blob: 73a465ec5eeb2df8c076de58703ad20573b3e1a9 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GENERAL_MATRIX_MATRIX_H
#define EIGEN_GENERAL_MATRIX_MATRIX_H
namespace Eigen {
namespace internal {
template<typename _LhsScalar, typename _RhsScalar> class level3_blocking;
/* Specialization for a row-major destination matrix => simple transposition of the product */
template<
typename Index,
typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
static EIGEN_STRONG_INLINE void run(
Index rows, Index cols, Index depth,
const LhsScalar* lhs, Index lhsStride,
const RhsScalar* rhs, Index rhsStride,
ResScalar* res, Index resStride,
ResScalar alpha,
level3_blocking<RhsScalar,LhsScalar>& blocking,
GemmParallelInfo<Index>* info = 0)
{
// transpose the product such that the result is column major
general_matrix_matrix_product<Index,
RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
ColMajor>
::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking,info);
}
};
/* Specialization for a col-major destination matrix
* => Blocking algorithm following Goto's paper */
template<
typename Index,
typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
static void run(Index rows, Index cols, Index depth,
const LhsScalar* _lhs, Index lhsStride,
const RhsScalar* _rhs, Index rhsStride,
ResScalar* res, Index resStride,
ResScalar alpha,
level3_blocking<LhsScalar,RhsScalar>& blocking,
GemmParallelInfo<Index>* info = 0)
{
const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
Index kc = blocking.kc(); // cache block size along the K direction
Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction
//Index nc = blocking.nc(); // cache block size along the N direction
gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
gebp_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
#ifdef EIGEN_HAS_OPENMP
if(info)
{
// this is the parallel version!
Index tid = omp_get_thread_num();
Index threads = omp_get_num_threads();
std::size_t sizeA = kc*mc;
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, 0);
ei_declare_aligned_stack_constructed_variable(RhsScalar, w, sizeW, 0);
RhsScalar* blockB = blocking.blockB();
eigen_internal_assert(blockB!=0);
// For each horizontal panel of the rhs, and corresponding vertical panel of the lhs...
for(Index k=0; k<depth; k+=kc)
{
const Index actual_kc = (std::min)(k+kc,depth)-k; // => rows of B', and cols of the A'
// In order to reduce the chance that a thread has to wait for the other,
// let's start by packing A'.
pack_lhs(blockA, &lhs(0,k), lhsStride, actual_kc, mc);
// Pack B_k to B' in a parallel fashion:
// each thread packs the sub block B_k,j to B'_j where j is the thread id.
// However, before copying to B'_j, we have to make sure that no other thread is still using it,
// i.e., we test that info[tid].users equals 0.
// Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it.
while(info[tid].users!=0) {}
info[tid].users += threads;
pack_rhs(blockB+info[tid].rhs_start*actual_kc, &rhs(k,info[tid].rhs_start), rhsStride, actual_kc, info[tid].rhs_length);
// Notify the other threads that the part B'_j is ready to go.
info[tid].sync = k;
// Computes C_i += A' * B' per B'_j
for(Index shift=0; shift<threads; ++shift)
{
Index j = (tid+shift)%threads;
// At this point we have to make sure that B'_j has been updated by the thread j,
// we use testAndSetOrdered to mimic a volatile access.
// However, no need to wait for the B' part which has been updated by the current thread!
if(shift>0)
while(info[j].sync!=k) {}
gebp(res+info[j].rhs_start*resStride, resStride, blockA, blockB+info[j].rhs_start*actual_kc, mc, actual_kc, info[j].rhs_length, alpha, -1,-1,0,0, w);
}
// Then keep going as usual with the remaining A'
for(Index i=mc; i<rows; i+=mc)
{
const Index actual_mc = (std::min)(i+mc,rows)-i;
// pack A_i,k to A'
pack_lhs(blockA, &lhs(i,k), lhsStride, actual_kc, actual_mc);
// C_i += A' * B'
gebp(res+i, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1,-1,0,0, w);
}
// Release all the sub blocks B'_j of B' for the current thread,
// i.e., we simply decrement the number of users by 1
for(Index j=0; j<threads; ++j)
#pragma omp atomic
--(info[j].users);
}
}
else
#endif // EIGEN_HAS_OPENMP
{
EIGEN_UNUSED_VARIABLE(info);
// this is the sequential version!
std::size_t sizeA = kc*mc;
std::size_t sizeB = kc*cols;
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
ei_declare_aligned_stack_constructed_variable(RhsScalar, blockW, sizeW, blocking.blockW());
// For each horizontal panel of the rhs, and corresponding panel of the lhs...
// (==GEMM_VAR1)
for(Index k2=0; k2<depth; k2+=kc)
{
const Index actual_kc = (std::min)(k2+kc,depth)-k2;
// OK, here we have selected one horizontal panel of rhs and one vertical panel of lhs.
// => Pack rhs's panel into a sequential chunk of memory (L2 caching)
// Note that this panel will be read as many times as the number of blocks in the lhs's
// vertical panel which is, in practice, a very low number.
pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols);
// For each mc x kc block of the lhs's vertical panel...
// (==GEPP_VAR1)
for(Index i2=0; i2<rows; i2+=mc)
{
const Index actual_mc = (std::min)(i2+mc,rows)-i2;
// We pack the lhs's block into a sequential chunk of memory (L1 caching)
// Note that this block will be read a very high number of times, which is equal to the number of
// micro vertical panel of the large rhs's panel (e.g., cols/4 times).
pack_lhs(blockA, &lhs(i2,k2), lhsStride, actual_kc, actual_mc);
// Everything is packed, we can now call the block * panel kernel:
gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1, -1, 0, 0, blockW);
}
}
}
}
};
/*********************************************************************************
* Specialization of GeneralProduct<> for "large" GEMM, i.e.,
* implementation of the high level wrapper to general_matrix_matrix_product
**********************************************************************************/
template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,GemmProduct> >
: traits<ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs> >
{};
template<typename Scalar, typename Index, typename Gemm, typename Lhs, typename Rhs, typename Dest, typename BlockingType>
struct gemm_functor
{
gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, Scalar actualAlpha,
BlockingType& blocking)
: m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking)
{}
void initParallelSession() const
{
m_blocking.allocateB();
}
void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo<Index>* info=0) const
{
if(cols==-1)
cols = m_rhs.cols();
Gemm::run(rows, cols, m_lhs.cols(),
/*(const Scalar*)*/&m_lhs.coeffRef(row,0), m_lhs.outerStride(),
/*(const Scalar*)*/&m_rhs.coeffRef(0,col), m_rhs.outerStride(),
(Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(),
m_actualAlpha, m_blocking, info);
}
protected:
const Lhs& m_lhs;
const Rhs& m_rhs;
Dest& m_dest;
Scalar m_actualAlpha;
BlockingType& m_blocking;
};
template<int StorageOrder, typename LhsScalar, typename RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor=1,
bool FiniteAtCompileTime = MaxRows!=Dynamic && MaxCols!=Dynamic && MaxDepth != Dynamic> class gemm_blocking_space;
template<typename _LhsScalar, typename _RhsScalar>
class level3_blocking
{
typedef _LhsScalar LhsScalar;
typedef _RhsScalar RhsScalar;
protected:
LhsScalar* m_blockA;
RhsScalar* m_blockB;
RhsScalar* m_blockW;
DenseIndex m_mc;
DenseIndex m_nc;
DenseIndex m_kc;
public:
level3_blocking()
: m_blockA(0), m_blockB(0), m_blockW(0), m_mc(0), m_nc(0), m_kc(0)
{}
inline DenseIndex mc() const { return m_mc; }
inline DenseIndex nc() const { return m_nc; }
inline DenseIndex kc() const { return m_kc; }
inline LhsScalar* blockA() { return m_blockA; }
inline RhsScalar* blockB() { return m_blockB; }
inline RhsScalar* blockW() { return m_blockW; }
};
template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, true>
: public level3_blocking<
typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
{
enum {
Transpose = StorageOrder==RowMajor,
ActualRows = Transpose ? MaxCols : MaxRows,
ActualCols = Transpose ? MaxRows : MaxCols
};
typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
enum {
SizeA = ActualRows * MaxDepth,
SizeB = ActualCols * MaxDepth,
SizeW = MaxDepth * Traits::WorkSpaceFactor
};
EIGEN_ALIGN16 LhsScalar m_staticA[SizeA];
EIGEN_ALIGN16 RhsScalar m_staticB[SizeB];
EIGEN_ALIGN16 RhsScalar m_staticW[SizeW];
public:
gemm_blocking_space(DenseIndex /*rows*/, DenseIndex /*cols*/, DenseIndex /*depth*/)
{
this->m_mc = ActualRows;
this->m_nc = ActualCols;
this->m_kc = MaxDepth;
this->m_blockA = m_staticA;
this->m_blockB = m_staticB;
this->m_blockW = m_staticW;
}
inline void allocateA() {}
inline void allocateB() {}
inline void allocateW() {}
inline void allocateAll() {}
};
template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, false>
: public level3_blocking<
typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
{
enum {
Transpose = StorageOrder==RowMajor
};
typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
DenseIndex m_sizeA;
DenseIndex m_sizeB;
DenseIndex m_sizeW;
public:
gemm_blocking_space(DenseIndex rows, DenseIndex cols, DenseIndex depth)
{
this->m_mc = Transpose ? cols : rows;
this->m_nc = Transpose ? rows : cols;
this->m_kc = depth;
computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, this->m_nc);
m_sizeA = this->m_mc * this->m_kc;
m_sizeB = this->m_kc * this->m_nc;
m_sizeW = this->m_kc*Traits::WorkSpaceFactor;
}
void allocateA()
{
if(this->m_blockA==0)
this->m_blockA = aligned_new<LhsScalar>(m_sizeA);
}
void allocateB()
{
if(this->m_blockB==0)
this->m_blockB = aligned_new<RhsScalar>(m_sizeB);
}
void allocateW()
{
if(this->m_blockW==0)
this->m_blockW = aligned_new<RhsScalar>(m_sizeW);
}
void allocateAll()
{
allocateA();
allocateB();
allocateW();
}
~gemm_blocking_space()
{
aligned_delete(this->m_blockA, m_sizeA);
aligned_delete(this->m_blockB, m_sizeB);
aligned_delete(this->m_blockW, m_sizeW);
}
};
} // end namespace internal
template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, GemmProduct>
: public ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs>
{
enum {
MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
};
public:
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
typedef Scalar ResScalar;
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
{
typedef internal::scalar_product_op<LhsScalar,RhsScalar> BinOp;
EIGEN_CHECK_BINARY_COMPATIBILIY(BinOp,LhsScalar,RhsScalar);
}
template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
{
eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
* RhsBlasTraits::extractScalarFactor(m_rhs);
typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar,
Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;
typedef internal::gemm_functor<
Scalar, Index,
internal::general_matrix_matrix_product<
Index,
LhsScalar, (_ActualLhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
RhsScalar, (_ActualRhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
_ActualLhsType, _ActualRhsType, Dest, BlockingType> GemmFunctor;
BlockingType blocking(dst.rows(), dst.cols(), lhs.cols());
internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), this->rows(), this->cols(), Dest::Flags&RowMajorBit);
}
};
} // end namespace Eigen
#endif // EIGEN_GENERAL_MATRIX_MATRIX_H