blob: 38f1e0387fb714736db41080339389f9daf57321 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#define LOG_TAG "GLCompositor"
#include <sstream>
#include <string>
#include <vector>
#include <cutils/log.h>
#define EGL_EGLEXT_PROTOTYPES
#define GL_GLEXT_PROTOTYPES
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <hardware/hardware.h>
#include <hardware/hwcomposer.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <utils/Trace.h>
#include <cutils/properties.h>
#include <sync/sync.h>
#include <sw_sync.h>
#include "drm_hwcomposer.h"
#include "gl_compositor.h"
#include "seperate_rects.h"
// TODO(zachr): use hwc_drm_bo to turn buffer handles into textures
#ifndef EGL_NATIVE_HANDLE_ANDROID_NVX
#define EGL_NATIVE_HANDLE_ANDROID_NVX 0x322A
#endif
#define MAX_OVERLAPPING_LAYERS 64
namespace android {
struct GLCompositor::texture_from_handle {
EGLImageKHR image;
GLuint texture;
};
static const char *get_gl_error(void);
static const char *get_egl_error(void);
static bool has_extension(const char *extension, const char *extensions);
template <typename T>
int AllocResource(std::vector<T> &array) {
for (typename std::vector<T>::iterator it = array.begin(); it != array.end();
++it) {
if (!it->is_some()) {
return std::distance(array.begin(), it);
}
}
array.push_back(T());
return array.size() - 1;
}
template <typename T>
void FreeResource(std::vector<T> &array, int index) {
if (index == (int)array.size() - 1) {
array.pop_back();
} else if (index >= 0 && (unsigned)index < array.size()) {
array[index].Reset();
}
}
struct GLTarget {
sp<GraphicBuffer> fb;
EGLImageKHR egl_fb_image;
GLuint gl_fb;
GLuint gl_fb_tex;
bool forgotten;
unsigned composition_count;
GLTarget()
: egl_fb_image(EGL_NO_IMAGE_KHR),
gl_fb(0),
gl_fb_tex(0),
forgotten(true),
composition_count(0) {
}
void Reset() {
fb.clear();
egl_fb_image = EGL_NO_IMAGE_KHR;
gl_fb = 0;
gl_fb_tex = 0;
forgotten = true;
composition_count = 0;
}
bool is_some() const {
return egl_fb_image != EGL_NO_IMAGE_KHR;
}
};
struct GLCompositor::priv_data {
EGLDisplay egl_display;
EGLContext egl_ctx;
EGLDisplay saved_egl_display;
EGLContext saved_egl_ctx;
EGLSurface saved_egl_read;
EGLSurface saved_egl_draw;
int current_target;
std::vector<GLTarget> targets;
std::vector<GLComposition *> compositions;
std::vector<GLint> blend_programs;
GLuint vertex_buffer;
priv_data()
: egl_display(EGL_NO_DISPLAY),
egl_ctx(EGL_NO_CONTEXT),
saved_egl_display(EGL_NO_DISPLAY),
saved_egl_ctx(EGL_NO_CONTEXT),
saved_egl_read(EGL_NO_SURFACE),
saved_egl_draw(EGL_NO_SURFACE),
current_target(-1) {
}
};
class GLComposition : public Composition {
public:
struct LayerData {
hwc_layer_1 layer;
hwc_drm_bo bo;
};
GLComposition(GLCompositor *owner, Importer *imp)
: compositor(owner), importer(imp), target_handle(-1) {
}
virtual ~GLComposition() {
if (compositor == NULL) {
return;
}
// Removes this composition from the owning compositor automatically.
std::vector<GLComposition *> &compositions =
compositor->priv_->compositions;
std::vector<GLComposition *>::iterator it =
std::find(compositions.begin(), compositions.end(), this);
if (it != compositions.end()) {
compositions.erase(it);
}
GLTarget *target = &compositor->priv_->targets[target_handle];
target->composition_count--;
compositor->CheckAndDestroyTarget(target_handle);
}
virtual int AddLayer(int display, hwc_layer_1 *layer, hwc_drm_bo *bo) {
(void)display;
if (layer->compositionType != HWC_OVERLAY) {
ALOGE("Must add layers with compositionType == HWC_OVERLAY");
return 1;
}
if (layer->handle == 0) {
ALOGE("Must add layers with valid buffer handle");
return 1;
}
layer_data.push_back(LayerData());
LayerData &layer_datum = layer_data.back();
layer_datum.layer = *layer;
layer_datum.bo = *bo;
return importer->ReleaseBuffer(bo);
}
virtual unsigned GetRemainingLayers(int display, unsigned num_needed) const {
(void)display;
return num_needed;
}
GLCompositor *compositor;
Importer *importer;
int target_handle;
std::vector<LayerData> layer_data;
};
struct RenderingCommand {
struct TextureSource {
unsigned texture_index;
float crop_bounds[4];
float alpha;
};
float bounds[4];
unsigned texture_count;
TextureSource textures[MAX_OVERLAPPING_LAYERS];
RenderingCommand() : texture_count(0) {
}
};
static void ConstructCommands(const GLComposition &composition,
std::vector<RenderingCommand> *commands) {
std::vector<seperate_rects::Rect<float> > in_rects;
std::vector<seperate_rects::RectSet<uint64_t, float> > out_rects;
int i;
for (unsigned rect_index = 0; rect_index < composition.layer_data.size();
rect_index++) {
const struct hwc_layer_1 &layer = composition.layer_data[rect_index].layer;
seperate_rects::Rect<float> rect;
in_rects.push_back(seperate_rects::Rect<float>(
layer.displayFrame.left, layer.displayFrame.top,
layer.displayFrame.right, layer.displayFrame.bottom));
}
seperate_frects_64(in_rects, &out_rects);
for (unsigned rect_index = 0; rect_index < out_rects.size(); rect_index++) {
const seperate_rects::RectSet<uint64_t, float> &out_rect =
out_rects[rect_index];
commands->push_back(RenderingCommand());
RenderingCommand &cmd = commands->back();
memcpy(cmd.bounds, out_rect.rect.bounds, sizeof(cmd.bounds));
uint64_t tex_set = out_rect.id_set.getBits();
for (unsigned i = composition.layer_data.size() - 1; tex_set != 0x0; i--) {
if (tex_set & (0x1 << i)) {
tex_set &= ~(0x1 << i);
const struct hwc_layer_1 &layer = composition.layer_data[i].layer;
seperate_rects::Rect<float> display_rect(
layer.displayFrame.left, layer.displayFrame.top,
layer.displayFrame.right, layer.displayFrame.bottom);
float display_size[2] = {
display_rect.bounds[2] - display_rect.bounds[0],
display_rect.bounds[3] - display_rect.bounds[1]};
seperate_rects::Rect<float> crop_rect(
layer.sourceCropf.left, layer.sourceCropf.top,
layer.sourceCropf.right, layer.sourceCropf.bottom);
float crop_size[2] = {crop_rect.bounds[2] - crop_rect.bounds[0],
crop_rect.bounds[3] - crop_rect.bounds[1]};
RenderingCommand::TextureSource &src = cmd.textures[cmd.texture_count];
cmd.texture_count++;
src.texture_index = i;
for (int b = 0; b < 4; b++) {
float bound_percent = (cmd.bounds[b] - display_rect.bounds[b % 2]) /
display_size[b % 2];
src.crop_bounds[b] =
crop_rect.bounds[b % 2] + bound_percent * crop_size[b % 2];
}
if (layer.blending == HWC_BLENDING_NONE) {
src.alpha = 1.0f;
// This layer is opaque. There is no point in using layers below this
// one.
break;
}
src.alpha = layer.planeAlpha / 255.0f;
}
}
}
}
GLCompositor::GLCompositor() {
priv_ = new priv_data;
}
GLCompositor::~GLCompositor() {
if (BeginContext()) {
goto destroy_ctx;
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glBindTexture(GL_TEXTURE_2D, 0);
for (std::vector<GLTarget>::iterator it = priv_->targets.end();
it != priv_->targets.begin(); it = priv_->targets.end()) {
--it;
glDeleteFramebuffers(1, &it->gl_fb);
glDeleteTextures(1, &it->gl_fb_tex);
eglDestroyImageKHR(priv_->egl_display, it->egl_fb_image);
priv_->targets.erase(it);
}
for (std::vector<GLComposition *>::iterator it = priv_->compositions.end();
it != priv_->compositions.begin(); it = priv_->compositions.end()) {
--it;
// Prevents compositor from trying to erase itself
(*it)->compositor = NULL;
delete *it;
priv_->compositions.erase(it);
}
destroy_ctx:
eglMakeCurrent(priv_->egl_display,
EGL_NO_SURFACE /* No default draw surface */,
EGL_NO_SURFACE /* No default draw read */, EGL_NO_CONTEXT);
eglDestroyContext(priv_->egl_display, priv_->egl_ctx);
EndContext();
delete priv_;
}
int GLCompositor::Init() {
int ret = 0;
const char *egl_extensions;
const char *gl_extensions;
EGLint num_configs;
EGLint attribs[] = {EGL_WIDTH, 1, EGL_HEIGHT, 1, EGL_NONE, EGL_NONE};
EGLConfig egl_config;
// clang-format off
const GLfloat verts[] = {
0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 1.0f,
1.0f, 0.0f, 1.0f, 0.0f,
1.0f, 1.0f, 1.0f, 1.0f
};
// clang-format on
const EGLint config_attribs[] = {EGL_RENDERABLE_TYPE,
EGL_OPENGL_ES2_BIT,
EGL_RED_SIZE,
8,
EGL_GREEN_SIZE,
8,
EGL_BLUE_SIZE,
8,
EGL_NONE};
const EGLint context_attribs[] = {EGL_CONTEXT_CLIENT_VERSION, 3, EGL_NONE};
priv_->egl_display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
if (priv_->egl_display == EGL_NO_DISPLAY) {
ALOGE("Failed to get egl display");
ret = 1;
goto out;
}
if (!eglInitialize(priv_->egl_display, NULL, NULL)) {
ALOGE("Failed to initialize egl: %s", get_egl_error());
ret = 1;
goto out;
}
egl_extensions = eglQueryString(priv_->egl_display, EGL_EXTENSIONS);
// These extensions are all technically required but not always reported due
// to meta EGL filtering them out.
if (!has_extension("EGL_KHR_image_base", egl_extensions))
ALOGW("EGL_KHR_image_base extension not supported");
if (!has_extension("EGL_ANDROID_image_native_buffer", egl_extensions))
ALOGW("EGL_ANDROID_image_native_buffer extension not supported");
if (!has_extension("EGL_ANDROID_native_fence_sync", egl_extensions))
ALOGW("EGL_ANDROID_native_fence_sync extension not supported");
if (!eglChooseConfig(priv_->egl_display, config_attribs, &egl_config, 1,
&num_configs)) {
ALOGE("eglChooseConfig() failed with error: %s", get_egl_error());
goto out;
}
priv_->egl_ctx =
eglCreateContext(priv_->egl_display, egl_config,
EGL_NO_CONTEXT /* No shared context */, context_attribs);
if (priv_->egl_ctx == EGL_NO_CONTEXT) {
ALOGE("Failed to create OpenGL ES Context: %s", get_egl_error());
ret = 1;
goto out;
}
ret = BeginContext();
if (ret)
goto out;
gl_extensions = (const char *)glGetString(GL_EXTENSIONS);
if (!has_extension("GL_OES_EGL_image", gl_extensions))
ALOGW("GL_OES_EGL_image extension not supported");
glGenBuffers(1, &priv_->vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, priv_->vertex_buffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
if (GenerateShaders()) {
ret = 1;
goto end_ctx;
}
end_ctx:
EndContext();
out:
return ret;
}
Targeting *GLCompositor::targeting() {
return (Targeting *)this;
}
int GLCompositor::CreateTarget(sp<GraphicBuffer> &buffer) {
int ret;
ret = BeginContext();
if (ret)
return -1;
int target_handle = AllocResource(priv_->targets);
GLTarget *target = &priv_->targets[target_handle];
target->fb = buffer;
target->egl_fb_image = eglCreateImageKHR(
priv_->egl_display, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID,
(EGLClientBuffer)target->fb->getNativeBuffer(), NULL /* no attribs */);
if (target->egl_fb_image == EGL_NO_IMAGE_KHR) {
ALOGE("Failed to make image from target buffer: %s", get_egl_error());
ret = -1;
goto fail_create_image;
}
glGenTextures(1, &target->gl_fb_tex);
glBindTexture(GL_TEXTURE_2D, target->gl_fb_tex);
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D,
(GLeglImageOES)target->egl_fb_image);
glBindTexture(GL_TEXTURE_2D, 0);
glGenFramebuffers(1, &target->gl_fb);
glBindFramebuffer(GL_FRAMEBUFFER, target->gl_fb);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
target->gl_fb_tex, 0);
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
ALOGE("Failed framebuffer check for created target buffer");
ret = 1;
goto fail_framebuffer_status;
}
target->forgotten = false;
ret = target_handle;
goto out;
fail_framebuffer_status:
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glDeleteFramebuffers(1, &target->gl_fb);
glDeleteTextures(1, &target->gl_fb_tex);
eglDestroyImageKHR(priv_->egl_display, target->egl_fb_image);
target->gl_fb = 0;
target->gl_fb_tex = 0;
target->egl_fb_image = EGL_NO_IMAGE_KHR;
fail_create_image:
target->fb.clear();
FreeResource(priv_->targets, target_handle);
out:
EndContext();
return ret;
}
void GLCompositor::SetTarget(int target_handle) {
if (target_handle >= 0 && (unsigned)target_handle < priv_->targets.size()) {
GLTarget *target = &priv_->targets[target_handle];
if (target->is_some()) {
priv_->current_target = target_handle;
return;
}
}
priv_->current_target = -1;
}
void GLCompositor::ForgetTarget(int target_handle) {
if (target_handle >= 0 && (unsigned)target_handle < priv_->targets.size()) {
if (target_handle == priv_->current_target) {
priv_->current_target = -1;
}
GLTarget *target = &priv_->targets[target_handle];
if (target->is_some()) {
target->forgotten = true;
CheckAndDestroyTarget(target_handle);
return;
}
}
ALOGE("Failed to forget target because of invalid handle");
}
void GLCompositor::CheckAndDestroyTarget(int target_handle) {
GLTarget *target = &priv_->targets[target_handle];
if (target->composition_count == 0 && target->forgotten) {
if (BeginContext() == 0) {
glDeleteFramebuffers(1, &target->gl_fb);
glDeleteTextures(1, &target->gl_fb_tex);
eglDestroyImageKHR(priv_->egl_display, target->egl_fb_image);
EndContext();
}
FreeResource(priv_->targets, target_handle);
}
}
Composition *GLCompositor::CreateComposition(Importer *importer) {
if (priv_->current_target >= 0 &&
(unsigned)priv_->current_target < priv_->targets.size()) {
GLTarget *target = &priv_->targets[priv_->current_target];
if (target->is_some()) {
GLComposition *composition = new GLComposition(this, importer);
composition->target_handle = priv_->current_target;
target->composition_count++;
priv_->compositions.push_back(composition);
return composition;
}
}
ALOGE("Failed to create composition because of invalid target handle %d",
priv_->current_target);
return NULL;
}
int GLCompositor::QueueComposition(Composition *composition) {
if (composition) {
int ret = DoComposition(*(GLComposition *)composition);
delete composition;
return ret;
}
ALOGE("Failed to queue composition because of invalid composition handle");
return -EINVAL;
}
int GLCompositor::Composite() {
return 0;
}
int GLCompositor::BeginContext() {
priv_->saved_egl_display = eglGetCurrentDisplay();
priv_->saved_egl_ctx = eglGetCurrentContext();
if (priv_->saved_egl_display != priv_->egl_display ||
priv_->saved_egl_ctx != priv_->egl_ctx) {
priv_->saved_egl_read = eglGetCurrentSurface(EGL_READ);
priv_->saved_egl_draw = eglGetCurrentSurface(EGL_DRAW);
} else {
return 0;
}
if (!eglMakeCurrent(priv_->egl_display, EGL_NO_SURFACE, EGL_NO_SURFACE,
priv_->egl_ctx)) {
ALOGE("Failed to make the OpenGL ES Context current: %s", get_egl_error());
return 1;
}
return 0;
}
int GLCompositor::EndContext() {
if (priv_->saved_egl_display != eglGetCurrentDisplay() ||
priv_->saved_egl_ctx != eglGetCurrentContext()) {
if (!eglMakeCurrent(priv_->saved_egl_display, priv_->saved_egl_read,
priv_->saved_egl_draw, priv_->saved_egl_ctx)) {
ALOGE("Failed to make the old OpenGL ES Context current: %s",
get_egl_error());
return 1;
}
}
return 0;
}
GLint CompileAndCheckShader(GLenum type, unsigned source_count,
const GLchar **sources, std::string *shader_log) {
GLint status;
GLint shader = glCreateShader(type);
if (!shader) {
*shader_log = "glCreateShader failed";
return 0;
}
glShaderSource(shader, source_count, sources, NULL);
glCompileShader(shader);
glGetShaderiv(shader, GL_COMPILE_STATUS, &status);
if (!status) {
if (shader_log) {
GLint log_length;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length);
shader_log->resize(log_length);
glGetShaderInfoLog(shader, log_length, NULL, &(*shader_log)[0]);
}
glDeleteShader(shader);
return 0;
}
return shader;
}
int GLCompositor::GenerateShaders() {
// Limits: GL_MAX_VARYING_COMPONENTS, GL_MAX_TEXTURE_IMAGE_UNITS,
// GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS
// clang-format off
const GLchar *shader_preamble = "#version 300 es\n#define LAYER_COUNT ";
const GLchar *vertex_shader_source =
"\n"
"precision mediump int; \n"
"uniform vec4 uViewport; \n"
"uniform sampler2D uLayerTextures[LAYER_COUNT]; \n"
"uniform vec4 uLayerCrop[LAYER_COUNT]; \n"
"in vec2 vPosition; \n"
"in vec2 vTexCoords; \n"
"out vec2 fTexCoords[LAYER_COUNT]; \n"
"void main() { \n"
" for (int i = 0; i < LAYER_COUNT; i++) { \n"
" fTexCoords[i] = (uLayerCrop[i].xy + vTexCoords * uLayerCrop[i].zw) / \n"
" vec2(textureSize(uLayerTextures[i], 0)); \n"
" } \n"
" vec2 scaledPosition = uViewport.xy + vPosition * uViewport.zw; \n"
" gl_Position = vec4(scaledPosition * vec2(2.0) - vec2(1.0), 0.0, 1.0); \n"
"} \n";
const GLchar *fragment_shader_source =
"\n"
"precision mediump float; \n"
"uniform sampler2D uLayerTextures[LAYER_COUNT]; \n"
"uniform float uLayerAlpha[LAYER_COUNT]; \n"
"in vec2 fTexCoords[LAYER_COUNT]; \n"
"out vec4 oFragColor; \n"
"void main() { \n"
" vec3 color = vec3(0.0, 0.0, 0.0); \n"
" float alphaCover = 1.0; \n"
" for (int i = 0; i < LAYER_COUNT; i++) { \n"
" vec4 texSample = texture(uLayerTextures[i], fTexCoords[i]); \n"
" float a = texSample.a * uLayerAlpha[i]; \n"
" color += a * alphaCover * texSample.rgb; \n"
" alphaCover *= 1.0 - a; \n"
" if (alphaCover <= 0.5/255.0) \n"
" break; \n"
" } \n"
" oFragColor = vec4(color, 1.0 - alphaCover); \n"
"} \n";
// clang-format on
int i, ret = 1;
GLint max_texture_images, vertex_shader, fragment_shader, program, status;
std::string shader_log;
glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, &max_texture_images);
for (i = 1; i <= max_texture_images; i++) {
std::ostringstream layer_count_formatter;
layer_count_formatter << i;
std::string layer_count(layer_count_formatter.str());
const GLchar *shader_sources[3] = {shader_preamble, layer_count.c_str(),
NULL};
shader_sources[2] = vertex_shader_source;
vertex_shader = CompileAndCheckShader(GL_VERTEX_SHADER, 3, shader_sources,
ret ? &shader_log : NULL);
if (!vertex_shader) {
if (ret) {
ALOGE("Failed to make vertex shader:\n%s", shader_log.c_str());
}
break;
}
shader_sources[2] = fragment_shader_source;
fragment_shader = CompileAndCheckShader(
GL_FRAGMENT_SHADER, 3, shader_sources, ret ? &shader_log : NULL);
if (!fragment_shader) {
if (ret) {
ALOGE("Failed to make fragment shader:\n%s", shader_log.c_str());
}
goto delete_vs;
}
program = glCreateProgram();
if (!program) {
if (ret)
ALOGE("Failed to create program %s", get_gl_error());
goto delete_fs;
}
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glBindAttribLocation(program, 0, "vPosition");
glBindAttribLocation(program, 1, "vTexCoords");
glLinkProgram(program);
glDetachShader(program, vertex_shader);
glDeleteShader(vertex_shader);
glDetachShader(program, fragment_shader);
glDeleteShader(fragment_shader);
glGetProgramiv(program, GL_LINK_STATUS, &status);
if (!status) {
if (ret) {
GLint log_length;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length);
std::string program_log(log_length, ' ');
glGetProgramInfoLog(program, log_length, NULL, &program_log[0]);
ALOGE("Failed to link program: \n%s", program_log.c_str());
}
glDeleteProgram(program);
break;
}
ret = 0;
priv_->blend_programs.push_back(program);
continue;
delete_fs:
glDeleteShader(fragment_shader);
delete_vs:
glDeleteShader(vertex_shader);
if (ret)
break;
}
return ret;
}
int GLCompositor::DoComposition(const GLComposition &composition) {
ATRACE_CALL();
int ret = 0;
size_t i;
std::vector<struct texture_from_handle> layer_textures;
std::vector<RenderingCommand> commands;
if (composition.layer_data.size() == 0) {
return -EALREADY;
}
if (BeginContext()) {
return -EINVAL;
}
GLTarget *target = &priv_->targets[composition.target_handle];
GLint frame_width = target->fb->getWidth();
GLint frame_height = target->fb->getHeight();
EGLSyncKHR finished_sync;
for (i = 0; i < composition.layer_data.size(); i++) {
const struct hwc_layer_1 *layer = &composition.layer_data[i].layer;
if (ret) {
if (layer->acquireFenceFd >= 0)
close(layer->acquireFenceFd);
continue;
}
layer_textures.push_back(texture_from_handle());
ret = CreateTextureFromHandle(layer->handle, &layer_textures.back());
if (!ret) {
ret = DoFenceWait(layer->acquireFenceFd);
}
if (ret) {
layer_textures.pop_back();
ret = -EINVAL;
}
}
if (ret) {
goto destroy_textures;
}
ConstructCommands(composition, &commands);
glBindFramebuffer(GL_FRAMEBUFFER, target->gl_fb);
glViewport(0, 0, frame_width, frame_height);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glClear(GL_COLOR_BUFFER_BIT);
glBindBuffer(GL_ARRAY_BUFFER, priv_->vertex_buffer);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, NULL);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4,
(void *)(sizeof(float) * 2));
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
for (std::vector<RenderingCommand>::iterator it = commands.begin();
it != commands.end(); ++it) {
const RenderingCommand &cmd = *it;
if (cmd.texture_count <= 0) {
continue;
}
// TODO(zachr): handle the case of too many overlapping textures for one
// area by falling back to rendering as many layers as possible using
// multiple blending passes.
if (cmd.texture_count > priv_->blend_programs.size()) {
ALOGE("Too many layers to render in one area");
continue;
}
GLint program = priv_->blend_programs[cmd.texture_count - 1];
glUseProgram(program);
GLint gl_viewport_loc = glGetUniformLocation(program, "uViewport");
GLint gl_tex_loc = glGetUniformLocation(program, "uLayerTextures");
GLint gl_crop_loc = glGetUniformLocation(program, "uLayerCrop");
GLint gl_alpha_loc = glGetUniformLocation(program, "uLayerAlpha");
glUniform4f(gl_viewport_loc, cmd.bounds[0] / (float)frame_width,
cmd.bounds[1] / (float)frame_height,
(cmd.bounds[2] - cmd.bounds[0]) / (float)frame_width,
(cmd.bounds[3] - cmd.bounds[1]) / (float)frame_height);
for (unsigned src_index = 0; src_index < cmd.texture_count; src_index++) {
const RenderingCommand::TextureSource &src = cmd.textures[src_index];
glUniform1f(gl_alpha_loc + src_index, src.alpha);
glUniform4f(gl_crop_loc + src_index, src.crop_bounds[0],
src.crop_bounds[1], src.crop_bounds[2] - src.crop_bounds[0],
src.crop_bounds[3] - src.crop_bounds[1]);
glUniform1i(gl_tex_loc + src_index, src_index);
glActiveTexture(GL_TEXTURE0 + src_index);
glBindTexture(GL_TEXTURE_2D, layer_textures[src.texture_index].texture);
}
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
for (unsigned src_index = 0; src_index < cmd.texture_count; src_index++) {
glActiveTexture(GL_TEXTURE0 + src_index);
glBindTexture(GL_TEXTURE_2D, 0);
}
}
glActiveTexture(GL_TEXTURE0);
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glUseProgram(0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
finished_sync =
eglCreateSyncKHR(priv_->egl_display, EGL_SYNC_NATIVE_FENCE_ANDROID, NULL);
if (finished_sync != EGL_NO_SYNC_KHR) {
glFlush(); // Creates the syncpoint
ret = eglDupNativeFenceFDANDROID(priv_->egl_display, finished_sync);
eglDestroySyncKHR(priv_->egl_display, finished_sync);
if (ret != EGL_NO_NATIVE_FENCE_FD_ANDROID) {
goto destroy_textures;
}
}
// Used as a fallback if the native sync fence fails.
ret = -EALREADY;
glFinish();
destroy_textures:
for (i = 0; i < layer_textures.size(); i++)
DestroyTextureFromHandle(layer_textures[i]);
EndContext();
return ret;
}
int GLCompositor::DoFenceWait(int acquireFenceFd) {
int ret = 0;
EGLint attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, acquireFenceFd,
EGL_NONE};
EGLSyncKHR egl_sync = eglCreateSyncKHR(
priv_->egl_display, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs);
if (egl_sync == EGL_NO_SYNC_KHR) {
ALOGE("Failed to make EGLSyncKHR from acquireFenceFd: %s", get_egl_error());
close(acquireFenceFd);
return 1;
}
EGLint success = eglWaitSyncKHR(priv_->egl_display, egl_sync, 0);
if (success == EGL_FALSE) {
ALOGE("Failed to wait for acquire: %s", get_egl_error());
ret = 1;
}
eglDestroySyncKHR(priv_->egl_display, egl_sync);
return ret;
}
int GLCompositor::CreateTextureFromHandle(buffer_handle_t handle,
struct texture_from_handle *tex) {
EGLImageKHR image = eglCreateImageKHR(
priv_->egl_display, EGL_NO_CONTEXT, EGL_NATIVE_HANDLE_ANDROID_NVX,
(EGLClientBuffer)handle, NULL /* no attribs */);
if (image == EGL_NO_IMAGE_KHR) {
ALOGE("Failed to make image %s %p", get_egl_error(), handle);
return 1;
}
glGenTextures(1, &tex->texture);
glBindTexture(GL_TEXTURE_2D, tex->texture);
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)image);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
tex->image = image;
return 0;
}
void GLCompositor::DestroyTextureFromHandle(
const struct texture_from_handle &tex) {
glDeleteTextures(1, &tex.texture);
eglDestroyImageKHR(priv_->egl_display, tex.image);
}
static const char *get_gl_error(void) {
switch (glGetError()) {
case GL_NO_ERROR:
return "GL_NO_ERROR";
case GL_INVALID_ENUM:
return "GL_INVALID_ENUM";
case GL_INVALID_VALUE:
return "GL_INVALID_VALUE";
case GL_INVALID_OPERATION:
return "GL_INVALID_OPERATION";
case GL_INVALID_FRAMEBUFFER_OPERATION:
return "GL_INVALID_FRAMEBUFFER_OPERATION";
case GL_OUT_OF_MEMORY:
return "GL_OUT_OF_MEMORY";
default:
return "Unknown error";
}
}
static const char *get_egl_error(void) {
switch (eglGetError()) {
case EGL_SUCCESS:
return "EGL_SUCCESS";
case EGL_NOT_INITIALIZED:
return "EGL_NOT_INITIALIZED";
case EGL_BAD_ACCESS:
return "EGL_BAD_ACCESS";
case EGL_BAD_ALLOC:
return "EGL_BAD_ALLOC";
case EGL_BAD_ATTRIBUTE:
return "EGL_BAD_ATTRIBUTE";
case EGL_BAD_CONTEXT:
return "EGL_BAD_CONTEXT";
case EGL_BAD_CONFIG:
return "EGL_BAD_CONFIG";
case EGL_BAD_CURRENT_SURFACE:
return "EGL_BAD_CURRENT_SURFACE";
case EGL_BAD_DISPLAY:
return "EGL_BAD_DISPLAY";
case EGL_BAD_SURFACE:
return "EGL_BAD_SURFACE";
case EGL_BAD_MATCH:
return "EGL_BAD_MATCH";
case EGL_BAD_PARAMETER:
return "EGL_BAD_PARAMETER";
case EGL_BAD_NATIVE_PIXMAP:
return "EGL_BAD_NATIVE_PIXMAP";
case EGL_BAD_NATIVE_WINDOW:
return "EGL_BAD_NATIVE_WINDOW";
case EGL_CONTEXT_LOST:
return "EGL_CONTEXT_LOST";
default:
return "Unknown error";
}
}
static bool has_extension(const char *extension, const char *extensions) {
const char *start, *where, *terminator;
start = extensions;
for (;;) {
where = (char *)strstr((const char *)start, extension);
if (!where)
break;
terminator = where + strlen(extension);
if (where == start || *(where - 1) == ' ')
if (*terminator == ' ' || *terminator == '\0')
return true;
start = terminator;
}
return false;
}
} // namespace android