| /* |
| * Copyright (C) 2022 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "drmhwc" |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include "HwcDisplay.h" |
| |
| #include <ui/ColorSpace.h> |
| |
| #include "backend/Backend.h" |
| #include "backend/BackendManager.h" |
| #include "compositor/DisplayInfo.h" |
| #include "drm/DrmConnector.h" |
| #include "drm/DrmDisplayPipeline.h" |
| #include "drm/DrmHwc.h" |
| #include "utils/properties.h" |
| |
| using ::android::DrmDisplayPipeline; |
| using ColorGamut = ::android::ColorSpace; |
| |
| namespace android { |
| |
| namespace { |
| |
| constexpr int kCtmRows = 3; |
| constexpr int kCtmCols = 3; |
| |
| bool float_equals(float a, float b) { |
| const float epsilon = 0.001F; |
| return std::abs(a - b) < epsilon; |
| } |
| |
| uint64_t To3132FixPt(float in) { |
| constexpr uint64_t kSignMask = (1ULL << 63); |
| constexpr uint64_t kValueMask = ~(1ULL << 63); |
| constexpr auto kValueScale = static_cast<float>(1ULL << 32); |
| if (in < 0) |
| return (static_cast<uint64_t>(-in * kValueScale) & kValueMask) | kSignMask; |
| return static_cast<uint64_t>(in * kValueScale) & kValueMask; |
| } |
| |
| bool TransformHasOffsetValue(const float *matrix) { |
| for (int i = 12; i < 14; i++) { |
| if (!float_equals(matrix[i], 0.F)) { |
| ALOGW("DRM API does not support CTM with offsets."); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| auto ToColorTransform(const std::array<float, 16> &color_transform_matrix) { |
| /* HAL provides a 4x4 float type matrix: |
| * | 0 1 2 3| |
| * | 4 5 6 7| |
| * | 8 9 10 11| |
| * |12 13 14 15| |
| * |
| * R_out = R*0 + G*4 + B*8 + 12 |
| * G_out = R*1 + G*5 + B*9 + 13 |
| * B_out = R*2 + G*6 + B*10 + 14 |
| * |
| * DRM expects a 3x3 s31.32 fixed point matrix: |
| * out matrix in |
| * |R| |0 1 2| |R| |
| * |G| = |3 4 5| x |G| |
| * |B| |6 7 8| |B| |
| * |
| * R_out = R*0 + G*1 + B*2 |
| * G_out = R*3 + G*4 + B*5 |
| * B_out = R*6 + G*7 + B*8 |
| */ |
| auto color_matrix = std::make_shared<drm_color_ctm>(); |
| for (int i = 0; i < kCtmCols; i++) { |
| for (int j = 0; j < kCtmRows; j++) { |
| constexpr int kInCtmRows = 4; |
| color_matrix->matrix[(i * kCtmRows) + j] = To3132FixPt( |
| color_transform_matrix[(j * kInCtmRows) + i]); |
| } |
| } |
| return color_matrix; |
| } |
| |
| } // namespace |
| |
| auto HwcDisplay::GetDisplayName() -> std::string { |
| std::ostringstream stream; |
| if (IsInHeadlessMode()) { |
| stream << "null-display"; |
| } else { |
| stream << "display-" << GetPipe().connector->Get()->GetId(); |
| } |
| return stream.str(); |
| } |
| |
| auto HwcDisplay::GetDisplayConfigs() const -> std::vector<HwcDisplayConfig> { |
| std::vector<HwcDisplayConfig> filtered_configs; |
| for (const auto &[_, config] : configs_.hwc_configs) { |
| if (config.disabled) { |
| continue; |
| } |
| |
| filtered_configs.emplace_back(config); |
| } |
| |
| return filtered_configs; |
| } |
| |
| HwcDisplay::HwcDisplay(DisplayHandle handle, bool is_virtual, DrmHwc *hwc) |
| : hwc_(hwc), handle_(handle), is_virtual_(is_virtual), client_layer_(this) { |
| // Create writeback layer for both virtual displays and potential readback |
| // operations |
| writeback_layer_ = std::make_unique<HwcLayer>(this); |
| |
| identity_color_matrix_ = ToColorTransform(kIdentityMatrix); |
| } |
| |
| void HwcDisplay::SetColorTransformMatrix( |
| const std::array<float, 16> &color_transform_matrix) { |
| color_transform_is_identity_ = std::equal(color_transform_matrix.begin(), |
| color_transform_matrix.end(), |
| kIdentityMatrix.begin(), |
| float_equals); |
| ctm_has_offset_ = false; |
| |
| if (IsInHeadlessMode()) |
| return; |
| |
| if (color_transform_is_identity_) { |
| SetColorMatrixToIdentity(); |
| return; |
| } |
| |
| ctm_has_offset_ = TransformHasOffsetValue(color_transform_matrix.data()); |
| color_matrix_ = ToColorTransform(color_transform_matrix); |
| } |
| |
| void HwcDisplay::SetColorMatrixToIdentity() { |
| ctm_has_offset_ = false; |
| color_matrix_ = identity_color_matrix_; |
| color_transform_is_identity_ = true; |
| } |
| |
| HwcDisplay::~HwcDisplay() { |
| Deinit(); |
| }; |
| |
| auto HwcDisplay::GetConfig(ConfigId config_id) const |
| -> const HwcDisplayConfig * { |
| auto config_iter = configs_.hwc_configs.find(config_id); |
| if (config_iter == configs_.hwc_configs.end()) { |
| return nullptr; |
| } |
| |
| if (config_iter->second.disabled) { |
| return nullptr; |
| } |
| |
| return &config_iter->second; |
| } |
| |
| auto HwcDisplay::GetCurrentConfig() const -> const HwcDisplayConfig * { |
| return GetConfig(configs_.active_config_id); |
| } |
| |
| auto HwcDisplay::GetLastRequestedConfig() const -> const HwcDisplayConfig * { |
| return GetConfig(staged_mode_config_id_.value_or(configs_.active_config_id)); |
| } |
| |
| const HwcDisplayConfig *HwcDisplay::GetNextConfig() const { |
| if (staged_mode_config_id_ && |
| staged_mode_change_time_ <= vsync_worker_->GetNextVsyncTimestamp( |
| ResourceManager::GetTimeMonotonicNs())) { |
| return GetLastRequestedConfig(); |
| } |
| return GetCurrentConfig(); |
| } |
| |
| void HwcDisplay::SetOutputType(OutputType hdr_output_type) { |
| switch (hdr_output_type) { |
| case OutputType::kHdr10: { |
| SetHdrOutputMetadata(ui::Hdr::HDR10); |
| min_bpc_ = 8; |
| colorspace_ = Colorspace::kBt2020Rgb; |
| break; |
| } |
| case OutputType::kSystem: { |
| std::vector<ui::Hdr> hdr_types; |
| GetEdid()->GetSupportedHdrTypes(hdr_types); |
| if (!hdr_types.empty()) { |
| SetHdrOutputMetadata(hdr_types.front()); |
| min_bpc_ = 8; |
| colorspace_ = Colorspace::kBt2020Rgb; |
| break; |
| } |
| [[fallthrough]]; |
| } |
| case OutputType::kInvalid: |
| [[fallthrough]]; |
| case OutputType::kSdr: |
| [[fallthrough]]; |
| default: |
| hdr_metadata_.reset(); |
| min_bpc_ = 6; |
| colorspace_ = Colorspace::kDefault; |
| } |
| } |
| |
| HwcDisplay::ConfigError HwcDisplay::SetConfig(ConfigId config) { |
| const HwcDisplayConfig *new_config = GetConfig(config); |
| if (new_config == nullptr) { |
| ALOGE("Could not find active mode for %u", config); |
| return ConfigError::kBadConfig; |
| } |
| if (IsInHeadlessMode()) { |
| configs_.active_config_id = config; |
| return ConfigError::kNone; |
| } |
| |
| ALOGV("Create modeset commit."); |
| SetOutputType(new_config->output_type); |
| |
| // Create atomic commit args for a blocking modeset. There's no need to do a |
| // separate test commit, since the commit does a test anyways. |
| std::optional<LayerData> modeset_layer_data = GetModesetLayerData(new_config); |
| AtomicCommitArgs commit_args = CreateModesetCommit(new_config, |
| modeset_layer_data); |
| commit_args.blocking = true; |
| if (!GetPipe().atomic_state_manager->ExecuteAtomicCommit(commit_args)) { |
| ALOGE("Blocking config failed."); |
| return HwcDisplay::ConfigError::kConfigFailed; |
| } |
| |
| ALOGV("Blocking config succeeded."); |
| configs_.active_config_id = config; |
| staged_mode_config_id_.reset(); |
| vsync_worker_->SetVsyncPeriodNs(new_config->mode.GetVSyncPeriodNs()); |
| // set new vsync period |
| return ConfigError::kNone; |
| } |
| |
| auto HwcDisplay::QueueConfig(ConfigId config, int64_t desired_time, |
| QueuedConfigTiming *out_timing) -> ConfigError { |
| const HwcDisplayConfig *new_config = GetConfig(config); |
| if (!new_config) { |
| ALOGE("Could not find active mode for %u", config); |
| return ConfigError::kBadConfig; |
| } |
| |
| const HwcDisplayConfig *current_config = GetCurrentConfig(); |
| if (!current_config || current_config->group_id != new_config->group_id) { |
| return ConfigError::kSeamlessNotAllowed; |
| } |
| |
| // Estimate the timestamp of the next vsync after the desired time. |
| int64_t next_vsync = vsync_worker_->GetNextVsyncTimestamp(desired_time); |
| |
| // Request a refresh from the client one vsync period before the estimated |
| // timestamp. |
| out_timing->refresh_time_ns = next_vsync - |
| current_config->mode.GetVSyncPeriodNs(); |
| out_timing->new_vsync_time_ns = next_vsync; |
| |
| // Queue the config change timing to be consistent with the requested |
| // refresh time. |
| staged_mode_change_time_ = out_timing->refresh_time_ns; |
| staged_mode_config_id_ = config; |
| |
| // Allow HDR only on external displays |
| if (current_config && !IsInHeadlessMode() && |
| GetPipe().connector->Get()->IsExternal()) { |
| SetOutputType(current_config->output_type); |
| } |
| |
| // Enable vsync events until the mode has been applied. |
| vsync_worker_->SetVsyncTimestampTracking(true); |
| |
| return ConfigError::kNone; |
| } |
| |
| auto HwcDisplay::ValidateStagedComposition() -> std::vector<ChangedLayer> { |
| if (IsInHeadlessMode()) { |
| return {}; |
| } |
| |
| if (layers_.empty()) { |
| ALOGI("No layers to validate."); |
| return {}; |
| } |
| |
| /* In current drm_hwc design in case previous frame layer was not validated as |
| * a CLIENT, it is used by display controller (Front buffer). We have to store |
| * this state to provide the CLIENT with the release fences for such buffers. |
| */ |
| for (auto &l : layers_) { |
| l.second.SetPriorBufferScanOutFlag(l.second.GetValidatedType() != |
| CompositionType::kClient); |
| |
| /* Populate layer data for layers that might be mapped to a drm plane. */ |
| if (l.second.GetSfType() == CompositionType::kDevice || |
| l.second.GetSfType() == CompositionType::kCursor) { |
| l.second.PopulateLayerData(); |
| } |
| } |
| |
| // ValidateDisplay returns CompositionTypeMap to indicate the composition |
| // type that the Backend has determined for each layer. |
| auto result = backend_->ValidateDisplay(this); |
| |
| // Iterate through the layers to find which layers actually changed. |
| std::vector<ChangedLayer> changed_layers; |
| for (auto &[id, layer] : layers_) { |
| // Set the validated type |
| auto it = result.find(&layer); |
| ALOGE_IF(it == result.end(), "Backend did not composite layer %ld", id); |
| if (it != result.end()) { |
| layer.SetValidatedType(it->second); |
| } |
| if (layer.IsTypeChanged()) { |
| changed_layers.emplace_back(id, layer.GetValidatedType()); |
| } |
| } |
| return changed_layers; |
| } |
| |
| auto HwcDisplay::GetDisplayBoundsMm() -> std::pair<int32_t, int32_t> { |
| if (IsInHeadlessMode()) { |
| return {configs_.mm_width, -1}; |
| } |
| |
| const auto bounds = GetEdid()->GetBoundsMm(); |
| if (bounds.first > 0 || bounds.second > 0) { |
| return bounds; |
| } |
| |
| ALOGE("Failed to get display bounds for d=%d\n", int(handle_)); |
| // mm_width and mm_height are unreliable. so only provide mm_width to avoid |
| // wrong dpi computations or other use of the values. |
| return {configs_.mm_width, -1}; |
| } |
| |
| auto HwcDisplay::AcceptValidatedComposition() -> void { |
| for (auto &[_, layer] : layers_) { |
| layer.AcceptTypeChange(); |
| } |
| } |
| |
| auto HwcDisplay::PresentStagedComposition( |
| std::optional<int64_t> desired_present_time, SharedFd &out_present_fence, |
| std::vector<ReleaseFence> &out_release_fences) -> bool { |
| if (IsInHeadlessMode()) { |
| return true; |
| } |
| |
| if (layers_.empty()) { |
| ALOGI("No layers to present."); |
| return true; |
| } |
| |
| ++total_stats_.total_frames; |
| |
| uint32_t vperiod_ns = GetCurrentVsyncPeriodNs(); |
| if (desired_present_time && vperiod_ns != 0) { |
| // DRM atomic uAPI does not support specifying that a commit should be |
| // applied to some future vsync. Until such uAPI is available, sleep in |
| // userspace until the next expected vsync time is consistent with the |
| // desired present time. |
| WaitForPresentTime(desired_present_time.value(), vperiod_ns); |
| } |
| |
| Backend::CompositionTypeMap composition; |
| for (auto &l : layers_) { |
| composition.emplace(&l.second, l.second.GetValidatedType()); |
| } |
| |
| AtomicCommitArgs a_args{}; |
| if (!CreateComposition(a_args, composition)) { |
| ++total_stats_.failed_kms_present; |
| return false; |
| } |
| |
| out_present_fence = a_args.out_fence; |
| |
| // Reset the hdr output metadata blobs so we don't apply it repeatedly. |
| hdr_metadata_.reset(); |
| |
| ++frame_no_; |
| |
| if (!out_present_fence) { |
| return true; |
| } |
| |
| for (auto &l : layers_) { |
| if (l.second.GetPriorBufferScanOutFlag()) { |
| out_release_fences.emplace_back(l.first, out_present_fence); |
| } |
| } |
| |
| return true; |
| } |
| |
| auto HwcDisplay::GetRawEdid() -> std::vector<uint8_t> { |
| if (IsInHeadlessMode()) { |
| return {}; |
| } |
| |
| auto *connector = GetPipe().connector->Get(); |
| auto blob = connector->GetEdidBlob(); |
| if (!blob || blob->length == 0) { |
| return {}; |
| } |
| const uint8_t *edid_data = static_cast<uint8_t *>(blob->data); |
| return {edid_data, edid_data + blob->length}; |
| } |
| |
| auto HwcDisplay::GetPort() -> uint8_t { |
| if (IsInHeadlessMode()) { |
| return 0; |
| } |
| |
| auto *connector = GetPipe().connector->Get(); |
| |
| constexpr uint8_t kDrmDeviceBitShift = 5U; |
| constexpr uint8_t kDrmDeviceBitMask = 0xE0; |
| constexpr uint8_t kConnectorBitMask = 0x1F; |
| const auto kDrmIdx = static_cast<uint8_t>( |
| connector->GetDev().GetIndexInDevArray()); |
| const auto kConnectorIdx = static_cast<uint8_t>( |
| connector->GetIndexInResArray()); |
| return (((kDrmIdx << kDrmDeviceBitShift) & kDrmDeviceBitMask) | |
| (kConnectorIdx & kConnectorBitMask)); |
| } |
| |
| auto HwcDisplay::GetDisplayType() -> DisplayType { |
| if (is_virtual_) { |
| return kVirtual; |
| } |
| |
| if (IsInHeadlessMode()) { |
| return kInternal; |
| } |
| |
| /* Primary display should be always internal, |
| * otherwise SF will be unhappy and will crash |
| */ |
| if (handle_ == kPrimaryDisplay) { |
| return kInternal; |
| } |
| |
| auto displays = GetHwc()->GetResMan().GetInternalDisplayNames(); |
| if (!displays.empty()) { |
| std::string name = GetPipe().connector->Get()->GetName(); |
| const bool is_internal = (displays.find(name) != displays.end()); |
| return is_internal ? kInternal : kExternal; |
| } |
| |
| if (GetPipe().connector->Get()->IsInternal()) |
| return kInternal; |
| |
| ALOGW_IF(!GetPipe().connector->Get()->IsExternal(), |
| "Connector type is neither internal nor external."); |
| return kExternal; |
| } |
| |
| void HwcDisplay::SetVsyncCallbacksEnabled(bool enabled) { |
| // Enabling vsync callbacks for a virtual display succeeds with no effect. |
| if (!vsync_worker_) { |
| ALOGE_IF(!is_virtual_, "Invalid VSyncWorker. Did HwcDisplay::Init fail?"); |
| return; |
| } |
| |
| vsync_event_en_ = enabled; |
| std::optional<VSyncWorker::VsyncTimestampCallback> callback = std::nullopt; |
| if (vsync_event_en_) { |
| DrmHwc *hwc = hwc_; |
| DisplayHandle id = handle_; |
| // Callback will be called from the vsync thread. |
| callback = [hwc, id](int64_t timestamp, uint32_t period_ns) { |
| hwc->SendVsyncEventToClient(id, timestamp, period_ns); |
| }; |
| } |
| vsync_worker_->SetTimestampCallback(std::move(callback)); |
| } |
| |
| bool HwcDisplay::SetDisplayEnabled(bool enabled) { |
| if (IsInHeadlessMode()) { |
| return true; |
| } |
| if (enabled) { |
| /* |
| * Setting the display to active before we have a composition |
| * can break some drivers, so skip setting a_args.active to |
| * true, as the next composition frame will implicitly activate |
| * the display |
| */ |
| return GetPipe().atomic_state_manager->ActivateDisplayUsingDPMS() == 0; |
| }; |
| |
| // Disable the display. |
| AtomicCommitArgs a_args{}; |
| a_args.active = false; |
| |
| const bool commit_success = GetPipe() |
| .atomic_state_manager->ExecuteAtomicCommit( |
| a_args); |
| ALOGE_IF(!commit_success, "Failed to apply the dpms composition."); |
| return commit_success; |
| } |
| |
| void HwcDisplay::SetPipeline(std::shared_ptr<DrmDisplayPipeline> pipeline) { |
| Deinit(); |
| |
| pipeline_ = std::move(pipeline); |
| |
| if (pipeline_ != nullptr || handle_ == kPrimaryDisplay) { |
| bool success = Init(); |
| ALOGE_IF(!success, "Failed to init HwcDisplay after setting pipeline."); |
| hwc_->ScheduleHotplugEvent(handle_, DrmHwc::kConnected); |
| } else { |
| hwc_->ScheduleHotplugEvent(handle_, DrmHwc::kDisconnected); |
| } |
| } |
| |
| void HwcDisplay::Deinit() { |
| if (pipeline_ != nullptr) { |
| AtomicCommitArgs a_args{}; |
| a_args.composition = std::make_shared<DrmKmsPlan>(); |
| GetPipe().atomic_state_manager->ExecuteAtomicCommit(a_args); |
| a_args.composition = {}; |
| a_args.active = false; |
| a_args.teardown = true; |
| GetPipe().atomic_state_manager->ExecuteAtomicCommit(a_args); |
| |
| current_plan_.reset(); |
| backend_.reset(); |
| if (flatcon_) { |
| flatcon_->StopThread(); |
| flatcon_.reset(); |
| } |
| } |
| |
| if (vsync_worker_) { |
| vsync_worker_->StopThread(); |
| vsync_worker_ = {}; |
| } |
| |
| client_layer_.ClearSlots(); |
| } |
| |
| bool HwcDisplay::Init() { |
| if (!is_virtual_) { |
| vsync_worker_ = VSyncWorker::CreateInstance(pipeline_); |
| if (!vsync_worker_) { |
| ALOGE("Failed to create event worker for d=%d\n", int(handle_)); |
| return false; |
| } |
| } |
| |
| if (!IsInHeadlessMode()) { |
| auto ret = BackendManager::GetInstance().SetBackendForDisplay(this); |
| if (ret) { |
| ALOGE("Failed to set backend for d=%d %d\n", int(handle_), ret); |
| return false; |
| } |
| auto flatcbk = (struct FlatConCallbacks){ |
| .trigger = [this]() { hwc_->SendRefreshEventToClient(handle_); }}; |
| flatcon_ = FlatteningController::CreateInstance(flatcbk); |
| } |
| |
| HwcLayer::LayerProperties lp; |
| lp.blend_mode = BufferBlendMode::kPreMult; |
| client_layer_.SetLayerProperties(lp); |
| |
| SetColorMatrixToIdentity(); |
| |
| if (is_virtual_) { |
| configs_.GenFakeMode(virtual_disp_width_, virtual_disp_height_); |
| pipeline_->writeback_connector = pipeline_->connector; |
| } else if (IsInHeadlessMode()) { |
| configs_.GenFakeMode(0, 0); |
| } else if (!configs_.Init(*pipeline_->connector->Get())) { |
| return false; |
| } |
| |
| if (SetConfig(configs_.preferred_config_id) != |
| HwcDisplay::ConfigError::kNone) { |
| return false; |
| } |
| |
| if (!IsInHeadlessMode() && GetPipe().connector->Get()->IsInternal()) { |
| SetConfigGroupsForActiveConfig(); |
| } |
| return true; |
| } |
| |
| std::optional<PanelOrientation> HwcDisplay::getDisplayPhysicalOrientation() { |
| if (IsInHeadlessMode()) { |
| // The pipeline can be nullptr in headless mode, so return the default |
| // "normal" mode. |
| return PanelOrientation::kModePanelOrientationNormal; |
| } |
| |
| DrmDisplayPipeline &pipeline = GetPipe(); |
| if (pipeline.connector == nullptr || pipeline.connector->Get() == nullptr) { |
| ALOGW( |
| "No display pipeline present to query the panel orientation property."); |
| return {}; |
| } |
| |
| return pipeline.connector->Get()->GetPanelOrientation(); |
| } |
| |
| auto HwcDisplay::CreateLayer(ILayerId new_layer_id) -> bool { |
| if (layers_.count(new_layer_id) > 0) |
| return false; |
| |
| layers_.emplace(new_layer_id, HwcLayer(this)); |
| |
| return true; |
| } |
| |
| auto HwcDisplay::DestroyLayer(ILayerId layer_id) -> bool { |
| auto count = layers_.erase(layer_id); |
| return count != 0; |
| } |
| |
| auto HwcDisplay::GetColorModes() -> std::vector<ColorMode> { |
| if (IsInHeadlessMode()) |
| return {ColorMode::kNative}; |
| |
| std::vector<ColorMode> modes; |
| GetEdid()->GetColorModes(modes); |
| |
| if (modes.empty()) |
| modes.emplace_back(ColorMode::kNative); |
| |
| return modes; |
| } |
| |
| void HwcDisplay::SetColorMode(ColorMode mode) { |
| /* Maps to the Colorspace DRM connector property: |
| * https://elixir.bootlin.com/linux/v6.11/source/include/drm/drm_connector.h#L538 |
| */ |
| switch (mode) { |
| case ColorMode::kNative: |
| colorspace_ = Colorspace::kDefault; |
| break; |
| case ColorMode::kBt601_625: |
| case ColorMode::kBt601_625Unadjusted: |
| case ColorMode::kBt601_525: |
| case ColorMode::kBt601_525Unadjusted: |
| // The DP spec does not say whether this is the 525 or the 625 line version. |
| colorspace_ = Colorspace::kBt601Ycc; |
| break; |
| case ColorMode::kBt709: |
| case ColorMode::kSrgb: |
| colorspace_ = Colorspace::kBt709Ycc; |
| break; |
| case ColorMode::kDciP3: |
| case ColorMode::kDisplayP3: |
| colorspace_ = Colorspace::kDciP3RgbD65; |
| break; |
| case ColorMode::kDisplayBt2020: |
| case ColorMode::kAdobeRgb: |
| case ColorMode::kBt2020: |
| case ColorMode::kBt2100Pq: |
| case ColorMode::kBt2100Hlg: |
| // HDR color modes should be requested during modeset |
| ALOGW("HDR color modes are not supported with this API."); |
| return; |
| } |
| } |
| |
| void HwcDisplay::GetHdrCapabilities(std::vector<ui::Hdr> *types, |
| float *max_luminance, |
| float *max_average_luminance, |
| float *min_luminance) { |
| if (IsInHeadlessMode()) |
| return; |
| |
| // Return HDR caps only when we have the ability to set HDR |
| DrmDisplayPipeline &pipeline = GetPipe(); |
| if (pipeline.connector == nullptr || pipeline.connector->Get() == nullptr || |
| !pipeline.connector->Get()->GetHdrOutputMetadataProperty()) { |
| return; |
| } |
| |
| GetEdid()->GetHdrCapabilities(*types, max_luminance, max_average_luminance, |
| min_luminance); |
| } |
| |
| AtomicCommitArgs HwcDisplay::CreateModesetCommit( |
| const HwcDisplayConfig *config, |
| const std::optional<LayerData> &modeset_layer) { |
| AtomicCommitArgs args{}; |
| |
| args.color_matrix = color_matrix_; |
| args.content_type = content_type_; |
| args.colorspace = colorspace_; |
| args.hdr_metadata = hdr_metadata_; |
| args.min_bpc = min_bpc_; |
| |
| std::vector<LayerData> composition_layers; |
| if (modeset_layer) { |
| composition_layers.emplace_back(modeset_layer.value()); |
| } |
| |
| if (composition_layers.empty()) { |
| ALOGW("Attempting to create a modeset commit without a layer."); |
| } |
| |
| args.display_mode = config->mode; |
| args.active = true; |
| args.composition = DrmKmsPlan::CreateDrmKmsPlan(GetPipe(), |
| std::move( |
| composition_layers)); |
| ALOGW_IF(!args.composition, "No composition for blocking modeset"); |
| |
| return args; |
| } |
| |
| void HwcDisplay::WaitForPresentTime(int64_t present_time, |
| uint32_t vsync_period_ns) { |
| const int64_t current_time = ResourceManager::GetTimeMonotonicNs(); |
| int64_t next_vsync_time = vsync_worker_->GetNextVsyncTimestamp(current_time); |
| |
| int64_t vsync_after_present_time = vsync_worker_->GetNextVsyncTimestamp( |
| present_time); |
| int64_t vsync_before_present_time = vsync_after_present_time - |
| vsync_period_ns; |
| |
| // Check if |present_time| is closer to the expected vsync before or after. |
| int64_t desired_vsync = (vsync_after_present_time - present_time) < |
| (present_time - vsync_before_present_time) |
| ? vsync_after_present_time |
| : vsync_before_present_time; |
| |
| // Don't sleep if desired_vsync is before or nearly equal to vsync_period of |
| // the next expected vsync. |
| const int64_t quarter_vsync_period = vsync_period_ns / 4; |
| if ((desired_vsync - next_vsync_time) < quarter_vsync_period) { |
| return; |
| } |
| |
| // Sleep until 75% vsync_period before the desired_vsync. |
| int64_t sleep_until = desired_vsync - (quarter_vsync_period * 3); |
| struct timespec sleep_until_ts{}; |
| constexpr int64_t kOneSecondNs = 1LL * 1000 * 1000 * 1000; |
| sleep_until_ts.tv_sec = int(sleep_until / kOneSecondNs); |
| sleep_until_ts.tv_nsec = int(sleep_until - |
| (sleep_until_ts.tv_sec * kOneSecondNs)); |
| clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &sleep_until_ts, nullptr); |
| } |
| |
| uint32_t HwcDisplay::GetCurrentVsyncPeriodNs() const { |
| const HwcDisplayConfig *config = GetCurrentConfig(); |
| if (config == nullptr) { |
| return 0; |
| } |
| return config->mode.GetVSyncPeriodNs(); |
| } |
| |
| bool HwcDisplay::TestComposition( |
| const Backend::CompositionTypeMap &composition) { |
| AtomicCommitArgs a_args = {.test_only = true}; |
| return CreateComposition(a_args, composition); |
| } |
| |
| // NOLINTNEXTLINE(readability-function-cognitive-complexity) |
| bool HwcDisplay::CreateComposition( |
| AtomicCommitArgs &a_args, const Backend::CompositionTypeMap &composition) { |
| if (IsInHeadlessMode()) { |
| ALOGE("%s: Display is in headless mode, should never reach here", __func__); |
| return true; |
| } |
| |
| a_args.color_matrix = color_matrix_; |
| a_args.content_type = content_type_; |
| a_args.colorspace = colorspace_; |
| a_args.hdr_metadata = hdr_metadata_; |
| a_args.min_bpc = min_bpc_; |
| |
| if (staged_mode_config_id_ && |
| staged_mode_change_time_ <= ResourceManager::GetTimeMonotonicNs()) { |
| const auto *staged_config = GetConfig(staged_mode_config_id_.value()); |
| if (staged_config == nullptr) { |
| return false; |
| } |
| |
| a_args.display_mode = staged_config->mode; |
| a_args.seamless = true; |
| } |
| |
| // order the layers by z-order |
| size_t client_layer_count = 0; |
| bool use_client_layer = false; |
| uint32_t client_z_order = UINT32_MAX; |
| std::map<uint32_t, HwcLayer *> z_map; |
| std::optional<LayerData> cursor_layer = std::nullopt; |
| for (auto &[_, layer] : layers_) { |
| auto it = composition.find(&layer); |
| CompositionType type = it != composition.end() ? it->second |
| : CompositionType::kInvalid; |
| switch (type) { |
| case CompositionType::kDevice: |
| z_map.emplace(layer.GetZOrder(), &layer); |
| break; |
| case CompositionType::kCursor: |
| if (!cursor_layer.has_value()) { |
| cursor_layer = layer.GetLayerData(); |
| } else { |
| ALOGW("Detected multiple cursor layers"); |
| z_map.emplace(layer.GetZOrder(), &layer); |
| } |
| break; |
| case CompositionType::kClient: |
| // Place it at the z_order of the lowest client layer |
| use_client_layer = true; |
| client_layer_count++; |
| client_z_order = std::min(client_z_order, layer.GetZOrder()); |
| break; |
| case CompositionType::kSolidColor: |
| case CompositionType::kInvalid: |
| ALOGE("Invalid layer type: %d", static_cast<int>(type)); |
| continue; |
| } |
| } |
| |
| // CTM will be applied by the client, don't apply DRM CTM |
| if (client_layer_count == layers_.size()) |
| a_args.color_matrix = identity_color_matrix_; |
| else |
| a_args.color_matrix = color_matrix_; |
| |
| if (use_client_layer) { |
| z_map.emplace(client_z_order, &client_layer_); |
| |
| client_layer_.PopulateLayerData(); |
| if (!client_layer_.IsLayerUsableAsDevice()) { |
| ALOGE_IF(!a_args.test_only, |
| "Client layer must be always usable by DRM/KMS"); |
| /* This may be normally triggered on validation of the first frame |
| * containing CLIENT layer. At this moment client buffer is not yet |
| * provided by the CLIENT. |
| * This may be triggered once in HwcLayer lifecycle in case FB can't be |
| * imported. For example when non-contiguous buffer is imported into |
| * contiguous-only DRM/KMS driver. |
| */ |
| return false; |
| } |
| } |
| |
| ALOGW_IF(z_map.empty() && !cursor_layer.has_value(), "Empty composition"); |
| |
| std::vector<LayerData> composition_layers; |
| |
| // now that they're ordered by z, add them to the composition |
| for (std::pair<const uint32_t, HwcLayer *> &l : z_map) { |
| if (!l.second->IsLayerUsableAsDevice()) { |
| return false; |
| } |
| composition_layers.emplace_back(l.second->GetLayerData()); |
| } |
| |
| /* Store plan to ensure shared planes won't be stolen by other display |
| * in between of ValidateDisplay() and PresentDisplay() calls |
| */ |
| current_plan_ = DrmKmsPlan::CreateDrmKmsPlan(GetPipe(), |
| std::move(composition_layers), |
| cursor_layer); |
| if (!current_plan_) { |
| ALOGE_IF(!a_args.test_only, "Failed to create DrmKmsPlan"); |
| return false; |
| } |
| a_args.composition = current_plan_; |
| |
| if (pipeline_->writeback_connector) { |
| writeback_layer_->PopulateLayerData(); |
| if (!writeback_layer_->IsLayerUsableAsDevice()) { |
| ALOGE("Writeback layer not usable by DRM/KMS - no valid buffer set"); |
| return false; |
| } |
| a_args.writeback_fb = writeback_layer_->GetLayerData().fb; |
| a_args.writeback_release_fence = writeback_layer_->GetLayerData() |
| .acquire_fence; |
| } |
| |
| if (!GetPipe().atomic_state_manager->ExecuteAtomicCommit(a_args)) { |
| ALOGE_IF(!a_args.test_only, "Failed to apply the frame composition."); |
| return false; |
| } |
| |
| if (!a_args.test_only) { |
| writeback_complete_fence_ = a_args.out_writeback_complete_fence; |
| if (a_args.display_mode) { |
| // Get the vsync period before updating active_config_id. |
| uint32_t prev_vperiod_ns = GetCurrentVsyncPeriodNs(); |
| vsync_worker_->SetVsyncTimestampTracking(false); |
| uint32_t last_vsync_ts = vsync_worker_->GetLastVsyncTimestamp(); |
| if (last_vsync_ts != 0) { |
| hwc_->SendVsyncPeriodTimingChangedEventToClient(handle_, |
| last_vsync_ts + |
| prev_vperiod_ns); |
| } |
| |
| // Update the active_config_id and update the vsync period for the |
| // VsyncWorker. |
| configs_.active_config_id = staged_mode_config_id_.value(); |
| staged_mode_config_id_.reset(); |
| vsync_worker_->SetVsyncPeriodNs(a_args.display_mode->GetVSyncPeriodNs()); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool HwcDisplay::CtmByGpu() { |
| if (color_transform_is_identity_) |
| return false; |
| |
| if (GetPipe().crtc->Get()->GetCtmProperty() && !ctm_has_offset_) |
| return false; |
| |
| if (GetHwc()->GetResMan().GetCtmHandling() == CtmHandling::kDrmOrIgnore) |
| return false; |
| |
| return true; |
| } |
| |
| bool HwcDisplay::IsWritebackSupported() { |
| if (IsInHeadlessMode()) { |
| return false; |
| } |
| |
| return !is_virtual_ && |
| pipeline_->FindWritebackConnectorForPipeline() != nullptr; |
| } |
| |
| bool HwcDisplay::SetWritebackEnabled(bool enabled) { |
| if (IsInHeadlessMode()) { |
| return false; |
| } |
| |
| // Handle Disable |
| if (!enabled) { |
| pipeline_->writeback_connector = nullptr; |
| return true; |
| } |
| |
| // Handle Enable |
| if (pipeline_->writeback_connector != nullptr) { |
| return true; |
| } |
| |
| auto *wb_connector = pipeline_->FindWritebackConnectorForPipeline(); |
| if (!wb_connector) { |
| ALOGE("HwcDisplay: No writeback connector found"); |
| return false; |
| } |
| auto bound_connector = wb_connector->BindPipeline(pipeline_.get()); |
| if (!bound_connector) { |
| ALOGE("HwcDisplay: Failed to bind writeback connector"); |
| return false; |
| } |
| pipeline_->writeback_connector = bound_connector; |
| return true; |
| } |
| |
| SharedFd HwcDisplay::GetWritebackBufferFence() { |
| if (!writeback_complete_fence_) { |
| ALOGE("HwcDisplay: No readback fence available for display"); |
| return nullptr; |
| } |
| |
| return std::move(writeback_complete_fence_); |
| } |
| |
| std::vector<const HwcLayer *> HwcDisplay::GetOrderLayersByZPos() const { |
| std::vector<const HwcLayer *> ordered_layers; |
| ordered_layers.reserve(layers_.size()); |
| |
| for (const auto &[handle, layer] : layers_) { |
| ordered_layers.emplace_back(&layer); |
| } |
| |
| std::sort(std::begin(ordered_layers), std::end(ordered_layers), |
| [](const HwcLayer *lhs, const HwcLayer *rhs) { |
| // Cursor layers should always have highest zpos. |
| if ((lhs->GetSfType() == CompositionType::kCursor) != |
| (rhs->GetSfType() == CompositionType::kCursor)) { |
| return rhs->GetSfType() == CompositionType::kCursor; |
| } |
| |
| return lhs->GetZOrder() < rhs->GetZOrder(); |
| }); |
| |
| return ordered_layers; |
| } |
| |
| // Display primary values are coded as unsigned 16-bit values in units of |
| // 0.00002, where 0x0000 represents zero and 0xC350 represents 1.0000. |
| static uint64_t ToU16ColorValue(float in) { |
| constexpr float kPrimariesFixedPoint = 50000.F; |
| return static_cast<uint64_t>(kPrimariesFixedPoint * in); |
| } |
| |
| void HwcDisplay::SetHdrOutputMetadata(ui::Hdr type) { |
| hdr_metadata_ = std::make_shared<hdr_output_metadata>(); |
| hdr_metadata_->metadata_type = 0; |
| auto *m = &hdr_metadata_->hdmi_metadata_type1; |
| m->metadata_type = 0; |
| |
| switch (type) { |
| case ui::Hdr::HDR10: |
| m->eotf = 2; // PQ |
| break; |
| case ui::Hdr::HLG: |
| m->eotf = 3; // HLG |
| break; |
| default: |
| ALOGW("HDR type %d is not supported.", type); |
| return; |
| } |
| |
| // Most luminance values are coded as an unsigned 16-bit value in units of 1 |
| // cd/m2, where 0x0001 represents 1 cd/m2 and 0xFFFF represents 65535 cd/m2. |
| std::vector<ui::Hdr> types; |
| float hdr_luminance[3]{0.F, 0.F, 0.F}; |
| GetEdid()->GetHdrCapabilities(types, &hdr_luminance[0], &hdr_luminance[1], |
| &hdr_luminance[2]); |
| m->max_display_mastering_luminance = m->max_cll = static_cast<uint64_t>( |
| hdr_luminance[0]); |
| m->max_fall = static_cast<uint64_t>(hdr_luminance[1]); |
| // The min luminance value is coded as an unsigned 16-bit value in units of |
| // 0.0001 cd/m2, where 0x0001 represents 0.0001 cd/m2 and 0xFFFF |
| // represents 6.5535 cd/m2. |
| m->min_display_mastering_luminance = static_cast<uint64_t>(hdr_luminance[2] * |
| 10000.F); |
| |
| auto gamut = ColorGamut::BT2020(); |
| auto primaries = gamut.getPrimaries(); |
| m->display_primaries[0].x = ToU16ColorValue(primaries[0].x); |
| m->display_primaries[0].y = ToU16ColorValue(primaries[0].y); |
| m->display_primaries[1].x = ToU16ColorValue(primaries[1].x); |
| m->display_primaries[1].y = ToU16ColorValue(primaries[1].y); |
| m->display_primaries[2].x = ToU16ColorValue(primaries[2].x); |
| m->display_primaries[2].y = ToU16ColorValue(primaries[2].y); |
| |
| auto whitePoint = gamut.getWhitePoint(); |
| m->white_point.x = ToU16ColorValue(whitePoint.x); |
| m->white_point.y = ToU16ColorValue(whitePoint.y); |
| } |
| |
| const Backend *HwcDisplay::backend() const { |
| return backend_.get(); |
| } |
| |
| void HwcDisplay::set_backend(std::unique_ptr<Backend> backend) { |
| backend_ = std::move(backend); |
| } |
| |
| bool HwcDisplay::NeedsClientLayerUpdate() const { |
| return std::any_of(layers_.begin(), layers_.end(), [](const auto &pair) { |
| const auto &layer = pair.second; |
| return layer.GetSfType() == CompositionType::kClient || |
| layer.GetValidatedType() == CompositionType::kClient; |
| }); |
| } |
| |
| std::optional<LayerData> HwcDisplay::GetModesetLayerData( |
| const HwcDisplayConfig *new_config) { |
| const uint32_t new_width = new_config->mode.GetRawMode().hdisplay; |
| const uint32_t new_height = new_config->mode.GetRawMode().vdisplay; |
| |
| const HwcDisplayConfig *active_config = GetCurrentConfig(); |
| if (client_layer_.IsLayerUsableAsDevice() && active_config && |
| active_config->mode.GetRawMode().hdisplay == new_width && |
| active_config->mode.GetRawMode().vdisplay == new_height) { |
| ALOGV("Use existing client_layer for config."); |
| return client_layer_.GetLayerData(); |
| } |
| |
| ALOGV("Allocate modeset buffer."); |
| auto modeset_buffer = GetPipe().device->CreateBufferForModeset(new_width, |
| new_height); |
| if (!modeset_buffer) |
| return std::nullopt; |
| |
| auto modeset_layer = std::make_unique<HwcLayer>(this); |
| modeset_layer->SetLayerProperties({ |
| .slot_buffer = std::optional<HwcLayer::Buffer>({ |
| .slot_id = 0, |
| .bi = modeset_buffer, |
| }), |
| .active_slot = std::optional<HwcLayer::Slot>({ |
| .slot_id = 0, |
| .fence = {}, |
| }), |
| .blend_mode = BufferBlendMode::kNone, |
| }); |
| modeset_layer->PopulateLayerData(); |
| |
| return modeset_layer->GetLayerData(); |
| } |
| |
| void HwcDisplay::SetConfigGroupsForActiveConfig() { |
| const auto *active_config = GetCurrentConfig(); |
| if (!active_config) { |
| ALOGW("Could not fetch active config for config group assignment."); |
| return; |
| } |
| |
| const std::optional<LayerData> modeset_layer_data = GetModesetLayerData( |
| active_config); |
| for (auto &[_, config] : configs_.hwc_configs) { |
| AtomicCommitArgs commit_args = CreateModesetCommit(&config, |
| modeset_layer_data); |
| commit_args.test_only = true; |
| commit_args.seamless = true; |
| if (pipeline_->atomic_state_manager->ExecuteAtomicCommit(commit_args)) { |
| config.group_id = active_config->group_id; |
| } |
| } |
| |
| configs_.SanitizeGroups(); |
| } |
| |
| } // namespace android |