| # Copyright (c) Meta Platforms, Inc. and affiliates. |
| # All rights reserved. |
| # |
| # This source code is licensed under the BSD-style license found in the |
| # LICENSE file in the root directory of this source tree. |
| |
| from typing import cast, Dict, List |
| |
| import torch |
| from executorch.backends.transforms import get_shape |
| from executorch.backends.xnnpack.operators.node_visitor import ( |
| NodeVisitor, |
| register_node_visitor, |
| ) |
| from executorch.backends.xnnpack.operators.quant_params import QuantParams |
| from executorch.backends.xnnpack.passes.fuse_activation_pass import FuseActivationPass |
| from executorch.backends.xnnpack.serialization.xnnpack_graph_schema import ( |
| XNNConv2d, |
| XNNDepthwiseConv2d, |
| XNNGraph, |
| XNode, |
| ) |
| from executorch.backends.xnnpack.utils.utils import check_or_raise, get_input_node |
| |
| from executorch.backends.xnnpack.utils.xnnpack_constants import XNN_INVALID_VALUE_ID |
| |
| |
| @register_node_visitor |
| class Conv2d(NodeVisitor): |
| target = "aten.convolution.default" |
| |
| def __init__(self, *args) -> None: |
| super().__init__(*args) |
| |
| def define_node( |
| self, |
| node: torch.fx.Node, |
| xnn_graph: XNNGraph, |
| vals_to_ids: Dict[torch.fx.Node, int], |
| debug_handle: int, |
| ) -> None: |
| kwargs = {} |
| # input |
| input_node = get_input_node(node, 0) |
| input_quant_params = QuantParams.from_inputs(input_node, self._exported_program) |
| self.define_tensor( |
| input_node, |
| xnn_graph, |
| vals_to_ids, |
| convert_to_nhwc=True, |
| quant_params=input_quant_params, |
| ) # NHWC input |
| kwargs["input1_id"] = vals_to_ids[get_input_node(node, 0)] |
| |
| kernel_node = get_input_node(node, 1) |
| kernel_shape = get_shape(kernel_node) |
| groups = cast(int, node.args[8]) |
| group_input_channels = kernel_shape[1] |
| group_output_channels = int(kernel_shape[0] / groups) |
| |
| # XNNPACK expects the kernel's N and C dimensions to be swapped for |
| # Depthwise Convolution, which occurs under the following conditions: |
| # 1) groups = input_channels (i.e. group_input_channels = 1) |
| # 2) output_channels is a positive integer multiple of input channels |
| is_depthwise_conv = (group_input_channels == 1) and ( |
| group_output_channels % group_input_channels == 0 |
| ) |
| # filter |
| # filter shape for pytorch convolution is (oc, inc/groups, height, width) |
| # shape for xnnpack convolution is (oc, height, width, inc/groups), to convert |
| # to the proper shape, this is essentially a NCHW to NHWC conversion |
| weight_node = get_input_node(node, 1) |
| weight_quant_params = QuantParams.from_weights( |
| weight_node, self._exported_program |
| ) |
| self.define_tensor( |
| weight_node, |
| xnn_graph, |
| vals_to_ids, |
| convert_to_nhwc=True, |
| swap_nc_for_depthwise_weights=is_depthwise_conv, |
| quant_params=weight_quant_params, |
| ) |
| kwargs["filter_id"] = vals_to_ids[get_input_node(node, 1)] |
| |
| # output |
| output_min_max = FuseActivationPass.get_fused_activation(node) |
| output_quant_params = QuantParams.from_outputs(node) |
| self.define_tensor( |
| node, |
| xnn_graph, |
| vals_to_ids, |
| convert_to_nhwc=True, |
| quant_params=output_quant_params, |
| ) # NHWC output |
| kwargs["output_id"] = vals_to_ids[node] |
| |
| # bias |
| kwargs["bias_id"] = XNN_INVALID_VALUE_ID |
| if node.args[2] is not None: |
| # If there is a bias |
| bias_node = get_input_node(node, 2) |
| bias_quant_params = QuantParams.from_bias( |
| bias_node, weight_quant_params, input_quant_params |
| ) |
| self.define_tensor( |
| get_input_node(node, 2), |
| xnn_graph, |
| vals_to_ids, |
| convert_to_nhwc=False, |
| quant_params=bias_quant_params, |
| ) |
| kwargs["bias_id"] = vals_to_ids[get_input_node(node, 2)] |
| |
| stride = cast(List[int], node.args[3]) |
| padding = cast(List[int], node.args[4]) |
| dilation = cast(List[int], node.args[5]) |
| if len(padding) == 1: |
| padding = padding + padding |
| |
| # args[6] = transposed |
| check_or_raise( |
| not cast(bool, node.args[6]), "No support for transposed convolution" |
| ) |
| # args[7] = output padding |
| check_or_raise( |
| all(out_pad == 0 for out_pad in cast(List[int], node.args[7])), |
| "XNNPACK does not support output padding", |
| ) |
| |
| check_or_raise( |
| len(stride) == 2, "XNNPACK currently only supports 2D convolution" |
| ) |
| kwargs["padding_top"] = padding[0] |
| kwargs["padding_right"] = padding[1] |
| kwargs["padding_bottom"] = padding[0] |
| kwargs["padding_left"] = padding[1] |
| kwargs["kernel_height"] = kernel_shape[2] |
| kwargs["kernel_width"] = kernel_shape[3] |
| kwargs["subsampling_height"] = stride[0] |
| kwargs["subsampling_width"] = stride[1] |
| kwargs["dilation_height"] = dilation[0] |
| kwargs["dilation_width"] = dilation[1] |
| kwargs["group_input_channels"] = group_input_channels |
| kwargs["group_output_channels"] = group_output_channels |
| kwargs["groups"] = groups |
| kwargs["adjustment_height"] = 0 |
| kwargs["adjustment_width"] = 0 |
| kwargs["flags"] = 0 |
| |
| if is_depthwise_conv: |
| conv_node_type = XNNDepthwiseConv2d |
| else: |
| conv_node_type = XNNConv2d |
| |
| ser_node = XNode( |
| xnode_union=conv_node_type( |
| **kwargs, |
| ), |
| debug_handle=debug_handle, |
| output_min_max=output_min_max, |
| ) |
| xnn_graph.xnodes.append(ser_node) |