blob: 5eb03c98ccfd91d9f44c81d092137280cf415cd4 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GENERAL_BLOCK_PANEL_H
#define EIGEN_GENERAL_BLOCK_PANEL_H
namespace Eigen {
namespace internal {
template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs=false, bool _ConjRhs=false>
class gebp_traits;
/** \internal \returns b if a<=0, and returns a otherwise. */
inline std::ptrdiff_t manage_caching_sizes_helper(std::ptrdiff_t a, std::ptrdiff_t b)
{
return a<=0 ? b : a;
}
/** \internal */
inline void manage_caching_sizes(Action action, std::ptrdiff_t* l1=0, std::ptrdiff_t* l2=0)
{
static std::ptrdiff_t m_l1CacheSize = 0;
static std::ptrdiff_t m_l2CacheSize = 0;
if(m_l2CacheSize==0)
{
m_l1CacheSize = manage_caching_sizes_helper(queryL1CacheSize(),8 * 1024);
m_l2CacheSize = manage_caching_sizes_helper(queryTopLevelCacheSize(),1*1024*1024);
}
if(action==SetAction)
{
// set the cpu cache size and cache all block sizes from a global cache size in byte
eigen_internal_assert(l1!=0 && l2!=0);
m_l1CacheSize = *l1;
m_l2CacheSize = *l2;
}
else if(action==GetAction)
{
eigen_internal_assert(l1!=0 && l2!=0);
*l1 = m_l1CacheSize;
*l2 = m_l2CacheSize;
}
else
{
eigen_internal_assert(false);
}
}
/** \brief Computes the blocking parameters for a m x k times k x n matrix product
*
* \param[in,out] k Input: the third dimension of the product. Output: the blocking size along the same dimension.
* \param[in,out] m Input: the number of rows of the left hand side. Output: the blocking size along the same dimension.
* \param[in,out] n Input: the number of columns of the right hand side. Output: the blocking size along the same dimension.
*
* Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar,
* this function computes the blocking size parameters along the respective dimensions
* for matrix products and related algorithms. The blocking sizes depends on various
* parameters:
* - the L1 and L2 cache sizes,
* - the register level blocking sizes defined by gebp_traits,
* - the number of scalars that fit into a packet (when vectorization is enabled).
*
* \sa setCpuCacheSizes */
template<typename LhsScalar, typename RhsScalar, int KcFactor>
void computeProductBlockingSizes(std::ptrdiff_t& k, std::ptrdiff_t& m, std::ptrdiff_t& n)
{
EIGEN_UNUSED_VARIABLE(n);
// Explanations:
// Let's recall the product algorithms form kc x nc horizontal panels B' on the rhs and
// mc x kc blocks A' on the lhs. A' has to fit into L2 cache. Moreover, B' is processed
// per kc x nr vertical small panels where nr is the blocking size along the n dimension
// at the register level. For vectorization purpose, these small vertical panels are unpacked,
// e.g., each coefficient is replicated to fit a packet. This small vertical panel has to
// stay in L1 cache.
std::ptrdiff_t l1, l2;
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
enum {
kdiv = KcFactor * 2 * Traits::nr
* Traits::RhsProgress * sizeof(RhsScalar),
mr = gebp_traits<LhsScalar,RhsScalar>::mr,
mr_mask = (0xffffffff/mr)*mr
};
manage_caching_sizes(GetAction, &l1, &l2);
k = std::min<std::ptrdiff_t>(k, l1/kdiv);
std::ptrdiff_t _m = k>0 ? l2/(4 * sizeof(LhsScalar) * k) : 0;
if(_m<m) m = _m & mr_mask;
}
template<typename LhsScalar, typename RhsScalar>
inline void computeProductBlockingSizes(std::ptrdiff_t& k, std::ptrdiff_t& m, std::ptrdiff_t& n)
{
computeProductBlockingSizes<LhsScalar,RhsScalar,1>(k, m, n);
}
#ifdef EIGEN_HAS_FUSE_CJMADD
#define MADD(CJ,A,B,C,T) C = CJ.pmadd(A,B,C);
#else
// FIXME (a bit overkill maybe ?)
template<typename CJ, typename A, typename B, typename C, typename T> struct gebp_madd_selector {
EIGEN_ALWAYS_INLINE static void run(const CJ& cj, A& a, B& b, C& c, T& /*t*/)
{
c = cj.pmadd(a,b,c);
}
};
template<typename CJ, typename T> struct gebp_madd_selector<CJ,T,T,T,T> {
EIGEN_ALWAYS_INLINE static void run(const CJ& cj, T& a, T& b, T& c, T& t)
{
t = b; t = cj.pmul(a,t); c = padd(c,t);
}
};
template<typename CJ, typename A, typename B, typename C, typename T>
EIGEN_STRONG_INLINE void gebp_madd(const CJ& cj, A& a, B& b, C& c, T& t)
{
gebp_madd_selector<CJ,A,B,C,T>::run(cj,a,b,c,t);
}
#define MADD(CJ,A,B,C,T) gebp_madd(CJ,A,B,C,T);
// #define MADD(CJ,A,B,C,T) T = B; T = CJ.pmul(A,T); C = padd(C,T);
#endif
/* Vectorization logic
* real*real: unpack rhs to constant packets, ...
*
* cd*cd : unpack rhs to (b_r,b_r), (b_i,b_i), mul to get (a_r b_r,a_i b_r) (a_r b_i,a_i b_i),
* storing each res packet into two packets (2x2),
* at the end combine them: swap the second and addsub them
* cf*cf : same but with 2x4 blocks
* cplx*real : unpack rhs to constant packets, ...
* real*cplx : load lhs as (a0,a0,a1,a1), and mul as usual
*/
template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs, bool _ConjRhs>
class gebp_traits
{
public:
typedef _LhsScalar LhsScalar;
typedef _RhsScalar RhsScalar;
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
enum {
ConjLhs = _ConjLhs,
ConjRhs = _ConjRhs,
Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
// register block size along the N direction (must be either 2 or 4)
nr = NumberOfRegisters/4,
// register block size along the M direction (currently, this one cannot be modified)
mr = 2 * LhsPacketSize,
WorkSpaceFactor = nr * RhsPacketSize,
LhsProgress = LhsPacketSize,
RhsProgress = RhsPacketSize
};
typedef typename packet_traits<LhsScalar>::type _LhsPacket;
typedef typename packet_traits<RhsScalar>::type _RhsPacket;
typedef typename packet_traits<ResScalar>::type _ResPacket;
typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
typedef ResPacket AccPacket;
EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
{
p = pset1<ResPacket>(ResScalar(0));
}
EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
{
for(DenseIndex k=0; k<n; k++)
pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
}
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
{
dest = pload<RhsPacket>(b);
}
EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
{
dest = pload<LhsPacket>(a);
}
EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, AccPacket& tmp) const
{
tmp = b; tmp = pmul(a,tmp); c = padd(c,tmp);
}
EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
{
r = pmadd(c,alpha,r);
}
protected:
// conj_helper<LhsScalar,RhsScalar,ConjLhs,ConjRhs> cj;
// conj_helper<LhsPacket,RhsPacket,ConjLhs,ConjRhs> pcj;
};
template<typename RealScalar, bool _ConjLhs>
class gebp_traits<std::complex<RealScalar>, RealScalar, _ConjLhs, false>
{
public:
typedef std::complex<RealScalar> LhsScalar;
typedef RealScalar RhsScalar;
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
enum {
ConjLhs = _ConjLhs,
ConjRhs = false,
Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
nr = NumberOfRegisters/4,
mr = 2 * LhsPacketSize,
WorkSpaceFactor = nr*RhsPacketSize,
LhsProgress = LhsPacketSize,
RhsProgress = RhsPacketSize
};
typedef typename packet_traits<LhsScalar>::type _LhsPacket;
typedef typename packet_traits<RhsScalar>::type _RhsPacket;
typedef typename packet_traits<ResScalar>::type _ResPacket;
typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
typedef ResPacket AccPacket;
EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
{
p = pset1<ResPacket>(ResScalar(0));
}
EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
{
for(DenseIndex k=0; k<n; k++)
pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
}
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
{
dest = pload<RhsPacket>(b);
}
EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
{
dest = pload<LhsPacket>(a);
}
EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
{
madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
}
EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
{
tmp = b; tmp = pmul(a.v,tmp); c.v = padd(c.v,tmp);
}
EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
{
c += a * b;
}
EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
{
r = cj.pmadd(c,alpha,r);
}
protected:
conj_helper<ResPacket,ResPacket,ConjLhs,false> cj;
};
template<typename RealScalar, bool _ConjLhs, bool _ConjRhs>
class gebp_traits<std::complex<RealScalar>, std::complex<RealScalar>, _ConjLhs, _ConjRhs >
{
public:
typedef std::complex<RealScalar> Scalar;
typedef std::complex<RealScalar> LhsScalar;
typedef std::complex<RealScalar> RhsScalar;
typedef std::complex<RealScalar> ResScalar;
enum {
ConjLhs = _ConjLhs,
ConjRhs = _ConjRhs,
Vectorizable = packet_traits<RealScalar>::Vectorizable
&& packet_traits<Scalar>::Vectorizable,
RealPacketSize = Vectorizable ? packet_traits<RealScalar>::size : 1,
ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
nr = 2,
mr = 2 * ResPacketSize,
WorkSpaceFactor = Vectorizable ? 2*nr*RealPacketSize : nr,
LhsProgress = ResPacketSize,
RhsProgress = Vectorizable ? 2*ResPacketSize : 1
};
typedef typename packet_traits<RealScalar>::type RealPacket;
typedef typename packet_traits<Scalar>::type ScalarPacket;
struct DoublePacket
{
RealPacket first;
RealPacket second;
};
typedef typename conditional<Vectorizable,RealPacket, Scalar>::type LhsPacket;
typedef typename conditional<Vectorizable,DoublePacket,Scalar>::type RhsPacket;
typedef typename conditional<Vectorizable,ScalarPacket,Scalar>::type ResPacket;
typedef typename conditional<Vectorizable,DoublePacket,Scalar>::type AccPacket;
EIGEN_STRONG_INLINE void initAcc(Scalar& p) { p = Scalar(0); }
EIGEN_STRONG_INLINE void initAcc(DoublePacket& p)
{
p.first = pset1<RealPacket>(RealScalar(0));
p.second = pset1<RealPacket>(RealScalar(0));
}
/* Unpack the rhs coeff such that each complex coefficient is spread into
* two packects containing respectively the real and imaginary coefficient
* duplicated as many time as needed: (x+iy) => [x, ..., x] [y, ..., y]
*/
EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const Scalar* rhs, Scalar* b)
{
for(DenseIndex k=0; k<n; k++)
{
if(Vectorizable)
{
pstore1<RealPacket>((RealScalar*)&b[k*ResPacketSize*2+0], real(rhs[k]));
pstore1<RealPacket>((RealScalar*)&b[k*ResPacketSize*2+ResPacketSize], imag(rhs[k]));
}
else
b[k] = rhs[k];
}
}
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, ResPacket& dest) const { dest = *b; }
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, DoublePacket& dest) const
{
dest.first = pload<RealPacket>((const RealScalar*)b);
dest.second = pload<RealPacket>((const RealScalar*)(b+ResPacketSize));
}
// nothing special here
EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
{
dest = pload<LhsPacket>((const typename unpacket_traits<LhsPacket>::type*)(a));
}
EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, DoublePacket& c, RhsPacket& /*tmp*/) const
{
c.first = padd(pmul(a,b.first), c.first);
c.second = padd(pmul(a,b.second),c.second);
}
EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, ResPacket& c, RhsPacket& /*tmp*/) const
{
c = cj.pmadd(a,b,c);
}
EIGEN_STRONG_INLINE void acc(const Scalar& c, const Scalar& alpha, Scalar& r) const { r += alpha * c; }
EIGEN_STRONG_INLINE void acc(const DoublePacket& c, const ResPacket& alpha, ResPacket& r) const
{
// assemble c
ResPacket tmp;
if((!ConjLhs)&&(!ConjRhs))
{
tmp = pcplxflip(pconj(ResPacket(c.second)));
tmp = padd(ResPacket(c.first),tmp);
}
else if((!ConjLhs)&&(ConjRhs))
{
tmp = pconj(pcplxflip(ResPacket(c.second)));
tmp = padd(ResPacket(c.first),tmp);
}
else if((ConjLhs)&&(!ConjRhs))
{
tmp = pcplxflip(ResPacket(c.second));
tmp = padd(pconj(ResPacket(c.first)),tmp);
}
else if((ConjLhs)&&(ConjRhs))
{
tmp = pcplxflip(ResPacket(c.second));
tmp = psub(pconj(ResPacket(c.first)),tmp);
}
r = pmadd(tmp,alpha,r);
}
protected:
conj_helper<LhsScalar,RhsScalar,ConjLhs,ConjRhs> cj;
};
template<typename RealScalar, bool _ConjRhs>
class gebp_traits<RealScalar, std::complex<RealScalar>, false, _ConjRhs >
{
public:
typedef std::complex<RealScalar> Scalar;
typedef RealScalar LhsScalar;
typedef Scalar RhsScalar;
typedef Scalar ResScalar;
enum {
ConjLhs = false,
ConjRhs = _ConjRhs,
Vectorizable = packet_traits<RealScalar>::Vectorizable
&& packet_traits<Scalar>::Vectorizable,
LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
nr = 4,
mr = 2*ResPacketSize,
WorkSpaceFactor = nr*RhsPacketSize,
LhsProgress = ResPacketSize,
RhsProgress = ResPacketSize
};
typedef typename packet_traits<LhsScalar>::type _LhsPacket;
typedef typename packet_traits<RhsScalar>::type _RhsPacket;
typedef typename packet_traits<ResScalar>::type _ResPacket;
typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
typedef ResPacket AccPacket;
EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
{
p = pset1<ResPacket>(ResScalar(0));
}
EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
{
for(DenseIndex k=0; k<n; k++)
pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
}
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
{
dest = pload<RhsPacket>(b);
}
EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
{
dest = ploaddup<LhsPacket>(a);
}
EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
{
madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
}
EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
{
tmp = b; tmp.v = pmul(a,tmp.v); c = padd(c,tmp);
}
EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
{
c += a * b;
}
EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
{
r = cj.pmadd(alpha,c,r);
}
protected:
conj_helper<ResPacket,ResPacket,false,ConjRhs> cj;
};
/* optimized GEneral packed Block * packed Panel product kernel
*
* Mixing type logic: C += A * B
* | A | B | comments
* |real |cplx | no vectorization yet, would require to pack A with duplication
* |cplx |real | easy vectorization
*/
template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
struct gebp_kernel
{
typedef gebp_traits<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> Traits;
typedef typename Traits::ResScalar ResScalar;
typedef typename Traits::LhsPacket LhsPacket;
typedef typename Traits::RhsPacket RhsPacket;
typedef typename Traits::ResPacket ResPacket;
typedef typename Traits::AccPacket AccPacket;
enum {
Vectorizable = Traits::Vectorizable,
LhsProgress = Traits::LhsProgress,
RhsProgress = Traits::RhsProgress,
ResPacketSize = Traits::ResPacketSize
};
EIGEN_DONT_INLINE EIGEN_FLATTEN_ATTRIB
void operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index rows, Index depth, Index cols, ResScalar alpha,
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0, RhsScalar* unpackedB = 0)
{
Traits traits;
if(strideA==-1) strideA = depth;
if(strideB==-1) strideB = depth;
conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
// conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
Index packet_cols = (cols/nr) * nr;
const Index peeled_mc = (rows/mr)*mr;
// FIXME:
const Index peeled_mc2 = peeled_mc + (rows-peeled_mc >= LhsProgress ? LhsProgress : 0);
const Index peeled_kc = (depth/4)*4;
if(unpackedB==0)
unpackedB = const_cast<RhsScalar*>(blockB - strideB * nr * RhsProgress);
// loops on each micro vertical panel of rhs (depth x nr)
for(Index j2=0; j2<packet_cols; j2+=nr)
{
traits.unpackRhs(depth*nr,&blockB[j2*strideB+offsetB*nr],unpackedB);
// loops on each largest micro horizontal panel of lhs (mr x depth)
// => we select a mr x nr micro block of res which is entirely
// stored into mr/packet_size x nr registers.
for(Index i=0; i<peeled_mc; i+=mr)
{
const LhsScalar* blA = &blockA[i*strideA+offsetA*mr];
prefetch(&blA[0]);
// gets res block as register
AccPacket C0, C1, C2, C3, C4, C5, C6, C7;
traits.initAcc(C0);
traits.initAcc(C1);
if(nr==4) traits.initAcc(C2);
if(nr==4) traits.initAcc(C3);
traits.initAcc(C4);
traits.initAcc(C5);
if(nr==4) traits.initAcc(C6);
if(nr==4) traits.initAcc(C7);
ResScalar* r0 = &res[(j2+0)*resStride + i];
ResScalar* r1 = r0 + resStride;
ResScalar* r2 = r1 + resStride;
ResScalar* r3 = r2 + resStride;
prefetch(r0+16);
prefetch(r1+16);
prefetch(r2+16);
prefetch(r3+16);
// performs "inner" product
// TODO let's check wether the folowing peeled loop could not be
// optimized via optimal prefetching from one loop to the other
const RhsScalar* blB = unpackedB;
for(Index k=0; k<peeled_kc; k+=4)
{
if(nr==2)
{
LhsPacket A0, A1;
RhsPacket B_0;
RhsPacket T0;
EIGEN_ASM_COMMENT("mybegin2");
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadLhs(&blA[1*LhsProgress], A1);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[1*RhsProgress], B_0);
traits.madd(A0,B_0,C1,T0);
traits.madd(A1,B_0,C5,B_0);
traits.loadLhs(&blA[2*LhsProgress], A0);
traits.loadLhs(&blA[3*LhsProgress], A1);
traits.loadRhs(&blB[2*RhsProgress], B_0);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[3*RhsProgress], B_0);
traits.madd(A0,B_0,C1,T0);
traits.madd(A1,B_0,C5,B_0);
traits.loadLhs(&blA[4*LhsProgress], A0);
traits.loadLhs(&blA[5*LhsProgress], A1);
traits.loadRhs(&blB[4*RhsProgress], B_0);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[5*RhsProgress], B_0);
traits.madd(A0,B_0,C1,T0);
traits.madd(A1,B_0,C5,B_0);
traits.loadLhs(&blA[6*LhsProgress], A0);
traits.loadLhs(&blA[7*LhsProgress], A1);
traits.loadRhs(&blB[6*RhsProgress], B_0);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[7*RhsProgress], B_0);
traits.madd(A0,B_0,C1,T0);
traits.madd(A1,B_0,C5,B_0);
EIGEN_ASM_COMMENT("myend");
}
else
{
EIGEN_ASM_COMMENT("mybegin4");
LhsPacket A0, A1;
RhsPacket B_0, B1, B2, B3;
RhsPacket T0;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadLhs(&blA[1*LhsProgress], A1);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.loadRhs(&blB[1*RhsProgress], B1);
traits.madd(A0,B_0,C0,T0);
traits.loadRhs(&blB[2*RhsProgress], B2);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[3*RhsProgress], B3);
traits.loadRhs(&blB[4*RhsProgress], B_0);
traits.madd(A0,B1,C1,T0);
traits.madd(A1,B1,C5,B1);
traits.loadRhs(&blB[5*RhsProgress], B1);
traits.madd(A0,B2,C2,T0);
traits.madd(A1,B2,C6,B2);
traits.loadRhs(&blB[6*RhsProgress], B2);
traits.madd(A0,B3,C3,T0);
traits.loadLhs(&blA[2*LhsProgress], A0);
traits.madd(A1,B3,C7,B3);
traits.loadLhs(&blA[3*LhsProgress], A1);
traits.loadRhs(&blB[7*RhsProgress], B3);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[8*RhsProgress], B_0);
traits.madd(A0,B1,C1,T0);
traits.madd(A1,B1,C5,B1);
traits.loadRhs(&blB[9*RhsProgress], B1);
traits.madd(A0,B2,C2,T0);
traits.madd(A1,B2,C6,B2);
traits.loadRhs(&blB[10*RhsProgress], B2);
traits.madd(A0,B3,C3,T0);
traits.loadLhs(&blA[4*LhsProgress], A0);
traits.madd(A1,B3,C7,B3);
traits.loadLhs(&blA[5*LhsProgress], A1);
traits.loadRhs(&blB[11*RhsProgress], B3);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[12*RhsProgress], B_0);
traits.madd(A0,B1,C1,T0);
traits.madd(A1,B1,C5,B1);
traits.loadRhs(&blB[13*RhsProgress], B1);
traits.madd(A0,B2,C2,T0);
traits.madd(A1,B2,C6,B2);
traits.loadRhs(&blB[14*RhsProgress], B2);
traits.madd(A0,B3,C3,T0);
traits.loadLhs(&blA[6*LhsProgress], A0);
traits.madd(A1,B3,C7,B3);
traits.loadLhs(&blA[7*LhsProgress], A1);
traits.loadRhs(&blB[15*RhsProgress], B3);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.madd(A0,B1,C1,T0);
traits.madd(A1,B1,C5,B1);
traits.madd(A0,B2,C2,T0);
traits.madd(A1,B2,C6,B2);
traits.madd(A0,B3,C3,T0);
traits.madd(A1,B3,C7,B3);
}
blB += 4*nr*RhsProgress;
blA += 4*mr;
}
// process remaining peeled loop
for(Index k=peeled_kc; k<depth; k++)
{
if(nr==2)
{
LhsPacket A0, A1;
RhsPacket B_0;
RhsPacket T0;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadLhs(&blA[1*LhsProgress], A1);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[1*RhsProgress], B_0);
traits.madd(A0,B_0,C1,T0);
traits.madd(A1,B_0,C5,B_0);
}
else
{
LhsPacket A0, A1;
RhsPacket B_0, B1, B2, B3;
RhsPacket T0;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadLhs(&blA[1*LhsProgress], A1);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.loadRhs(&blB[1*RhsProgress], B1);
traits.madd(A0,B_0,C0,T0);
traits.loadRhs(&blB[2*RhsProgress], B2);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[3*RhsProgress], B3);
traits.madd(A0,B1,C1,T0);
traits.madd(A1,B1,C5,B1);
traits.madd(A0,B2,C2,T0);
traits.madd(A1,B2,C6,B2);
traits.madd(A0,B3,C3,T0);
traits.madd(A1,B3,C7,B3);
}
blB += nr*RhsProgress;
blA += mr;
}
if(nr==4)
{
ResPacket R0, R1, R2, R3, R4, R5, R6;
ResPacket alphav = pset1<ResPacket>(alpha);
R0 = ploadu<ResPacket>(r0);
R1 = ploadu<ResPacket>(r1);
R2 = ploadu<ResPacket>(r2);
R3 = ploadu<ResPacket>(r3);
R4 = ploadu<ResPacket>(r0 + ResPacketSize);
R5 = ploadu<ResPacket>(r1 + ResPacketSize);
R6 = ploadu<ResPacket>(r2 + ResPacketSize);
traits.acc(C0, alphav, R0);
pstoreu(r0, R0);
R0 = ploadu<ResPacket>(r3 + ResPacketSize);
traits.acc(C1, alphav, R1);
traits.acc(C2, alphav, R2);
traits.acc(C3, alphav, R3);
traits.acc(C4, alphav, R4);
traits.acc(C5, alphav, R5);
traits.acc(C6, alphav, R6);
traits.acc(C7, alphav, R0);
pstoreu(r1, R1);
pstoreu(r2, R2);
pstoreu(r3, R3);
pstoreu(r0 + ResPacketSize, R4);
pstoreu(r1 + ResPacketSize, R5);
pstoreu(r2 + ResPacketSize, R6);
pstoreu(r3 + ResPacketSize, R0);
}
else
{
ResPacket R0, R1, R4;
ResPacket alphav = pset1<ResPacket>(alpha);
R0 = ploadu<ResPacket>(r0);
R1 = ploadu<ResPacket>(r1);
R4 = ploadu<ResPacket>(r0 + ResPacketSize);
traits.acc(C0, alphav, R0);
pstoreu(r0, R0);
R0 = ploadu<ResPacket>(r1 + ResPacketSize);
traits.acc(C1, alphav, R1);
traits.acc(C4, alphav, R4);
traits.acc(C5, alphav, R0);
pstoreu(r1, R1);
pstoreu(r0 + ResPacketSize, R4);
pstoreu(r1 + ResPacketSize, R0);
}
}
if(rows-peeled_mc>=LhsProgress)
{
Index i = peeled_mc;
const LhsScalar* blA = &blockA[i*strideA+offsetA*LhsProgress];
prefetch(&blA[0]);
// gets res block as register
AccPacket C0, C1, C2, C3;
traits.initAcc(C0);
traits.initAcc(C1);
if(nr==4) traits.initAcc(C2);
if(nr==4) traits.initAcc(C3);
// performs "inner" product
const RhsScalar* blB = unpackedB;
for(Index k=0; k<peeled_kc; k+=4)
{
if(nr==2)
{
LhsPacket A0;
RhsPacket B_0, B1;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.loadRhs(&blB[1*RhsProgress], B1);
traits.madd(A0,B_0,C0,B_0);
traits.loadRhs(&blB[2*RhsProgress], B_0);
traits.madd(A0,B1,C1,B1);
traits.loadLhs(&blA[1*LhsProgress], A0);
traits.loadRhs(&blB[3*RhsProgress], B1);
traits.madd(A0,B_0,C0,B_0);
traits.loadRhs(&blB[4*RhsProgress], B_0);
traits.madd(A0,B1,C1,B1);
traits.loadLhs(&blA[2*LhsProgress], A0);
traits.loadRhs(&blB[5*RhsProgress], B1);
traits.madd(A0,B_0,C0,B_0);
traits.loadRhs(&blB[6*RhsProgress], B_0);
traits.madd(A0,B1,C1,B1);
traits.loadLhs(&blA[3*LhsProgress], A0);
traits.loadRhs(&blB[7*RhsProgress], B1);
traits.madd(A0,B_0,C0,B_0);
traits.madd(A0,B1,C1,B1);
}
else
{
LhsPacket A0;
RhsPacket B_0, B1, B2, B3;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.loadRhs(&blB[1*RhsProgress], B1);
traits.madd(A0,B_0,C0,B_0);
traits.loadRhs(&blB[2*RhsProgress], B2);
traits.loadRhs(&blB[3*RhsProgress], B3);
traits.loadRhs(&blB[4*RhsProgress], B_0);
traits.madd(A0,B1,C1,B1);
traits.loadRhs(&blB[5*RhsProgress], B1);
traits.madd(A0,B2,C2,B2);
traits.loadRhs(&blB[6*RhsProgress], B2);
traits.madd(A0,B3,C3,B3);
traits.loadLhs(&blA[1*LhsProgress], A0);
traits.loadRhs(&blB[7*RhsProgress], B3);
traits.madd(A0,B_0,C0,B_0);
traits.loadRhs(&blB[8*RhsProgress], B_0);
traits.madd(A0,B1,C1,B1);
traits.loadRhs(&blB[9*RhsProgress], B1);
traits.madd(A0,B2,C2,B2);
traits.loadRhs(&blB[10*RhsProgress], B2);
traits.madd(A0,B3,C3,B3);
traits.loadLhs(&blA[2*LhsProgress], A0);
traits.loadRhs(&blB[11*RhsProgress], B3);
traits.madd(A0,B_0,C0,B_0);
traits.loadRhs(&blB[12*RhsProgress], B_0);
traits.madd(A0,B1,C1,B1);
traits.loadRhs(&blB[13*RhsProgress], B1);
traits.madd(A0,B2,C2,B2);
traits.loadRhs(&blB[14*RhsProgress], B2);
traits.madd(A0,B3,C3,B3);
traits.loadLhs(&blA[3*LhsProgress], A0);
traits.loadRhs(&blB[15*RhsProgress], B3);
traits.madd(A0,B_0,C0,B_0);
traits.madd(A0,B1,C1,B1);
traits.madd(A0,B2,C2,B2);
traits.madd(A0,B3,C3,B3);
}
blB += nr*4*RhsProgress;
blA += 4*LhsProgress;
}
// process remaining peeled loop
for(Index k=peeled_kc; k<depth; k++)
{
if(nr==2)
{
LhsPacket A0;
RhsPacket B_0, B1;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.loadRhs(&blB[1*RhsProgress], B1);
traits.madd(A0,B_0,C0,B_0);
traits.madd(A0,B1,C1,B1);
}
else
{
LhsPacket A0;
RhsPacket B_0, B1, B2, B3;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.loadRhs(&blB[1*RhsProgress], B1);
traits.loadRhs(&blB[2*RhsProgress], B2);
traits.loadRhs(&blB[3*RhsProgress], B3);
traits.madd(A0,B_0,C0,B_0);
traits.madd(A0,B1,C1,B1);
traits.madd(A0,B2,C2,B2);
traits.madd(A0,B3,C3,B3);
}
blB += nr*RhsProgress;
blA += LhsProgress;
}
ResPacket R0, R1, R2, R3;
ResPacket alphav = pset1<ResPacket>(alpha);
ResScalar* r0 = &res[(j2+0)*resStride + i];
ResScalar* r1 = r0 + resStride;
ResScalar* r2 = r1 + resStride;
ResScalar* r3 = r2 + resStride;
R0 = ploadu<ResPacket>(r0);
R1 = ploadu<ResPacket>(r1);
if(nr==4) R2 = ploadu<ResPacket>(r2);
if(nr==4) R3 = ploadu<ResPacket>(r3);
traits.acc(C0, alphav, R0);
traits.acc(C1, alphav, R1);
if(nr==4) traits.acc(C2, alphav, R2);
if(nr==4) traits.acc(C3, alphav, R3);
pstoreu(r0, R0);
pstoreu(r1, R1);
if(nr==4) pstoreu(r2, R2);
if(nr==4) pstoreu(r3, R3);
}
for(Index i=peeled_mc2; i<rows; i++)
{
const LhsScalar* blA = &blockA[i*strideA+offsetA];
prefetch(&blA[0]);
// gets a 1 x nr res block as registers
ResScalar C0(0), C1(0), C2(0), C3(0);
// TODO directly use blockB ???
const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
for(Index k=0; k<depth; k++)
{
if(nr==2)
{
LhsScalar A0;
RhsScalar B_0, B1;
A0 = blA[k];
B_0 = blB[0];
B1 = blB[1];
MADD(cj,A0,B_0,C0,B_0);
MADD(cj,A0,B1,C1,B1);
}
else
{
LhsScalar A0;
RhsScalar B_0, B1, B2, B3;
A0 = blA[k];
B_0 = blB[0];
B1 = blB[1];
B2 = blB[2];
B3 = blB[3];
MADD(cj,A0,B_0,C0,B_0);
MADD(cj,A0,B1,C1,B1);
MADD(cj,A0,B2,C2,B2);
MADD(cj,A0,B3,C3,B3);
}
blB += nr;
}
res[(j2+0)*resStride + i] += alpha*C0;
res[(j2+1)*resStride + i] += alpha*C1;
if(nr==4) res[(j2+2)*resStride + i] += alpha*C2;
if(nr==4) res[(j2+3)*resStride + i] += alpha*C3;
}
}
// process remaining rhs/res columns one at a time
// => do the same but with nr==1
for(Index j2=packet_cols; j2<cols; j2++)
{
// unpack B
traits.unpackRhs(depth, &blockB[j2*strideB+offsetB], unpackedB);
for(Index i=0; i<peeled_mc; i+=mr)
{
const LhsScalar* blA = &blockA[i*strideA+offsetA*mr];
prefetch(&blA[0]);
// TODO move the res loads to the stores
// get res block as registers
AccPacket C0, C4;
traits.initAcc(C0);
traits.initAcc(C4);
const RhsScalar* blB = unpackedB;
for(Index k=0; k<depth; k++)
{
LhsPacket A0, A1;
RhsPacket B_0;
RhsPacket T0;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadLhs(&blA[1*LhsProgress], A1);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
blB += RhsProgress;
blA += 2*LhsProgress;
}
ResPacket R0, R4;
ResPacket alphav = pset1<ResPacket>(alpha);
ResScalar* r0 = &res[(j2+0)*resStride + i];
R0 = ploadu<ResPacket>(r0);
R4 = ploadu<ResPacket>(r0+ResPacketSize);
traits.acc(C0, alphav, R0);
traits.acc(C4, alphav, R4);
pstoreu(r0, R0);
pstoreu(r0+ResPacketSize, R4);
}
if(rows-peeled_mc>=LhsProgress)
{
Index i = peeled_mc;
const LhsScalar* blA = &blockA[i*strideA+offsetA*LhsProgress];
prefetch(&blA[0]);
AccPacket C0;
traits.initAcc(C0);
const RhsScalar* blB = unpackedB;
for(Index k=0; k<depth; k++)
{
LhsPacket A0;
RhsPacket B_0;
traits.loadLhs(blA, A0);
traits.loadRhs(blB, B_0);
traits.madd(A0, B_0, C0, B_0);
blB += RhsProgress;
blA += LhsProgress;
}
ResPacket alphav = pset1<ResPacket>(alpha);
ResPacket R0 = ploadu<ResPacket>(&res[(j2+0)*resStride + i]);
traits.acc(C0, alphav, R0);
pstoreu(&res[(j2+0)*resStride + i], R0);
}
for(Index i=peeled_mc2; i<rows; i++)
{
const LhsScalar* blA = &blockA[i*strideA+offsetA];
prefetch(&blA[0]);
// gets a 1 x 1 res block as registers
ResScalar C0(0);
// FIXME directly use blockB ??
const RhsScalar* blB = &blockB[j2*strideB+offsetB];
for(Index k=0; k<depth; k++)
{
LhsScalar A0 = blA[k];
RhsScalar B_0 = blB[k];
MADD(cj, A0, B_0, C0, B_0);
}
res[(j2+0)*resStride + i] += alpha*C0;
}
}
}
};
#undef CJMADD
// pack a block of the lhs
// The traversal is as follow (mr==4):
// 0 4 8 12 ...
// 1 5 9 13 ...
// 2 6 10 14 ...
// 3 7 11 15 ...
//
// 16 20 24 28 ...
// 17 21 25 29 ...
// 18 22 26 30 ...
// 19 23 27 31 ...
//
// 32 33 34 35 ...
// 36 36 38 39 ...
template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder, bool Conjugate, bool PanelMode>
struct gemm_pack_lhs
{
EIGEN_DONT_INLINE void operator()(Scalar* blockA, const Scalar* EIGEN_RESTRICT _lhs, Index lhsStride, Index depth, Index rows,
Index stride=0, Index offset=0)
{
typedef typename packet_traits<Scalar>::type Packet;
enum { PacketSize = packet_traits<Scalar>::size };
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS");
eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
eigen_assert( (StorageOrder==RowMajor) || ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) );
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
const_blas_data_mapper<Scalar, Index, StorageOrder> lhs(_lhs,lhsStride);
Index count = 0;
Index peeled_mc = (rows/Pack1)*Pack1;
for(Index i=0; i<peeled_mc; i+=Pack1)
{
if(PanelMode) count += Pack1 * offset;
if(StorageOrder==ColMajor)
{
for(Index k=0; k<depth; k++)
{
Packet A, B, C, D;
if(Pack1>=1*PacketSize) A = ploadu<Packet>(&lhs(i+0*PacketSize, k));
if(Pack1>=2*PacketSize) B = ploadu<Packet>(&lhs(i+1*PacketSize, k));
if(Pack1>=3*PacketSize) C = ploadu<Packet>(&lhs(i+2*PacketSize, k));
if(Pack1>=4*PacketSize) D = ploadu<Packet>(&lhs(i+3*PacketSize, k));
if(Pack1>=1*PacketSize) { pstore(blockA+count, cj.pconj(A)); count+=PacketSize; }
if(Pack1>=2*PacketSize) { pstore(blockA+count, cj.pconj(B)); count+=PacketSize; }
if(Pack1>=3*PacketSize) { pstore(blockA+count, cj.pconj(C)); count+=PacketSize; }
if(Pack1>=4*PacketSize) { pstore(blockA+count, cj.pconj(D)); count+=PacketSize; }
}
}
else
{
for(Index k=0; k<depth; k++)
{
// TODO add a vectorized transpose here
Index w=0;
for(; w<Pack1-3; w+=4)
{
Scalar a(cj(lhs(i+w+0, k))),
b(cj(lhs(i+w+1, k))),
c(cj(lhs(i+w+2, k))),
d(cj(lhs(i+w+3, k)));
blockA[count++] = a;
blockA[count++] = b;
blockA[count++] = c;
blockA[count++] = d;
}
if(Pack1%4)
for(;w<Pack1;++w)
blockA[count++] = cj(lhs(i+w, k));
}
}
if(PanelMode) count += Pack1 * (stride-offset-depth);
}
if(rows-peeled_mc>=Pack2)
{
if(PanelMode) count += Pack2*offset;
for(Index k=0; k<depth; k++)
for(Index w=0; w<Pack2; w++)
blockA[count++] = cj(lhs(peeled_mc+w, k));
if(PanelMode) count += Pack2 * (stride-offset-depth);
peeled_mc += Pack2;
}
for(Index i=peeled_mc; i<rows; i++)
{
if(PanelMode) count += offset;
for(Index k=0; k<depth; k++)
blockA[count++] = cj(lhs(i, k));
if(PanelMode) count += (stride-offset-depth);
}
}
};
// copy a complete panel of the rhs
// this version is optimized for column major matrices
// The traversal order is as follow: (nr==4):
// 0 1 2 3 12 13 14 15 24 27
// 4 5 6 7 16 17 18 19 25 28
// 8 9 10 11 20 21 22 23 26 29
// . . . . . . . . . .
template<typename Scalar, typename Index, int nr, bool Conjugate, bool PanelMode>
struct gemm_pack_rhs<Scalar, Index, nr, ColMajor, Conjugate, PanelMode>
{
typedef typename packet_traits<Scalar>::type Packet;
enum { PacketSize = packet_traits<Scalar>::size };
EIGEN_DONT_INLINE void operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols,
Index stride=0, Index offset=0)
{
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR");
eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
Index packet_cols = (cols/nr) * nr;
Index count = 0;
for(Index j2=0; j2<packet_cols; j2+=nr)
{
// skip what we have before
if(PanelMode) count += nr * offset;
const Scalar* b0 = &rhs[(j2+0)*rhsStride];
const Scalar* b1 = &rhs[(j2+1)*rhsStride];
const Scalar* b2 = &rhs[(j2+2)*rhsStride];
const Scalar* b3 = &rhs[(j2+3)*rhsStride];
for(Index k=0; k<depth; k++)
{
blockB[count+0] = cj(b0[k]);
blockB[count+1] = cj(b1[k]);
if(nr==4) blockB[count+2] = cj(b2[k]);
if(nr==4) blockB[count+3] = cj(b3[k]);
count += nr;
}
// skip what we have after
if(PanelMode) count += nr * (stride-offset-depth);
}
// copy the remaining columns one at a time (nr==1)
for(Index j2=packet_cols; j2<cols; ++j2)
{
if(PanelMode) count += offset;
const Scalar* b0 = &rhs[(j2+0)*rhsStride];
for(Index k=0; k<depth; k++)
{
blockB[count] = cj(b0[k]);
count += 1;
}
if(PanelMode) count += (stride-offset-depth);
}
}
};
// this version is optimized for row major matrices
template<typename Scalar, typename Index, int nr, bool Conjugate, bool PanelMode>
struct gemm_pack_rhs<Scalar, Index, nr, RowMajor, Conjugate, PanelMode>
{
enum { PacketSize = packet_traits<Scalar>::size };
EIGEN_DONT_INLINE void operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols,
Index stride=0, Index offset=0)
{
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR");
eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
Index packet_cols = (cols/nr) * nr;
Index count = 0;
for(Index j2=0; j2<packet_cols; j2+=nr)
{
// skip what we have before
if(PanelMode) count += nr * offset;
for(Index k=0; k<depth; k++)
{
const Scalar* b0 = &rhs[k*rhsStride + j2];
blockB[count+0] = cj(b0[0]);
blockB[count+1] = cj(b0[1]);
if(nr==4) blockB[count+2] = cj(b0[2]);
if(nr==4) blockB[count+3] = cj(b0[3]);
count += nr;
}
// skip what we have after
if(PanelMode) count += nr * (stride-offset-depth);
}
// copy the remaining columns one at a time (nr==1)
for(Index j2=packet_cols; j2<cols; ++j2)
{
if(PanelMode) count += offset;
const Scalar* b0 = &rhs[j2];
for(Index k=0; k<depth; k++)
{
blockB[count] = cj(b0[k*rhsStride]);
count += 1;
}
if(PanelMode) count += stride-offset-depth;
}
}
};
} // end namespace internal
/** \returns the currently set level 1 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
* \sa setCpuCacheSize */
inline std::ptrdiff_t l1CacheSize()
{
std::ptrdiff_t l1, l2;
internal::manage_caching_sizes(GetAction, &l1, &l2);
return l1;
}
/** \returns the currently set level 2 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
* \sa setCpuCacheSize */
inline std::ptrdiff_t l2CacheSize()
{
std::ptrdiff_t l1, l2;
internal::manage_caching_sizes(GetAction, &l1, &l2);
return l2;
}
/** Set the cpu L1 and L2 cache sizes (in bytes).
* These values are use to adjust the size of the blocks
* for the algorithms working per blocks.
*
* \sa computeProductBlockingSizes */
inline void setCpuCacheSizes(std::ptrdiff_t l1, std::ptrdiff_t l2)
{
internal::manage_caching_sizes(SetAction, &l1, &l2);
}
} // end namespace Eigen
#endif // EIGEN_GENERAL_BLOCK_PANEL_H