| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| #include <executorch/runtime/core/exec_aten/util/scalar_type_util.h> |
| |
| #include <gtest/gtest.h> |
| |
| using namespace ::testing; |
| using exec_aten::ArrayRef; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using torch::executor::testing::TensorFactory; |
| |
| class OpBmmOutTest : public OperatorTest { |
| protected: |
| Tensor& op_bmm_out(const Tensor& self, const Tensor& mat2, Tensor& out) { |
| return torch::executor::aten::bmm_outf(context_, self, mat2, out); |
| } |
| |
| template <class CTYPE, exec_aten::ScalarType DTYPE> |
| void test_dtype() { |
| TensorFactory<DTYPE> tf; |
| |
| // Gives 4 * 2 * 3 = 24, shape (10, 3, 5) |
| Tensor x = tf.full({10, 3, 4}, 2); |
| Tensor y = tf.full({10, 4, 5}, 3); |
| |
| Tensor out = tf.zeros({10, 3, 5}); |
| op_bmm_out(x, y, out); |
| |
| Tensor expected = tf.full({10, 3, 5}, 24); |
| |
| EXPECT_TENSOR_EQ(out, expected); |
| } |
| }; |
| |
| TEST_F(OpBmmOutTest, OutputDim) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| // Two tensors with compatible dimensions: (10, 3, 4) and (10, 4, 5). |
| Tensor x = tf.ones({10, 3, 4}); |
| Tensor y = tf.ones({10, 4, 5}); |
| |
| // Output shape should be (10, 3, 5) |
| Tensor out = tf.zeros({10, 3, 5}); |
| |
| Tensor ret = op_bmm_out(x, y, out); |
| |
| // Should always return the provided out Tensor. |
| EXPECT_TENSOR_EQ(ret, out); |
| |
| // Expected tensor, filled with 4. |
| Tensor expected = tf.full({10, 3, 5}, 4); |
| |
| EXPECT_TENSOR_EQ(out, expected); |
| } |
| |
| TEST_F(OpBmmOutTest, OutputDimFloat) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| // clang-format off |
| Tensor x = tf.make( |
| {2, 4, 5}, |
| { |
| 4., 3., 1., 1., 1., |
| 3., 1., 4., 4., 2., |
| 1., 1., 1., 3., 3., |
| 4., 2., 2., 2., 3., |
| |
| 1., 3., 1., 4., 4., |
| 1., 1., 2., 4., 3., |
| 4., 3., 4., 1., 2., |
| 1., 4., 4., 4., 4., |
| }); |
| // clang-format on |
| |
| // clang-format off |
| Tensor y = tf.make( |
| {2, 5, 3}, |
| { |
| 4., 4., 4., |
| 2., 3., 1., |
| 1., 4., 4., |
| 3., 1., 2., |
| 1., 4., 3., |
| |
| 1., 4., 4., |
| 4., 4., 4., |
| 2., 1., 4., |
| 1., 4., 3., |
| 1., 4., 4., |
| }); |
| // clang-format on |
| |
| // Output shape should be (10, 3, 5) |
| Tensor out = tf.zeros({2, 4, 3}); |
| |
| Tensor ret = op_bmm_out(x, y, out); |
| |
| // Should always return the provided out Tensor. |
| EXPECT_TENSOR_EQ(ret, out); |
| |
| // clang-format off |
| Tensor expected = tf.make( |
| {2, 4, 3}, |
| { |
| 27., 34., 28., |
| 32., 43., 43., |
| 19., 26., 24., |
| 31., 44., 39., |
| |
| 23., 49., 48., |
| 16., 38., 40., |
| 27., 44., 55., |
| 33., 56., 64., |
| }); |
| // clang-format on |
| |
| EXPECT_TENSOR_EQ(out, expected); |
| } |
| |
| /// A generic smoke test that works for any dtype that supports ones() and |
| /// zeros(). |
| TEST_F(OpBmmOutTest, AllDtypesSupported) { |
| #define TEST_ENTRY(ctype, dtype) test_dtype<ctype, ScalarType::dtype>(); |
| ET_FORALL_REAL_TYPES(TEST_ENTRY); |
| #undef TEST_ENTRY |
| // TODO: Also add tests for half, complex, quantized, and other types. Easiest |
| // way to do that would be to make TensorFactory support zeros() and ones() |
| // for those types. |
| } |
| |
| TEST_F(OpBmmOutTest, EmptyInputWithEmptyOutTensorPasses) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.full({2, 2, 2}, 3); |
| Tensor y = tf.make({2, 2, 0}, {}); |
| |
| // Make an empty out tensor and demonstrate that it's empty. |
| Tensor out = tf.make({2, 2, 0}, {}); |
| |
| EXPECT_EQ(out.numel(), 0); |
| |
| op_bmm_out(x, y, out); |
| |
| EXPECT_EQ(out.numel(), 0); |
| } |
| |
| TEST_F(OpBmmOutTest, MismatchedDimensionsDies) { |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.ones({2, 10, 3}); |
| |
| // wrong_y has incompatible shape |
| Tensor wrong_y = tf.ones({3, 7, 4}); |
| Tensor right_y = tf.ones({2, 3, 4}); |
| |
| Tensor out = tf.ones({2, 10, 4}); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_bmm_out(x, wrong_y, out)); |
| |
| EXPECT_TENSOR_EQ(op_bmm_out(x, right_y, out), tf.full({2, 10, 4}, 3)); |
| } |
| |
| TEST_F(OpBmmOutTest, MismatchedDimensionSizeDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle mismatched dimension size"; |
| } |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.ones({2, 10, 3}); |
| |
| Tensor y = tf.ones({2, 3, 4}); |
| |
| // wrong_y has incompatible dim |
| Tensor wrong_y = tf.ones({7, 4}); |
| Tensor right_y = tf.ones({2, 3, 4}); |
| |
| // wrong_out has incompatible dim |
| Tensor right_out = tf.ones({2, 10, 4}); |
| Tensor wrong_out = tf.ones({7, 5}); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_bmm_out(x, right_y, wrong_out)); |
| ET_EXPECT_KERNEL_FAILURE(context_, op_bmm_out(x, wrong_y, right_out)); |
| } |
| |
| TEST_F(OpBmmOutTest, WrongOutShapeDies) { |
| if (torch::executor::testing::SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen kernel can handle wrong out shape"; |
| } |
| TensorFactory<ScalarType::Int> tf; |
| |
| Tensor x = tf.ones({2, 10, 3}); |
| |
| Tensor y = tf.ones({2, 3, 4}); |
| |
| // wrong_out has incompatible shape |
| Tensor right_out = tf.ones({2, 10, 4}); |
| Tensor wrong_out = tf.ones({3, 7, 5}); |
| |
| ET_EXPECT_KERNEL_FAILURE(context_, op_bmm_out(x, y, wrong_out)); |
| |
| EXPECT_TENSOR_EQ(op_bmm_out(x, y, right_out), tf.full({2, 10, 4}, 3)); |
| } |
| |
| TEST_F(OpBmmOutTest, DynamicShapeUpperBoundSameAsExpected) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| auto x = tf.make( |
| {3, 3, 6}, |
| {0.7231091856956482, 0.7423362731933594, 0.5262957811355591, |
| 0.24365824460983276, 0.584592342376709, 0.033152639865875244, |
| 0.13871687650680542, 0.242235004901886, 0.815468966960907, |
| 0.793160617351532, 0.2782524824142456, 0.48195880651474, |
| 0.8197803497314453, 0.9970665574073792, 0.6984410881996155, |
| 0.5675464272499084, 0.8352431654930115, 0.2055988311767578, |
| 0.593172013759613, 0.11234724521636963, 0.1534569263458252, |
| 0.24170821905136108, 0.7262365221977234, 0.7010802030563354, |
| 0.2038237452507019, 0.6510535478591919, 0.7744860053062439, |
| 0.4368913173675537, 0.5190907716751099, 0.6158523559570312, |
| 0.8101882934570312, 0.9800970554351807, 0.1146882176399231, |
| 0.3167651295661926, 0.6965049505233765, 0.9142746925354004, |
| 0.9351036548614502, 0.9411783814430237, 0.5995072722434998, |
| 0.06520867347717285, 0.5459962487220764, 0.18719732761383057, |
| 0.03402292728424072, 0.944246232509613, 0.8801798820495605, |
| 0.0012360215187072754, 0.5935860276222229, 0.4157699942588806, |
| 0.41771942377090454, 0.2711215615272522, 0.6922780871391296, |
| 0.2038482427597046, 0.6832956671714783, 0.75285404920578}); |
| auto y = tf.make( |
| {3, 6, 2}, |
| {0.8579357862472534, 0.6869555711746216, 0.0051323771476745605, |
| 0.17565155029296875, 0.7496575117111206, 0.6046506762504578, |
| 0.1099579930305481, 0.21209025382995605, 0.9703746438026428, |
| 0.8369089365005493, 0.28198742866516113, 0.3741576075553894, |
| 0.023700952529907227, 0.49101293087005615, 0.12347054481506348, |
| 0.11432164907455444, 0.4724501967430115, 0.5750725269317627, |
| 0.2952348589897156, 0.7966887950897217, 0.19573044776916504, |
| 0.9536850452423096, 0.8426499366760254, 0.07835853099822998, |
| 0.3755578398704529, 0.5225613117218018, 0.572950541973114, |
| 0.6185871362686157, 0.6962141394615173, 0.5299500823020935, |
| 0.25603562593460083, 0.7365944981575012, 0.020375549793243408, |
| 0.20364665985107422, 0.3748350739479065, 0.2564433217048645}); |
| Tensor expected_result = tf.make( |
| {3, 3, 2}, |
| {1.6221470832824707, |
| 1.498693823814392, |
| 1.224705696105957, |
| 1.2123372554779053, |
| 2.1629090309143066, |
| 2.05692195892334, |
| 0.9047035574913025, |
| 1.3324503898620605, |
| 1.2006582021713257, |
| 1.5112680196762085, |
| 1.1946606636047363, |
| 1.5640640258789062, |
| 1.405808448791504, |
| 1.5957869291305542, |
| 1.3348338603973389, |
| 1.2967426776885986, |
| 1.1425018310546875, |
| 1.2352378368377686}); |
| |
| Tensor out = |
| tf.zeros({3, 3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| Tensor ret = op_bmm_out(x, y, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST_F(OpBmmOutTest, DynamicShapeUpperBoundLargerThanExpected) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| auto x = tf.make( |
| {3, 3, 6}, |
| {0.7231091856956482, 0.7423362731933594, 0.5262957811355591, |
| 0.24365824460983276, 0.584592342376709, 0.033152639865875244, |
| 0.13871687650680542, 0.242235004901886, 0.815468966960907, |
| 0.793160617351532, 0.2782524824142456, 0.48195880651474, |
| 0.8197803497314453, 0.9970665574073792, 0.6984410881996155, |
| 0.5675464272499084, 0.8352431654930115, 0.2055988311767578, |
| 0.593172013759613, 0.11234724521636963, 0.1534569263458252, |
| 0.24170821905136108, 0.7262365221977234, 0.7010802030563354, |
| 0.2038237452507019, 0.6510535478591919, 0.7744860053062439, |
| 0.4368913173675537, 0.5190907716751099, 0.6158523559570312, |
| 0.8101882934570312, 0.9800970554351807, 0.1146882176399231, |
| 0.3167651295661926, 0.6965049505233765, 0.9142746925354004, |
| 0.9351036548614502, 0.9411783814430237, 0.5995072722434998, |
| 0.06520867347717285, 0.5459962487220764, 0.18719732761383057, |
| 0.03402292728424072, 0.944246232509613, 0.8801798820495605, |
| 0.0012360215187072754, 0.5935860276222229, 0.4157699942588806, |
| 0.41771942377090454, 0.2711215615272522, 0.6922780871391296, |
| 0.2038482427597046, 0.6832956671714783, 0.75285404920578}); |
| auto y = tf.make( |
| {3, 6, 2}, |
| {0.8579357862472534, 0.6869555711746216, 0.0051323771476745605, |
| 0.17565155029296875, 0.7496575117111206, 0.6046506762504578, |
| 0.1099579930305481, 0.21209025382995605, 0.9703746438026428, |
| 0.8369089365005493, 0.28198742866516113, 0.3741576075553894, |
| 0.023700952529907227, 0.49101293087005615, 0.12347054481506348, |
| 0.11432164907455444, 0.4724501967430115, 0.5750725269317627, |
| 0.2952348589897156, 0.7966887950897217, 0.19573044776916504, |
| 0.9536850452423096, 0.8426499366760254, 0.07835853099822998, |
| 0.3755578398704529, 0.5225613117218018, 0.572950541973114, |
| 0.6185871362686157, 0.6962141394615173, 0.5299500823020935, |
| 0.25603562593460083, 0.7365944981575012, 0.020375549793243408, |
| 0.20364665985107422, 0.3748350739479065, 0.2564433217048645}); |
| Tensor expected_result = tf.make( |
| {3, 3, 2}, |
| {1.6221470832824707, |
| 1.498693823814392, |
| 1.224705696105957, |
| 1.2123372554779053, |
| 2.1629090309143066, |
| 2.05692195892334, |
| 0.9047035574913025, |
| 1.3324503898620605, |
| 1.2006582021713257, |
| 1.5112680196762085, |
| 1.1946606636047363, |
| 1.5640640258789062, |
| 1.405808448791504, |
| 1.5957869291305542, |
| 1.3348338603973389, |
| 1.2967426776885986, |
| 1.1425018310546875, |
| 1.2352378368377686}); |
| |
| Tensor out = |
| tf.zeros({6, 6, 4}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| Tensor ret = op_bmm_out(x, y, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST_F(OpBmmOutTest, DynamicShapeUnbound) { |
| GTEST_SKIP() << "Dynamic shape unbound not supported"; |
| TensorFactory<ScalarType::Float> tf; |
| |
| auto x = tf.make( |
| {3, 3, 6}, |
| {0.7231091856956482, 0.7423362731933594, 0.5262957811355591, |
| 0.24365824460983276, 0.584592342376709, 0.033152639865875244, |
| 0.13871687650680542, 0.242235004901886, 0.815468966960907, |
| 0.793160617351532, 0.2782524824142456, 0.48195880651474, |
| 0.8197803497314453, 0.9970665574073792, 0.6984410881996155, |
| 0.5675464272499084, 0.8352431654930115, 0.2055988311767578, |
| 0.593172013759613, 0.11234724521636963, 0.1534569263458252, |
| 0.24170821905136108, 0.7262365221977234, 0.7010802030563354, |
| 0.2038237452507019, 0.6510535478591919, 0.7744860053062439, |
| 0.4368913173675537, 0.5190907716751099, 0.6158523559570312, |
| 0.8101882934570312, 0.9800970554351807, 0.1146882176399231, |
| 0.3167651295661926, 0.6965049505233765, 0.9142746925354004, |
| 0.9351036548614502, 0.9411783814430237, 0.5995072722434998, |
| 0.06520867347717285, 0.5459962487220764, 0.18719732761383057, |
| 0.03402292728424072, 0.944246232509613, 0.8801798820495605, |
| 0.0012360215187072754, 0.5935860276222229, 0.4157699942588806, |
| 0.41771942377090454, 0.2711215615272522, 0.6922780871391296, |
| 0.2038482427597046, 0.6832956671714783, 0.75285404920578}); |
| auto y = tf.make( |
| {3, 6, 2}, |
| {0.8579357862472534, 0.6869555711746216, 0.0051323771476745605, |
| 0.17565155029296875, 0.7496575117111206, 0.6046506762504578, |
| 0.1099579930305481, 0.21209025382995605, 0.9703746438026428, |
| 0.8369089365005493, 0.28198742866516113, 0.3741576075553894, |
| 0.023700952529907227, 0.49101293087005615, 0.12347054481506348, |
| 0.11432164907455444, 0.4724501967430115, 0.5750725269317627, |
| 0.2952348589897156, 0.7966887950897217, 0.19573044776916504, |
| 0.9536850452423096, 0.8426499366760254, 0.07835853099822998, |
| 0.3755578398704529, 0.5225613117218018, 0.572950541973114, |
| 0.6185871362686157, 0.6962141394615173, 0.5299500823020935, |
| 0.25603562593460083, 0.7365944981575012, 0.020375549793243408, |
| 0.20364665985107422, 0.3748350739479065, 0.2564433217048645}); |
| Tensor expected_result = tf.make( |
| {3, 3, 2}, |
| {1.6221470832824707, |
| 1.498693823814392, |
| 1.224705696105957, |
| 1.2123372554779053, |
| 2.1629090309143066, |
| 2.05692195892334, |
| 0.9047035574913025, |
| 1.3324503898620605, |
| 1.2006582021713257, |
| 1.5112680196762085, |
| 1.1946606636047363, |
| 1.5640640258789062, |
| 1.405808448791504, |
| 1.5957869291305542, |
| 1.3348338603973389, |
| 1.2967426776885986, |
| 1.1425018310546875, |
| 1.2352378368377686}); |
| |
| Tensor out = tf.zeros( |
| {1, 1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND); |
| Tensor ret = op_bmm_out(x, y, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |