| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <cmath> |
| #include <ostream> |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| #include <executorch/runtime/core/exec_aten/util/scalar_type_util.h> |
| #include <executorch/runtime/core/exec_aten/util/tensor_util.h> |
| |
| #include <gtest/gtest.h> |
| |
| using namespace ::testing; |
| using exec_aten::ArrayRef; |
| using exec_aten::nullopt; |
| using exec_aten::optional; |
| using exec_aten::Scalar; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using torch::executor::testing::TensorFactory; |
| |
| using OptScalar = exec_aten::optional<Scalar>; |
| |
| class OpClampOutTest : public OperatorTest { |
| protected: |
| Tensor& op_clamp_out( |
| const Tensor& self, |
| const optional<Scalar>& min, |
| const optional<Scalar>& max, |
| Tensor& out) { |
| return torch::executor::aten::clamp_outf(context_, self, min, max, out); |
| } |
| |
| template <ScalarType DTYPE> |
| struct ClampTestCase { |
| using ctype = typename TensorFactory<DTYPE>::ctype; |
| |
| // Human-readable, unique title for the test case. Printed if the test |
| // fails. |
| const std::string title; |
| // Size vector for the input/output tensors. |
| const std::vector<int32_t> sizes; |
| // Data for the input tensor; must agree with `sizes`. |
| const std::vector<ctype> input_data; |
| // The (optional) min value to clamp to. Can be of any Scalar type. |
| const OptScalar min; |
| // The (optional) max value to clamp to. Can be of any Scalar type. |
| const OptScalar max; |
| // The expected output data when clamping `input_data` to `min`/`max`. |
| const std::vector<ctype> expected_data; |
| }; |
| |
| /// Runs the provided test cases. |
| template <ScalarType DTYPE> |
| void run_test_cases(std::vector<ClampTestCase<DTYPE>> test_cases) { |
| TensorFactory<DTYPE> tf; |
| for (const auto& test_case : test_cases) { |
| SCOPED_TRACE(test_case.title); // Printed if the test fails |
| |
| Tensor in = tf.make(test_case.sizes, test_case.input_data); |
| Tensor out = tf.zeros(test_case.sizes); |
| Tensor ret = op_clamp_out(in, test_case.min, test_case.max, out); |
| EXPECT_TENSOR_EQ(out, ret); |
| |
| Tensor expected = tf.make(test_case.sizes, test_case.expected_data); |
| ET_CHECK_SAME_SHAPE_AND_DTYPE2(out, expected); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |
| } |
| |
| template <ScalarType DTYPE> |
| void run_unsigned_integer_test_cases() { |
| const std::vector<ClampTestCase<DTYPE>> test_cases = { |
| { |
| std::string(__func__) + ": Simple clamp", |
| {2, 2}, // sizes |
| {0, 1, 10, 100}, // input_data |
| OptScalar(1), // min |
| OptScalar(6), // max |
| {1, 1, 6, 6}, // expected_data |
| }, |
| { |
| std::string(__func__) + ": No max", |
| {2, 2}, // sizes |
| {0, 1, 10, 100}, // input_data |
| OptScalar(1), // min |
| nullopt, // max |
| {1, 1, 10, 100}, // expected_data |
| }, |
| { |
| std::string(__func__) + ": No min", |
| {2, 2}, // sizes |
| {0, 1, 10, 100}, // input_data |
| nullopt, // min |
| OptScalar(6), // max |
| {0, 1, 6, 6}, // expected_data |
| }, |
| { |
| std::string(__func__) + ": min > max", |
| {2, 2}, // sizes |
| {0, 1, 10, 100}, // input_data |
| OptScalar(10), // min |
| OptScalar(6), // max |
| // Should set all elements to max. |
| {6, 6, 6, 6}, // expected_data |
| }, |
| }; |
| |
| run_test_cases(test_cases); |
| } |
| |
| // types. |
| template <ScalarType DTYPE> |
| void run_signed_integer_test_cases() { |
| std::vector<ClampTestCase<DTYPE>> test_cases = { |
| { |
| std::string(__func__) + ": Simple negative/positive clamp", |
| {2, 2}, // sizes |
| {-10, -1, 1, 10}, // input_data |
| OptScalar(-5), // min |
| OptScalar(5), // max |
| {-5, -1, 1, 5}, // expected_data |
| }, |
| { |
| std::string(__func__) + ": Simple negative-only clamp", |
| {2, 2}, // sizes |
| {-10, -5, 1, 10}, // input_data |
| OptScalar(-6), // min |
| OptScalar(-1), // max |
| {-6, -5, -1, -1}, // expected_data |
| }, |
| }; |
| |
| run_test_cases(test_cases); |
| } |
| |
| // Test cases that are compatible with float and double. |
| template <ScalarType DTYPE> |
| void run_floating_point_test_cases() { |
| using ctype = typename TensorFactory<DTYPE>::ctype; |
| using opt_infinity_type = std::conditional_t< |
| std::is_same<ctype, exec_aten::Half>::value, |
| float, |
| ctype>; |
| constexpr auto kInfinity = std::numeric_limits<ctype>::infinity(); |
| const auto kOptInfinity = |
| OptScalar(static_cast<opt_infinity_type>(kInfinity)); |
| const auto kOptMinusInfinity = |
| OptScalar(static_cast<opt_infinity_type>(-kInfinity)); |
| std::vector<ClampTestCase<DTYPE>> test_cases = { |
| { |
| std::string(__func__) + ": Simple negative/positive clamp", |
| {2, 2}, // sizes |
| {-10.1, -1.1, 1.1, 10.1}, // input_data |
| OptScalar(-5.5), // min |
| OptScalar(5.5), // max |
| {-5.5, -1.1, 1.1, 5.5}, // expected_data |
| }, |
| { |
| std::string(__func__) + ": Simple negative-only clamp", |
| {2, 2}, // sizes |
| {-10.1, -5.5, 1.1, 10.1}, // input_data |
| OptScalar(-6.6), // min |
| OptScalar(-1.1), // max |
| {-6.6, -5.5, -1.1, -1.1}, // expected_data |
| }, |
| { |
| std::string(__func__) + ": Infinities are clamped", |
| {2, 2}, // sizes |
| {-kInfinity, -1.1, 1.1, kInfinity}, // input_data |
| OptScalar(-5.5), // min |
| OptScalar(5.5), // max |
| {-5.5, -1.1, 1.1, 5.5}, // expected_data |
| }, |
| { |
| std::string(__func__) + ": Infinite min", |
| {2, 2}, // sizes |
| {-10.1, -1.1, 1.1, 10.1}, // input_data |
| kOptMinusInfinity, // min |
| OptScalar(5.5), // max |
| {-10.1, -1.1, 1.1, 5.5}, // expected_data |
| }, |
| { |
| std::string(__func__) + ": Infinite max", |
| {2, 2}, // sizes |
| {-10.1, -1.1, 1.1, 10.1}, // input_data |
| OptScalar(-5.5), // min |
| kOptInfinity, // max |
| {-5.5, -1.1, 1.1, 10.1}, // expected_data |
| }, |
| { |
| std::string(__func__) + ": NaN entries preserved", |
| {2, 2}, // sizes |
| {-10.1, NAN, NAN, 10.1}, // input_data |
| OptScalar(0.0), // min |
| OptScalar(0.0), // max |
| {0.0, NAN, NAN, 0.0}, // expected_data |
| }, |
| { |
| std::string(__func__) + ": NaN min produces all NaN output", |
| {2, 2}, // sizes |
| {-10.1, -1.1, 1.1, 10.1}, // input_data |
| OptScalar(NAN), // min |
| OptScalar(5.5), // max |
| {NAN, NAN, NAN, NAN}, // expected_data |
| }, |
| { |
| std::string(__func__) + ": NaN max produces all NaN output", |
| {2, 2}, // sizes |
| {-10.1, -1.1, 1.1, 10.1}, // input_data |
| OptScalar(-5.5), // min |
| OptScalar(NAN), // max |
| {NAN, NAN, NAN, NAN}, // expected_data |
| }, |
| }; |
| |
| run_test_cases(test_cases); |
| } |
| |
| // Tries clamping a DTYPE tensor to the provided value and expects it to die. |
| template <ScalarType DTYPE> |
| void expect_bad_clamp_value_dies(Scalar bad_value) { |
| TensorFactory<DTYPE> tf; |
| Tensor in = tf.ones({2, 2}); |
| Tensor out = tf.zeros({2, 2}); |
| |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, op_clamp_out(in, /*min=*/bad_value, /*max=*/nullopt, out)); |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, op_clamp_out(in, /*min=*/nullopt, /*max=*/bad_value, out)); |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, op_clamp_out(in, /*min=*/bad_value, /*max=*/bad_value, out)); |
| } |
| |
| // One of min and max should be non-null |
| void expect_both_min_max_null_die() { |
| TensorFactory<ScalarType::Float> tf; |
| Tensor in = tf.ones({2, 2}); |
| Tensor out = tf.zeros({2, 2}); |
| |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, op_clamp_out(in, /*min=*/nullopt, /*max=*/nullopt, out)); |
| } |
| }; |
| |
| class OpClampTensorOutTest : public OperatorTest { |
| protected: |
| Tensor& op_clamp_tensor_out( |
| const Tensor& self, |
| const optional<Tensor>& min, |
| const optional<Tensor>& max, |
| Tensor& out) { |
| executorch::runtime::KernelRuntimeContext context{}; |
| return torch::executor::aten::clamp_outf(context, self, min, max, out); |
| } |
| }; |
| |
| /// Describes a test case, using tensors of the specified DTYPE. |
| // Runs test cases that are compatible with uint8_t, and thus all other real |
| // types. Cover the most cases here, since it's compatible with the most types. |
| // Runs test cases that are compatible with int8_t, and thus all signed real |
| TEST_F(OpClampOutTest, ByteTensors) { |
| run_unsigned_integer_test_cases<ScalarType::Byte>(); |
| } |
| |
| TEST_F(OpClampOutTest, CharTensors) { |
| run_unsigned_integer_test_cases<ScalarType::Char>(); |
| run_signed_integer_test_cases<ScalarType::Char>(); |
| } |
| |
| TEST_F(OpClampOutTest, ShortTensors) { |
| run_unsigned_integer_test_cases<ScalarType::Short>(); |
| run_signed_integer_test_cases<ScalarType::Short>(); |
| } |
| |
| TEST_F(OpClampOutTest, IntTensors) { |
| run_unsigned_integer_test_cases<ScalarType::Int>(); |
| run_signed_integer_test_cases<ScalarType::Int>(); |
| } |
| |
| TEST_F(OpClampOutTest, LongTensors) { |
| run_unsigned_integer_test_cases<ScalarType::Long>(); |
| run_signed_integer_test_cases<ScalarType::Long>(); |
| } |
| |
| TEST_F(OpClampOutTest, HalfTensors) { |
| // Note that the integer test cases test the situation where the min/max value |
| // Scalars are integer types, demonstrating that floating point types can be |
| // clamped to integer values. |
| run_unsigned_integer_test_cases<ScalarType::Half>(); |
| run_signed_integer_test_cases<ScalarType::Half>(); |
| run_floating_point_test_cases<ScalarType::Half>(); |
| } |
| |
| TEST_F(OpClampOutTest, FloatTensors) { |
| // Note that the integer test cases test the situation where the min/max value |
| // Scalars are integer types, demonstrating that floating point types can be |
| // clamped to integer values. |
| run_unsigned_integer_test_cases<ScalarType::Float>(); |
| run_signed_integer_test_cases<ScalarType::Float>(); |
| run_floating_point_test_cases<ScalarType::Float>(); |
| } |
| |
| TEST_F(OpClampOutTest, DoubleTensors) { |
| // Note that the integer test cases test the situation where the min/max value |
| // Scalars are integer types, demonstrating that floating point types can be |
| // clamped to integer values. |
| run_unsigned_integer_test_cases<ScalarType::Double>(); |
| run_signed_integer_test_cases<ScalarType::Double>(); |
| run_floating_point_test_cases<ScalarType::Double>(); |
| } |
| |
| // |
| // Don't test every type, just a representative sample: unsigned int, signed |
| // int, floating point. |
| // |
| |
| TEST_F(OpClampOutTest, ByteTensorNegativeClampDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle negative clamp on byte tensor"; |
| } |
| // Cannot be represented by a uint8_t. |
| expect_bad_clamp_value_dies<ScalarType::Byte>(-1); |
| } |
| |
| TEST_F(OpClampOutTest, ByteTensorTooLargeClampDies) { |
| // Cannot be represented by a uint8_t. |
| expect_bad_clamp_value_dies<ScalarType::Byte>(256); |
| } |
| |
| TEST_F(OpClampOutTest, ByteTensorFloatingPointClampDies) { |
| // Cannot be represented by a uint8_t. |
| expect_bad_clamp_value_dies<ScalarType::Byte>(2.2); |
| } |
| |
| #ifndef USE_ATEN_LIB |
| TEST_F(OpClampOutTest, IntTensorTooSmallClampDies) { |
| // Cannot be represented by a int32_t. |
| expect_bad_clamp_value_dies<ScalarType::Int>(-2147483649); |
| } |
| |
| TEST_F(OpClampOutTest, IntTensorTooLargeClampDies) { |
| // Cannot be represented by a int32_t. |
| expect_bad_clamp_value_dies<ScalarType::Int>(2147483648); |
| } |
| #endif |
| |
| TEST_F(OpClampOutTest, IntTensorFloatingPointClampDies) { |
| // Cannot be represented by a uint32_t. |
| expect_bad_clamp_value_dies<ScalarType::Int>(2.2); |
| } |
| |
| TEST_F(OpClampOutTest, FloatTensorTooSmallClampDies) { |
| // Cannot be represented by a float. |
| expect_bad_clamp_value_dies<ScalarType::Float>(-3.41e+38); |
| } |
| |
| TEST_F(OpClampOutTest, FloatTensorTooLargeClampDies) { |
| // Cannot be represented by a float. |
| expect_bad_clamp_value_dies<ScalarType::Float>(3.41e+38); |
| } |
| |
| TEST_F(OpClampOutTest, SimpleGeneratedCase) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| auto x = tf.make( |
| {10, 10}, |
| {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}); |
| auto y = OptScalar(-0.5); |
| auto z = OptScalar(0.5); |
| Tensor expected_result = tf.make( |
| {10, 10}, |
| {0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, |
| 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, |
| 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, |
| 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, |
| 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, |
| 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, |
| 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, |
| 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}); |
| |
| Tensor out = tf.zeros({10, 10}); |
| Tensor ret = op_clamp_out(x, y, z, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST_F(OpClampOutTest, DynamicShapeUpperBoundSameAsExpected) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| auto x = tf.make( |
| {3, 2}, |
| {0.6984410881996155, |
| 0.5675464272499084, |
| 0.8352431654930115, |
| 0.2055988311767578, |
| 0.593172013759613, |
| 0.11234724521636963}); |
| auto y = OptScalar(-0.5); |
| auto z = OptScalar(0.5); |
| Tensor expected_result = tf.make( |
| {3, 2}, {0.5, 0.5, 0.5, 0.2055988311767578, 0.5, 0.11234724521636963}); |
| |
| Tensor out = |
| tf.zeros({3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| Tensor ret = op_clamp_out(x, y, z, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST_F(OpClampOutTest, DynamicShapeUpperBoundLargerThanExpected) { |
| GTEST_SKIP() << "Dynamic shape not supported"; |
| TensorFactory<ScalarType::Float> tf; |
| |
| auto x = tf.make( |
| {3, 2}, |
| {0.6984410881996155, |
| 0.5675464272499084, |
| 0.8352431654930115, |
| 0.2055988311767578, |
| 0.593172013759613, |
| 0.11234724521636963}); |
| auto y = OptScalar(-0.5); |
| auto z = OptScalar(0.5); |
| Tensor expected_result = tf.make( |
| {3, 2}, {0.5, 0.5, 0.5, 0.2055988311767578, 0.5, 0.11234724521636963}); |
| |
| Tensor out = |
| tf.zeros({6, 4}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| Tensor ret = op_clamp_out(x, y, z, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST_F(OpClampOutTest, DynamicShapeUnbound) { |
| GTEST_SKIP() << "Dynamic shape not supported"; |
| TensorFactory<ScalarType::Float> tf; |
| |
| auto x = tf.make( |
| {3, 2}, |
| {0.6984410881996155, |
| 0.5675464272499084, |
| 0.8352431654930115, |
| 0.2055988311767578, |
| 0.593172013759613, |
| 0.11234724521636963}); |
| auto y = OptScalar(-0.5); |
| auto z = OptScalar(0.5); |
| Tensor expected_result = tf.make( |
| {3, 2}, {0.5, 0.5, 0.5, 0.2055988311767578, 0.5, 0.11234724521636963}); |
| |
| Tensor out = |
| tf.zeros({1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND); |
| Tensor ret = op_clamp_out(x, y, z, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST_F(OpClampTensorOutTest, SmokeTest) { |
| TensorFactory<ScalarType::Byte> tf_in; |
| TensorFactory<ScalarType::Int> tf_min; |
| TensorFactory<ScalarType::Char> tf_max; |
| TensorFactory<ScalarType::Short> tf_out; |
| |
| Tensor in = tf_in.make({1, 1}, {3}); |
| Tensor min = tf_min.make({1, 3}, {0, 1, 4}); |
| Tensor max = tf_max.make({2, 1}, {2, 5}); |
| Tensor out = tf_out.zeros({2, 3}); |
| Tensor expected = tf_out.make({2, 3}, {2, 2, 2, 3, 3, 4}); |
| |
| op_clamp_tensor_out(in, min, max, out); |
| EXPECT_TENSOR_EQ(out, expected); |
| } |