blob: 4cbe142ef46dc62d1f1ce672e701e3e580226fd2 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#define LOG_TAG "hwc-gl-worker"
#include <algorithm>
#include <string>
#include <sstream>
#include <sys/resource.h>
#include <cutils/properties.h>
#include <hardware/hardware.h>
#include <hardware/hwcomposer.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <utils/Trace.h>
#include "drmdisplaycomposition.h"
#include "glworker.h"
#include "seperate_rects.h"
// TODO(zachr): use hwc_drm_bo to turn buffer handles into textures
#ifndef EGL_NATIVE_HANDLE_ANDROID_NVX
#define EGL_NATIVE_HANDLE_ANDROID_NVX 0x322A
#endif
#define MAX_OVERLAPPING_LAYERS 64
namespace android {
typedef seperate_rects::Rect<float> FRect;
typedef seperate_rects::RectSet<uint64_t, float> FRectSet;
// clang-format off
// Column-major order:
// float mat[4] = { 1, 2, 3, 4 } ===
// [ 1 3 ]
// [ 2 4 ]
float kTextureTransformMatrices[] = {
1.0f, 0.0f, 0.0f, 1.0f, // identity matrix
0.0f, 1.0f, 1.0f, 0.0f, // swap x and y
};
// clang-format on
static const char *GetGLError(void) {
switch (glGetError()) {
case GL_NO_ERROR:
return "GL_NO_ERROR";
case GL_INVALID_ENUM:
return "GL_INVALID_ENUM";
case GL_INVALID_VALUE:
return "GL_INVALID_VALUE";
case GL_INVALID_OPERATION:
return "GL_INVALID_OPERATION";
case GL_INVALID_FRAMEBUFFER_OPERATION:
return "GL_INVALID_FRAMEBUFFER_OPERATION";
case GL_OUT_OF_MEMORY:
return "GL_OUT_OF_MEMORY";
default:
return "Unknown error";
}
}
static const char *GetGLFramebufferError(void) {
switch (glCheckFramebufferStatus(GL_FRAMEBUFFER)) {
case GL_FRAMEBUFFER_COMPLETE:
return "GL_FRAMEBUFFER_COMPLETE";
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT:
return "GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT";
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:
return "GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";
case GL_FRAMEBUFFER_UNSUPPORTED:
return "GL_FRAMEBUFFER_UNSUPPORTED";
case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS:
return "GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS";
default:
return "Unknown error";
}
}
static const char *GetEGLError(void) {
switch (eglGetError()) {
case EGL_SUCCESS:
return "EGL_SUCCESS";
case EGL_NOT_INITIALIZED:
return "EGL_NOT_INITIALIZED";
case EGL_BAD_ACCESS:
return "EGL_BAD_ACCESS";
case EGL_BAD_ALLOC:
return "EGL_BAD_ALLOC";
case EGL_BAD_ATTRIBUTE:
return "EGL_BAD_ATTRIBUTE";
case EGL_BAD_CONTEXT:
return "EGL_BAD_CONTEXT";
case EGL_BAD_CONFIG:
return "EGL_BAD_CONFIG";
case EGL_BAD_CURRENT_SURFACE:
return "EGL_BAD_CURRENT_SURFACE";
case EGL_BAD_DISPLAY:
return "EGL_BAD_DISPLAY";
case EGL_BAD_SURFACE:
return "EGL_BAD_SURFACE";
case EGL_BAD_MATCH:
return "EGL_BAD_MATCH";
case EGL_BAD_PARAMETER:
return "EGL_BAD_PARAMETER";
case EGL_BAD_NATIVE_PIXMAP:
return "EGL_BAD_NATIVE_PIXMAP";
case EGL_BAD_NATIVE_WINDOW:
return "EGL_BAD_NATIVE_WINDOW";
case EGL_CONTEXT_LOST:
return "EGL_CONTEXT_LOST";
default:
return "Unknown error";
}
}
static bool HasExtension(const char *extension, const char *extensions) {
const char *start, *where, *terminator;
start = extensions;
for (;;) {
where = (char *)strstr((const char *)start, extension);
if (!where)
break;
terminator = where + strlen(extension);
if (where == start || *(where - 1) == ' ')
if (*terminator == ' ' || *terminator == '\0')
return true;
start = terminator;
}
return false;
}
static AutoGLShader CompileAndCheckShader(GLenum type, unsigned source_count,
const GLchar **sources,
std::string *shader_log) {
GLint status;
AutoGLShader shader(glCreateShader(type));
if (shader.get() == 0) {
*shader_log = "glCreateShader failed";
return 0;
}
glShaderSource(shader.get(), source_count, sources, NULL);
glCompileShader(shader.get());
glGetShaderiv(shader.get(), GL_COMPILE_STATUS, &status);
if (!status) {
if (shader_log) {
GLint log_length;
glGetShaderiv(shader.get(), GL_INFO_LOG_LENGTH, &log_length);
shader_log->resize(log_length);
glGetShaderInfoLog(shader.get(), log_length, NULL, &(*shader_log)[0]);
}
return 0;
}
return shader;
}
static int GenerateShaders(std::vector<AutoGLProgram> *blend_programs) {
// Limits: GL_MAX_VARYING_COMPONENTS, GL_MAX_TEXTURE_IMAGE_UNITS,
// GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS
// clang-format off
const GLchar *shader_preamble = "#version 300 es\n#define LAYER_COUNT ";
const GLchar *vertex_shader_source =
"\n"
"precision mediump int; \n"
"uniform vec4 uViewport; \n"
"uniform vec4 uLayerCrop[LAYER_COUNT]; \n"
"uniform mat2 uTexMatrix[LAYER_COUNT]; \n"
"in vec2 vPosition; \n"
"in vec2 vTexCoords; \n"
"out vec2 fTexCoords[LAYER_COUNT]; \n"
"void main() { \n"
" for (int i = 0; i < LAYER_COUNT; i++) { \n"
" vec2 tempCoords = vTexCoords * uTexMatrix[i]; \n"
" fTexCoords[i] = uLayerCrop[i].xy + tempCoords * uLayerCrop[i].zw; \n"
" } \n"
" vec2 scaledPosition = uViewport.xy + vPosition * uViewport.zw; \n"
" gl_Position = vec4(scaledPosition * vec2(2.0) - vec2(1.0), 0.0, 1.0); \n"
"} \n";
const GLchar *fragment_shader_source =
"\n"
"#extension GL_OES_EGL_image_external : require \n"
"precision mediump float; \n"
"uniform samplerExternalOES uLayerTextures[LAYER_COUNT]; \n"
"uniform float uLayerAlpha[LAYER_COUNT]; \n"
"in vec2 fTexCoords[LAYER_COUNT]; \n"
"out vec4 oFragColor; \n"
"void main() { \n"
" vec3 color = vec3(0.0, 0.0, 0.0); \n"
" float alphaCover = 1.0; \n"
" for (int i = 0; i < LAYER_COUNT; i++) { \n"
" vec4 texSample = texture2D(uLayerTextures[i], fTexCoords[i]); \n"
" float a = texSample.a * uLayerAlpha[i]; \n"
" color += a * alphaCover * texSample.rgb; \n"
" alphaCover *= 1.0 - a; \n"
" if (alphaCover <= 0.5/255.0) \n"
" break; \n"
" } \n"
" oFragColor = vec4(color, 1.0 - alphaCover); \n"
"} \n";
// clang-format on
int i, ret = 1;
GLint max_texture_images, status;
AutoGLShader vertex_shader, fragment_shader;
AutoGLProgram program;
std::string shader_log;
glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, &max_texture_images);
for (i = 1; i <= max_texture_images; i++) {
std::ostringstream layer_count_formatter;
layer_count_formatter << i;
std::string layer_count(layer_count_formatter.str());
const GLchar *shader_sources[3] = {shader_preamble, layer_count.c_str(),
NULL};
shader_sources[2] = vertex_shader_source;
vertex_shader = CompileAndCheckShader(GL_VERTEX_SHADER, 3, shader_sources,
ret ? &shader_log : NULL);
if (!vertex_shader.get()) {
if (ret)
ALOGE("Failed to make vertex shader:\n%s", shader_log.c_str());
break;
}
shader_sources[2] = fragment_shader_source;
fragment_shader = CompileAndCheckShader(
GL_FRAGMENT_SHADER, 3, shader_sources, ret ? &shader_log : NULL);
if (!fragment_shader.get()) {
if (ret)
ALOGE("Failed to make fragment shader:\n%s", shader_log.c_str());
break;
}
program = AutoGLProgram(glCreateProgram());
if (!program.get()) {
if (ret)
ALOGE("Failed to create program %s", GetGLError());
break;
}
glAttachShader(program.get(), vertex_shader.get());
glAttachShader(program.get(), fragment_shader.get());
glBindAttribLocation(program.get(), 0, "vPosition");
glBindAttribLocation(program.get(), 1, "vTexCoords");
glLinkProgram(program.get());
glDetachShader(program.get(), vertex_shader.get());
glDetachShader(program.get(), fragment_shader.get());
glGetProgramiv(program.get(), GL_LINK_STATUS, &status);
if (!status) {
if (ret) {
GLint log_length;
glGetProgramiv(program.get(), GL_INFO_LOG_LENGTH, &log_length);
std::string program_log(log_length, ' ');
glGetProgramInfoLog(program.get(), log_length, NULL, &program_log[0]);
ALOGE("Failed to link program: \n%s", program_log.c_str());
}
break;
}
ret = 0;
blend_programs->emplace_back(std::move(program));
}
return ret;
}
struct RenderingCommand {
struct TextureSource {
unsigned texture_index;
float crop_bounds[4];
float alpha;
float texture_matrix[4];
};
float bounds[4];
unsigned texture_count;
TextureSource textures[MAX_OVERLAPPING_LAYERS];
RenderingCommand() : texture_count(0) {
}
};
static void ConstructCommands(DrmCompositionLayer *layers, size_t num_layers,
std::vector<RenderingCommand> *commands) {
std::vector<FRect> in_rects;
std::vector<FRectSet> out_rects;
int i;
for (unsigned rect_index = 0; rect_index < num_layers; rect_index++) {
DrmCompositionLayer &layer = layers[rect_index];
in_rects.emplace_back(layer.display_frame);
}
seperate_frects_64(in_rects, &out_rects);
for (unsigned rect_index = 0; rect_index < out_rects.size(); rect_index++) {
const FRectSet &out_rect = out_rects[rect_index];
commands->push_back(RenderingCommand());
RenderingCommand &cmd = commands->back();
for (int i = 0; i < 4; i++)
cmd.bounds[i] = out_rect.rect.bounds[i];
uint64_t tex_set = out_rect.id_set.getBits();
for (unsigned i = num_layers - 1; tex_set != 0x0; i--) {
if (tex_set & (0x1 << i)) {
tex_set &= ~(0x1 << i);
DrmCompositionLayer &layer = layers[i];
FRect display_rect(layer.display_frame);
float display_size[2] = {
display_rect.bounds[2] - display_rect.bounds[0],
display_rect.bounds[3] - display_rect.bounds[1]};
float tex_width = layer.buffer->width;
float tex_height = layer.buffer->height;
FRect crop_rect(layer.source_crop.left / tex_width,
layer.source_crop.top / tex_height,
layer.source_crop.right / tex_width,
layer.source_crop.bottom / tex_height);
float crop_size[2] = {crop_rect.bounds[2] - crop_rect.bounds[0],
crop_rect.bounds[3] - crop_rect.bounds[1]};
RenderingCommand::TextureSource &src = cmd.textures[cmd.texture_count];
cmd.texture_count++;
src.texture_index = i;
bool swap_xy, flip_xy[2];
switch (layer.transform) {
case DrmHwcTransform::kFlipH:
swap_xy = false;
flip_xy[0] = true;
flip_xy[1] = false;
break;
case DrmHwcTransform::kFlipV:
swap_xy = false;
flip_xy[0] = false;
flip_xy[1] = true;
break;
case DrmHwcTransform::kRotate90:
swap_xy = true;
flip_xy[0] = false;
flip_xy[1] = true;
break;
case DrmHwcTransform::kRotate180:
swap_xy = false;
flip_xy[0] = true;
flip_xy[1] = true;
break;
case DrmHwcTransform::kRotate270:
swap_xy = true;
flip_xy[0] = true;
flip_xy[1] = false;
break;
default:
ALOGE(
"Unknown transform for layer: defaulting to identity "
"transform");
case DrmHwcTransform::kIdentity:
swap_xy = false;
flip_xy[0] = false;
flip_xy[1] = false;
break;
}
if (swap_xy)
std::copy_n(&kTextureTransformMatrices[4], 4, src.texture_matrix);
else
std::copy_n(&kTextureTransformMatrices[0], 4, src.texture_matrix);
for (int j = 0; j < 4; j++) {
int b = j ^ (swap_xy ? 1 : 0);
float bound_percent = (cmd.bounds[b] - display_rect.bounds[b % 2]) /
display_size[b % 2];
if (flip_xy[j % 2]) {
src.crop_bounds[j] =
crop_rect.bounds[j % 2 + 2] - bound_percent * crop_size[j % 2];
} else {
src.crop_bounds[j] =
crop_rect.bounds[j % 2] + bound_percent * crop_size[j % 2];
}
}
if (layer.blending == DrmHwcBlending::kNone) {
src.alpha = 1.0f;
// This layer is opaque. There is no point in using layers below this
// one.
break;
}
src.alpha = layer.alpha / 255.0f;
}
}
}
}
static int EGLFenceWait(EGLDisplay egl_display, int acquireFenceFd) {
int ret = 0;
EGLint attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, acquireFenceFd,
EGL_NONE};
EGLSyncKHR egl_sync =
eglCreateSyncKHR(egl_display, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs);
if (egl_sync == EGL_NO_SYNC_KHR) {
ALOGE("Failed to make EGLSyncKHR from acquireFenceFd: %s", GetEGLError());
close(acquireFenceFd);
return 1;
}
EGLint success = eglWaitSyncKHR(egl_display, egl_sync, 0);
if (success == EGL_FALSE) {
ALOGE("Failed to wait for acquire: %s", GetEGLError());
ret = 1;
}
eglDestroySyncKHR(egl_display, egl_sync);
return ret;
}
static int CreateTextureFromHandle(EGLDisplay egl_display,
buffer_handle_t handle,
AutoEGLImageAndGLTexture *out) {
EGLImageKHR image = eglCreateImageKHR(
egl_display, EGL_NO_CONTEXT, EGL_NATIVE_HANDLE_ANDROID_NVX,
(EGLClientBuffer)handle, NULL /* no attribs */);
if (image == EGL_NO_IMAGE_KHR) {
ALOGE("Failed to make image %s %p", GetEGLError(), handle);
return -EINVAL;
}
GLuint texture;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_EXTERNAL_OES, texture);
glEGLImageTargetTexture2DOES(GL_TEXTURE_EXTERNAL_OES, (GLeglImageOES)image);
glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_T, GL_REPEAT);
glBindTexture(GL_TEXTURE_EXTERNAL_OES, 0);
out->image.reset(egl_display, image);
out->texture.reset(texture);
return 0;
}
GLWorkerCompositor::GLWorkerCompositor()
: egl_display_(EGL_NO_DISPLAY), egl_ctx_(EGL_NO_CONTEXT) {
}
int GLWorkerCompositor::Init() {
int ret = 0;
const char *egl_extensions;
const char *gl_extensions;
EGLint num_configs;
EGLint attribs[] = {EGL_WIDTH, 1, EGL_HEIGHT, 1, EGL_NONE, EGL_NONE};
EGLConfig egl_config;
// clang-format off
const GLfloat verts[] = {
0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 2.0f, 0.0f, 2.0f,
2.0f, 0.0f, 2.0f, 0.0f
};
// clang-format on
const EGLint config_attribs[] = {EGL_RENDERABLE_TYPE,
EGL_OPENGL_ES2_BIT,
EGL_RED_SIZE,
8,
EGL_GREEN_SIZE,
8,
EGL_BLUE_SIZE,
8,
EGL_NONE};
const EGLint context_attribs[] = {EGL_CONTEXT_CLIENT_VERSION, 3, EGL_NONE};
egl_display_ = eglGetDisplay(EGL_DEFAULT_DISPLAY);
if (egl_display_ == EGL_NO_DISPLAY) {
ALOGE("Failed to get egl display");
return 1;
}
if (!eglInitialize(egl_display_, NULL, NULL)) {
ALOGE("Failed to initialize egl: %s", GetEGLError());
return 1;
}
egl_extensions = eglQueryString(egl_display_, EGL_EXTENSIONS);
// These extensions are all technically required but not always reported due
// to meta EGL filtering them out.
if (!HasExtension("EGL_KHR_image_base", egl_extensions))
ALOGW("EGL_KHR_image_base extension not supported");
if (!HasExtension("EGL_ANDROID_image_native_buffer", egl_extensions))
ALOGW("EGL_ANDROID_image_native_buffer extension not supported");
if (!HasExtension("EGL_ANDROID_native_fence_sync", egl_extensions))
ALOGW("EGL_ANDROID_native_fence_sync extension not supported");
if (!eglChooseConfig(egl_display_, config_attribs, &egl_config, 1,
&num_configs)) {
ALOGE("eglChooseConfig() failed with error: %s", GetEGLError());
return 1;
}
egl_ctx_ =
eglCreateContext(egl_display_, egl_config,
EGL_NO_CONTEXT /* No shared context */, context_attribs);
if (egl_ctx_ == EGL_NO_CONTEXT) {
ALOGE("Failed to create OpenGL ES Context: %s", GetEGLError());
return 1;
}
if (!eglMakeCurrent(egl_display_, EGL_NO_SURFACE, EGL_NO_SURFACE, egl_ctx_)) {
ALOGE("Failed to make the OpenGL ES Context current: %s", GetEGLError());
return 1;
}
gl_extensions = (const char *)glGetString(GL_EXTENSIONS);
if (!HasExtension("GL_OES_EGL_image", gl_extensions))
ALOGW("GL_OES_EGL_image extension not supported");
if (!HasExtension("GL_OES_EGL_image_external", gl_extensions))
ALOGW("GL_OES_EGL_image_external extension not supported");
GLuint vertex_buffer;
glGenBuffers(1, &vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
vertex_buffer_.reset(vertex_buffer);
if (GenerateShaders(&blend_programs_)) {
return 1;
}
return 0;
}
GLWorkerCompositor::~GLWorkerCompositor() {
if (egl_display_ != EGL_NO_DISPLAY && egl_ctx_ != EGL_NO_CONTEXT)
if (eglDestroyContext(egl_display_, egl_ctx_) == EGL_FALSE)
ALOGE("Failed to destroy OpenGL ES Context: %s", GetEGLError());
}
int GLWorkerCompositor::Composite(DrmCompositionLayer *layers,
size_t num_layers,
const sp<GraphicBuffer> &framebuffer) {
ATRACE_CALL();
int ret = 0;
size_t i;
std::vector<AutoEGLImageAndGLTexture> layer_textures;
std::vector<RenderingCommand> commands;
if (num_layers == 0) {
return -EALREADY;
}
GLint frame_width = framebuffer->getWidth();
GLint frame_height = framebuffer->getHeight();
CachedFramebuffer *cached_framebuffer =
PrepareAndCacheFramebuffer(framebuffer);
if (cached_framebuffer == NULL) {
ALOGE("Composite failed because of failed framebuffer");
return -EINVAL;
}
for (i = 0; i < num_layers; i++) {
DrmCompositionLayer *layer = &layers[i];
layer_textures.emplace_back();
ret = CreateTextureFromHandle(egl_display_, layer->get_usable_handle(),
&layer_textures.back());
if (!ret) {
ret = EGLFenceWait(egl_display_, layer->acquire_fence.Release());
}
if (ret) {
layer_textures.pop_back();
ret = -EINVAL;
}
}
if (ret)
return ret;
ConstructCommands(layers, num_layers, &commands);
glViewport(0, 0, frame_width, frame_height);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glClear(GL_COLOR_BUFFER_BIT);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer_.get());
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, NULL);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4,
(void *)(sizeof(float) * 2));
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glEnable(GL_SCISSOR_TEST);
for (const RenderingCommand &cmd : commands) {
if (cmd.texture_count <= 0) {
continue;
}
// TODO(zachr): handle the case of too many overlapping textures for one
// area by falling back to rendering as many layers as possible using
// multiple blending passes.
if (cmd.texture_count > blend_programs_.size()) {
ALOGE("Too many layers to render in one area");
continue;
}
GLint program = blend_programs_[cmd.texture_count - 1].get();
glUseProgram(program);
GLint gl_viewport_loc = glGetUniformLocation(program, "uViewport");
GLint gl_tex_loc = glGetUniformLocation(program, "uLayerTextures");
GLint gl_crop_loc = glGetUniformLocation(program, "uLayerCrop");
GLint gl_alpha_loc = glGetUniformLocation(program, "uLayerAlpha");
GLint gl_tex_matrix_loc = glGetUniformLocation(program, "uTexMatrix");
glUniform4f(gl_viewport_loc, cmd.bounds[0] / (float)frame_width,
cmd.bounds[1] / (float)frame_height,
(cmd.bounds[2] - cmd.bounds[0]) / (float)frame_width,
(cmd.bounds[3] - cmd.bounds[1]) / (float)frame_height);
for (unsigned src_index = 0; src_index < cmd.texture_count; src_index++) {
const RenderingCommand::TextureSource &src = cmd.textures[src_index];
glUniform1f(gl_alpha_loc + src_index, src.alpha);
glUniform4f(gl_crop_loc + src_index, src.crop_bounds[0],
src.crop_bounds[1], src.crop_bounds[2] - src.crop_bounds[0],
src.crop_bounds[3] - src.crop_bounds[1]);
glUniform1i(gl_tex_loc + src_index, src_index);
glUniformMatrix2fv(gl_tex_matrix_loc + src_index, 1, GL_FALSE,
src.texture_matrix);
glActiveTexture(GL_TEXTURE0 + src_index);
glBindTexture(GL_TEXTURE_EXTERNAL_OES,
layer_textures[src.texture_index].texture.get());
}
glScissor(cmd.bounds[0], cmd.bounds[1], cmd.bounds[2] - cmd.bounds[0],
cmd.bounds[3] - cmd.bounds[1]);
glDrawArrays(GL_TRIANGLES, 0, 3);
for (unsigned src_index = 0; src_index < cmd.texture_count; src_index++) {
glActiveTexture(GL_TEXTURE0 + src_index);
glBindTexture(GL_TEXTURE_EXTERNAL_OES, 0);
}
}
glDisable(GL_SCISSOR_TEST);
glActiveTexture(GL_TEXTURE0);
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glUseProgram(0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
return ret;
}
void GLWorkerCompositor::Finish() {
ATRACE_CALL();
glFinish();
char use_framebuffer_cache_opt[PROPERTY_VALUE_MAX];
property_get("hwc.drm.use_framebuffer_cache", use_framebuffer_cache_opt, "1");
bool use_framebuffer_cache = atoi(use_framebuffer_cache_opt);
if (use_framebuffer_cache) {
for (auto &fb : cached_framebuffers_)
fb.strong_framebuffer.clear();
} else {
cached_framebuffers_.clear();
}
}
GLWorkerCompositor::CachedFramebuffer::CachedFramebuffer(
const sp<GraphicBuffer> &gb, AutoEGLDisplayImage &&image,
AutoGLTexture &&tex, AutoGLFramebuffer &&fb)
: strong_framebuffer(gb),
weak_framebuffer(gb),
egl_fb_image(std::move(image)),
gl_fb_tex(std::move(tex)),
gl_fb(std::move(fb)) {
}
bool GLWorkerCompositor::CachedFramebuffer::Promote() {
if (strong_framebuffer.get() != NULL)
return true;
strong_framebuffer = weak_framebuffer.promote();
return strong_framebuffer.get() != NULL;
}
GLWorkerCompositor::CachedFramebuffer *
GLWorkerCompositor::FindCachedFramebuffer(
const sp<GraphicBuffer> &framebuffer) {
for (auto &fb : cached_framebuffers_)
if (fb.weak_framebuffer == framebuffer)
return &fb;
return NULL;
}
GLWorkerCompositor::CachedFramebuffer *
GLWorkerCompositor::PrepareAndCacheFramebuffer(
const sp<GraphicBuffer> &framebuffer) {
CachedFramebuffer *cached_framebuffer = FindCachedFramebuffer(framebuffer);
if (cached_framebuffer != NULL) {
if (cached_framebuffer->Promote()) {
glBindFramebuffer(GL_FRAMEBUFFER, cached_framebuffer->gl_fb.get());
return cached_framebuffer;
}
for (auto it = cached_framebuffers_.begin();
it != cached_framebuffers_.end(); ++it) {
if (it->weak_framebuffer == framebuffer) {
cached_framebuffers_.erase(it);
break;
}
}
}
AutoEGLDisplayImage egl_fb_image(
egl_display_,
eglCreateImageKHR(egl_display_, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID,
(EGLClientBuffer)framebuffer->getNativeBuffer(),
NULL /* no attribs */));
if (egl_fb_image.image() == EGL_NO_IMAGE_KHR) {
ALOGE("Failed to make image from target buffer: %s", GetEGLError());
return NULL;
}
GLuint gl_fb_tex;
glGenTextures(1, &gl_fb_tex);
AutoGLTexture gl_fb_tex_auto(gl_fb_tex);
glBindTexture(GL_TEXTURE_2D, gl_fb_tex);
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D,
(GLeglImageOES)egl_fb_image.image());
glBindTexture(GL_TEXTURE_2D, 0);
GLuint gl_fb;
glGenFramebuffers(1, &gl_fb);
AutoGLFramebuffer gl_fb_auto(gl_fb);
glBindFramebuffer(GL_FRAMEBUFFER, gl_fb);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
gl_fb_tex, 0);
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
ALOGE("Failed framebuffer check for created target buffer: %s",
GetGLFramebufferError());
return NULL;
}
cached_framebuffers_.emplace_back(framebuffer, std::move(egl_fb_image),
std::move(gl_fb_tex_auto),
std::move(gl_fb_auto));
return &cached_framebuffers_.back();
}
} // namespace android