blob: d9d45509084b5c2088bb31e0b651fbed93f50caf [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <cmath>
#include <ostream>
#include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator
#include <executorch/kernels/test/TestUtil.h>
#include <executorch/kernels/test/supported_features.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>
#include <executorch/runtime/core/exec_aten/util/scalar_type_util.h>
#include <executorch/runtime/core/exec_aten/util/tensor_util.h>
#include <gtest/gtest.h>
using namespace ::testing;
using exec_aten::ArrayRef;
using exec_aten::nullopt;
using exec_aten::optional;
using exec_aten::Scalar;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::TensorFactory;
using OptScalar = exec_aten::optional<Scalar>;
class OpClampOutTest : public OperatorTest {
protected:
Tensor& op_clamp_out(
const Tensor& self,
const optional<Scalar>& min,
const optional<Scalar>& max,
Tensor& out) {
return torch::executor::aten::clamp_outf(context_, self, min, max, out);
}
template <ScalarType DTYPE>
struct ClampTestCase {
using ctype = typename TensorFactory<DTYPE>::ctype;
// Human-readable, unique title for the test case. Printed if the test
// fails.
const std::string title;
// Size vector for the input/output tensors.
const std::vector<int32_t> sizes;
// Data for the input tensor; must agree with `sizes`.
const std::vector<ctype> input_data;
// The (optional) min value to clamp to. Can be of any Scalar type.
const OptScalar min;
// The (optional) max value to clamp to. Can be of any Scalar type.
const OptScalar max;
// The expected output data when clamping `input_data` to `min`/`max`.
const std::vector<ctype> expected_data;
};
/// Runs the provided test cases.
template <ScalarType DTYPE>
void run_test_cases(std::vector<ClampTestCase<DTYPE>> test_cases) {
TensorFactory<DTYPE> tf;
for (const auto& test_case : test_cases) {
SCOPED_TRACE(test_case.title); // Printed if the test fails
Tensor in = tf.make(test_case.sizes, test_case.input_data);
Tensor out = tf.zeros(test_case.sizes);
Tensor ret = op_clamp_out(in, test_case.min, test_case.max, out);
EXPECT_TENSOR_EQ(out, ret);
Tensor expected = tf.make(test_case.sizes, test_case.expected_data);
ET_CHECK_SAME_SHAPE_AND_DTYPE2(out, expected);
EXPECT_TENSOR_EQ(out, expected);
}
}
template <ScalarType DTYPE>
void run_unsigned_integer_test_cases() {
const std::vector<ClampTestCase<DTYPE>> test_cases = {
{
std::string(__func__) + ": Simple clamp",
{2, 2}, // sizes
{0, 1, 10, 100}, // input_data
OptScalar(1), // min
OptScalar(6), // max
{1, 1, 6, 6}, // expected_data
},
{
std::string(__func__) + ": No max",
{2, 2}, // sizes
{0, 1, 10, 100}, // input_data
OptScalar(1), // min
nullopt, // max
{1, 1, 10, 100}, // expected_data
},
{
std::string(__func__) + ": No min",
{2, 2}, // sizes
{0, 1, 10, 100}, // input_data
nullopt, // min
OptScalar(6), // max
{0, 1, 6, 6}, // expected_data
},
{
std::string(__func__) + ": min > max",
{2, 2}, // sizes
{0, 1, 10, 100}, // input_data
OptScalar(10), // min
OptScalar(6), // max
// Should set all elements to max.
{6, 6, 6, 6}, // expected_data
},
};
run_test_cases(test_cases);
}
// types.
template <ScalarType DTYPE>
void run_signed_integer_test_cases() {
std::vector<ClampTestCase<DTYPE>> test_cases = {
{
std::string(__func__) + ": Simple negative/positive clamp",
{2, 2}, // sizes
{-10, -1, 1, 10}, // input_data
OptScalar(-5), // min
OptScalar(5), // max
{-5, -1, 1, 5}, // expected_data
},
{
std::string(__func__) + ": Simple negative-only clamp",
{2, 2}, // sizes
{-10, -5, 1, 10}, // input_data
OptScalar(-6), // min
OptScalar(-1), // max
{-6, -5, -1, -1}, // expected_data
},
};
run_test_cases(test_cases);
}
// Test cases that are compatible with float and double.
template <ScalarType DTYPE>
void run_floating_point_test_cases() {
using ctype = typename TensorFactory<DTYPE>::ctype;
using opt_infinity_type = std::conditional_t<
std::is_same<ctype, exec_aten::Half>::value,
float,
ctype>;
constexpr auto kInfinity = std::numeric_limits<ctype>::infinity();
const auto kOptInfinity =
OptScalar(static_cast<opt_infinity_type>(kInfinity));
const auto kOptMinusInfinity =
OptScalar(static_cast<opt_infinity_type>(-kInfinity));
std::vector<ClampTestCase<DTYPE>> test_cases = {
{
std::string(__func__) + ": Simple negative/positive clamp",
{2, 2}, // sizes
{-10.1, -1.1, 1.1, 10.1}, // input_data
OptScalar(-5.5), // min
OptScalar(5.5), // max
{-5.5, -1.1, 1.1, 5.5}, // expected_data
},
{
std::string(__func__) + ": Simple negative-only clamp",
{2, 2}, // sizes
{-10.1, -5.5, 1.1, 10.1}, // input_data
OptScalar(-6.6), // min
OptScalar(-1.1), // max
{-6.6, -5.5, -1.1, -1.1}, // expected_data
},
{
std::string(__func__) + ": Infinities are clamped",
{2, 2}, // sizes
{-kInfinity, -1.1, 1.1, kInfinity}, // input_data
OptScalar(-5.5), // min
OptScalar(5.5), // max
{-5.5, -1.1, 1.1, 5.5}, // expected_data
},
{
std::string(__func__) + ": Infinite min",
{2, 2}, // sizes
{-10.1, -1.1, 1.1, 10.1}, // input_data
kOptMinusInfinity, // min
OptScalar(5.5), // max
{-10.1, -1.1, 1.1, 5.5}, // expected_data
},
{
std::string(__func__) + ": Infinite max",
{2, 2}, // sizes
{-10.1, -1.1, 1.1, 10.1}, // input_data
OptScalar(-5.5), // min
kOptInfinity, // max
{-5.5, -1.1, 1.1, 10.1}, // expected_data
},
{
std::string(__func__) + ": NaN entries preserved",
{2, 2}, // sizes
{-10.1, NAN, NAN, 10.1}, // input_data
OptScalar(0.0), // min
OptScalar(0.0), // max
{0.0, NAN, NAN, 0.0}, // expected_data
},
{
std::string(__func__) + ": NaN min produces all NaN output",
{2, 2}, // sizes
{-10.1, -1.1, 1.1, 10.1}, // input_data
OptScalar(NAN), // min
OptScalar(5.5), // max
{NAN, NAN, NAN, NAN}, // expected_data
},
{
std::string(__func__) + ": NaN max produces all NaN output",
{2, 2}, // sizes
{-10.1, -1.1, 1.1, 10.1}, // input_data
OptScalar(-5.5), // min
OptScalar(NAN), // max
{NAN, NAN, NAN, NAN}, // expected_data
},
};
run_test_cases(test_cases);
}
// Tries clamping a DTYPE tensor to the provided value and expects it to die.
template <ScalarType DTYPE>
void expect_bad_clamp_value_dies(Scalar bad_value) {
TensorFactory<DTYPE> tf;
Tensor in = tf.ones({2, 2});
Tensor out = tf.zeros({2, 2});
ET_EXPECT_KERNEL_FAILURE(
context_, op_clamp_out(in, /*min=*/bad_value, /*max=*/nullopt, out));
ET_EXPECT_KERNEL_FAILURE(
context_, op_clamp_out(in, /*min=*/nullopt, /*max=*/bad_value, out));
ET_EXPECT_KERNEL_FAILURE(
context_, op_clamp_out(in, /*min=*/bad_value, /*max=*/bad_value, out));
}
// One of min and max should be non-null
void expect_both_min_max_null_die() {
TensorFactory<ScalarType::Float> tf;
Tensor in = tf.ones({2, 2});
Tensor out = tf.zeros({2, 2});
ET_EXPECT_KERNEL_FAILURE(
context_, op_clamp_out(in, /*min=*/nullopt, /*max=*/nullopt, out));
}
};
class OpClampTensorOutTest : public OperatorTest {
protected:
Tensor& op_clamp_tensor_out(
const Tensor& self,
const optional<Tensor>& min,
const optional<Tensor>& max,
Tensor& out) {
executorch::runtime::KernelRuntimeContext context{};
return torch::executor::aten::clamp_outf(context, self, min, max, out);
}
};
/// Describes a test case, using tensors of the specified DTYPE.
// Runs test cases that are compatible with uint8_t, and thus all other real
// types. Cover the most cases here, since it's compatible with the most types.
// Runs test cases that are compatible with int8_t, and thus all signed real
TEST_F(OpClampOutTest, ByteTensors) {
run_unsigned_integer_test_cases<ScalarType::Byte>();
}
TEST_F(OpClampOutTest, CharTensors) {
run_unsigned_integer_test_cases<ScalarType::Char>();
run_signed_integer_test_cases<ScalarType::Char>();
}
TEST_F(OpClampOutTest, ShortTensors) {
run_unsigned_integer_test_cases<ScalarType::Short>();
run_signed_integer_test_cases<ScalarType::Short>();
}
TEST_F(OpClampOutTest, IntTensors) {
run_unsigned_integer_test_cases<ScalarType::Int>();
run_signed_integer_test_cases<ScalarType::Int>();
}
TEST_F(OpClampOutTest, LongTensors) {
run_unsigned_integer_test_cases<ScalarType::Long>();
run_signed_integer_test_cases<ScalarType::Long>();
}
TEST_F(OpClampOutTest, HalfTensors) {
// Note that the integer test cases test the situation where the min/max value
// Scalars are integer types, demonstrating that floating point types can be
// clamped to integer values.
run_unsigned_integer_test_cases<ScalarType::Half>();
run_signed_integer_test_cases<ScalarType::Half>();
run_floating_point_test_cases<ScalarType::Half>();
}
TEST_F(OpClampOutTest, FloatTensors) {
// Note that the integer test cases test the situation where the min/max value
// Scalars are integer types, demonstrating that floating point types can be
// clamped to integer values.
run_unsigned_integer_test_cases<ScalarType::Float>();
run_signed_integer_test_cases<ScalarType::Float>();
run_floating_point_test_cases<ScalarType::Float>();
}
TEST_F(OpClampOutTest, DoubleTensors) {
// Note that the integer test cases test the situation where the min/max value
// Scalars are integer types, demonstrating that floating point types can be
// clamped to integer values.
run_unsigned_integer_test_cases<ScalarType::Double>();
run_signed_integer_test_cases<ScalarType::Double>();
run_floating_point_test_cases<ScalarType::Double>();
}
//
// Don't test every type, just a representative sample: unsigned int, signed
// int, floating point.
//
TEST_F(OpClampOutTest, ByteTensorNegativeClampDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel can handle negative clamp on byte tensor";
}
// Cannot be represented by a uint8_t.
expect_bad_clamp_value_dies<ScalarType::Byte>(-1);
}
TEST_F(OpClampOutTest, ByteTensorTooLargeClampDies) {
// Cannot be represented by a uint8_t.
expect_bad_clamp_value_dies<ScalarType::Byte>(256);
}
TEST_F(OpClampOutTest, ByteTensorFloatingPointClampDies) {
// Cannot be represented by a uint8_t.
expect_bad_clamp_value_dies<ScalarType::Byte>(2.2);
}
#ifndef USE_ATEN_LIB
TEST_F(OpClampOutTest, IntTensorTooSmallClampDies) {
// Cannot be represented by a int32_t.
expect_bad_clamp_value_dies<ScalarType::Int>(-2147483649);
}
TEST_F(OpClampOutTest, IntTensorTooLargeClampDies) {
// Cannot be represented by a int32_t.
expect_bad_clamp_value_dies<ScalarType::Int>(2147483648);
}
#endif
TEST_F(OpClampOutTest, IntTensorFloatingPointClampDies) {
// Cannot be represented by a uint32_t.
expect_bad_clamp_value_dies<ScalarType::Int>(2.2);
}
TEST_F(OpClampOutTest, FloatTensorTooSmallClampDies) {
// Cannot be represented by a float.
expect_bad_clamp_value_dies<ScalarType::Float>(-3.41e+38);
}
TEST_F(OpClampOutTest, FloatTensorTooLargeClampDies) {
// Cannot be represented by a float.
expect_bad_clamp_value_dies<ScalarType::Float>(3.41e+38);
}
TEST_F(OpClampOutTest, SimpleGeneratedCase) {
TensorFactory<ScalarType::Float> tf;
auto x = tf.make(
{10, 10},
{1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0});
auto y = OptScalar(-0.5);
auto z = OptScalar(0.5);
Tensor expected_result = tf.make(
{10, 10},
{0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5});
Tensor out = tf.zeros({10, 10});
Tensor ret = op_clamp_out(x, y, z, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpClampOutTest, DynamicShapeUpperBoundSameAsExpected) {
TensorFactory<ScalarType::Float> tf;
auto x = tf.make(
{3, 2},
{0.6984410881996155,
0.5675464272499084,
0.8352431654930115,
0.2055988311767578,
0.593172013759613,
0.11234724521636963});
auto y = OptScalar(-0.5);
auto z = OptScalar(0.5);
Tensor expected_result = tf.make(
{3, 2}, {0.5, 0.5, 0.5, 0.2055988311767578, 0.5, 0.11234724521636963});
Tensor out =
tf.zeros({3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor ret = op_clamp_out(x, y, z, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpClampOutTest, DynamicShapeUpperBoundLargerThanExpected) {
GTEST_SKIP() << "Dynamic shape not supported";
TensorFactory<ScalarType::Float> tf;
auto x = tf.make(
{3, 2},
{0.6984410881996155,
0.5675464272499084,
0.8352431654930115,
0.2055988311767578,
0.593172013759613,
0.11234724521636963});
auto y = OptScalar(-0.5);
auto z = OptScalar(0.5);
Tensor expected_result = tf.make(
{3, 2}, {0.5, 0.5, 0.5, 0.2055988311767578, 0.5, 0.11234724521636963});
Tensor out =
tf.zeros({6, 4}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor ret = op_clamp_out(x, y, z, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpClampOutTest, DynamicShapeUnbound) {
GTEST_SKIP() << "Dynamic shape not supported";
TensorFactory<ScalarType::Float> tf;
auto x = tf.make(
{3, 2},
{0.6984410881996155,
0.5675464272499084,
0.8352431654930115,
0.2055988311767578,
0.593172013759613,
0.11234724521636963});
auto y = OptScalar(-0.5);
auto z = OptScalar(0.5);
Tensor expected_result = tf.make(
{3, 2}, {0.5, 0.5, 0.5, 0.2055988311767578, 0.5, 0.11234724521636963});
Tensor out =
tf.zeros({1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND);
Tensor ret = op_clamp_out(x, y, z, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpClampTensorOutTest, SmokeTest) {
TensorFactory<ScalarType::Byte> tf_in;
TensorFactory<ScalarType::Int> tf_min;
TensorFactory<ScalarType::Char> tf_max;
TensorFactory<ScalarType::Short> tf_out;
Tensor in = tf_in.make({1, 1}, {3});
Tensor min = tf_min.make({1, 3}, {0, 1, 4});
Tensor max = tf_max.make({2, 1}, {2, 5});
Tensor out = tf_out.zeros({2, 3});
Tensor expected = tf_out.make({2, 3}, {2, 2, 2, 3, 3, 4});
op_clamp_tensor_out(in, min, max, out);
EXPECT_TENSOR_EQ(out, expected);
}