesDies) {
TensorFactory<ScalarType::Byte> tf_byte;
TensorFactory<ScalarType::Char> tf_char;
TensorFactory<ScalarType::Long> tf_long;
Tensor self = tf_char.make({2, 5}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
const std::vector<int32_t> sizes = {2, 3};
Tensor index = tf_byte.make(sizes, {0, 1, 0, 0, 1, 0});
bool sparse_grad = false;
Tensor out = tf_char.zeros(sizes);
// Types other than long for index should die
ET_EXPECT_KERNEL_FAILURE(
context_, op_gather_out(self, 0, index, sparse_grad, out));
// Mismatched dtype of self and out should die
self = tf_byte.make(/*sizes=*/{2, 5}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
index = tf_long.make(sizes, {0, 1, 0, 1, 0, 1});
out = tf_char.zeros(sizes);
ET_EXPECT_KERNEL_FAILURE(
context_, op_gather_out(self, 0, index, sparse_grad, out));
}
TEST_F(OpGatherOutTest, DynamicShapeUpperBoundSameAsExpected) {
test_dynamic_shape(
{2, 3, 4}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
}
TEST_F(OpGatherOutTest, DynamicShapeUpperBoundLargerThanExpected) {
test_dynamic_shape(
{10, 10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
}
TEST_F(OpGatherOutTest, DynamicShapeUnbound) {
if (!torch::executor::testing::SupportedFeatures::get()->output_resize) {
GTEST_SKIP() << "Dynamic shape not supported";
}
test_dynamic_shape(
{1, 1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND);
}
TEST_F(OpGatherOutTest, EmptyIndex) {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<ScalarType::Float> tf_data;
Tensor self = tf_data.ones({2, 5});
const std::vector<int32_t> sizes = {2, 0, 3};
Tensor index = tf_index.zeros(sizes);
bool sparse_grad = false;
Tensor out = tf_data.zeros(sizes);
op_gather_out(self, 0, index, sparse_grad, out);
EXPECT_TENSOR_CLOSE(out, tf_data.zeros(sizes));
}
TEST_F(OpGatherOutTest, ValidZeroDim) {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<ScalarType::Float> tf_data;
Tensor self = tf_data.make({}, {3.14});
Tensor index = tf_index.zeros({});
bool sparse_grad = false;
Tensor out = tf_data.zeros({});
op_gather_out(self, 0, index, sparse_grad, out);
EXPECT_TENSOR_CLOSE(out, tf_data.make({}, {3.14}));
}
TEST_F(OpGatherOutTest, InvalidZeroDimInput) {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<ScalarType::Float> tf_data;
Tensor self = tf_data.ones({});
const std::vector<int32_t> sizes = {2, 3};
Tensor index = tf_index.make(sizes, {0, 0, 0, 0, 0, 0});
bool sparse_grad = false;
Tensor out = tf_data.zeros(sizes);
ET_EXPECT_KERNEL_FAILURE(
context_, op_gather_out(self, 0, index, sparse_grad, out));
}
TEST_F(OpGatherOutTest, InvalidZeroDimIndex) {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<ScalarType::Float> tf_data;
Tensor self = tf_data.make({2, 3}, {1, 2, 3, 4, 5, 6});
const std::vector<int32_t> sizes = {};
Tensor index = tf_index.make(sizes, {2});
bool sparse_grad = false;
Tensor out = tf_data.zeros(sizes);
ET_EXPECT_KERNEL_FAILURE(
context_, op_gather_out(self, 1, index, sparse_grad, out));
}
TEST_F(OpGatherOutTest, ValidZeroDimInputAndOneDimIndex) {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<ScalarType::Float> tf_data;
Tensor self = tf_data.make({}, {3.14});
const std::vector<int32_t> sizes = {3};
Tensor index = tf_index.make(sizes, {0, 0, 0});
bool sparse_grad = false;
Tensor out = tf_data.make({3}, {2.71, 2.71, 2.71});
op_gather_out(self, 0, index, sparse_grad, out);
EXPECT_TENSOR_CLOSE(out, tf_data.make({3}, {3.14, 3.14, 3.14}));
}
TEST_F(OpGatherOutTest, ValidOneDimInputAndZeroDimIndex) {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<ScalarType::Float> tf_data;
Tensor self = tf_data.make({3}, {10, 20, 30});
const std::vector<int32_t> sizes = {};
Tensor index = tf_index.make(sizes, {2});
bool sparse_grad = false;
Tensor out = tf_data.make(sizes, {1729});
op_gather_out(self, 0, index, sparse_grad, out);
EXPECT_TENSOR_CLOSE(out, tf_data.make({}, {30}));
}
TEST_F(OpGatherOutTest, InvalidZeroDimInputAndOneDimIndex) {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<ScalarType::Float> tf_data;
Tensor self = tf_data.make({}, {3.14});
const std::vector<int32_t> sizes = {3};
Tensor index = tf_index.make(sizes, {10, 100, 1000});
bool sparse_grad = false;
Tensor out = tf_data.make({3}, {2.71, 2.71, 2.71});
ET_EXPECT_KERNEL_FAILURE(
context_, op_gather_out(self, 0, index, sparse_grad, out));
}
TEST_F(OpGatherOutTest, InvalidOneDimInputAndZeroDimIndex) {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<ScalarType::Float> tf_data;
Tensor self = tf_data.make({3}, {10, 20, 30});
const std::vector<int32_t> sizes = {};
Tensor index = tf_index.make(sizes, {100});
bool sparse_grad = false;
Tensor out = tf_data.make(sizes, {1729});
ET_EXPECT_KERNEL_FAILURE(
context_, op_gather_out(self, 0, index, sparse_grad, out));
}