blob: 351f1d95ca0e7e8fecec175b15e8c352b47a7831 [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "drmhwc"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "HwcDisplay.h"
#include <ui/ColorSpace.h>
#include "backend/Backend.h"
#include "backend/BackendManager.h"
#include "compositor/DisplayInfo.h"
#include "drm/DrmConnector.h"
#include "drm/DrmDisplayPipeline.h"
#include "drm/DrmHwc.h"
#include "utils/properties.h"
using ::android::DrmDisplayPipeline;
using ColorGamut = ::android::ColorSpace;
namespace android {
namespace {
constexpr int kCtmRows = 3;
constexpr int kCtmCols = 3;
bool float_equals(float a, float b) {
const float epsilon = 0.001F;
return std::abs(a - b) < epsilon;
}
uint64_t To3132FixPt(float in) {
constexpr uint64_t kSignMask = (1ULL << 63);
constexpr uint64_t kValueMask = ~(1ULL << 63);
constexpr auto kValueScale = static_cast<float>(1ULL << 32);
if (in < 0)
return (static_cast<uint64_t>(-in * kValueScale) & kValueMask) | kSignMask;
return static_cast<uint64_t>(in * kValueScale) & kValueMask;
}
bool TransformHasOffsetValue(const float *matrix) {
for (int i = 12; i < 14; i++) {
if (!float_equals(matrix[i], 0.F)) {
ALOGW("DRM API does not support CTM with offsets.");
return true;
}
}
return false;
}
auto ToColorTransform(const std::array<float, 16> &color_transform_matrix) {
/* HAL provides a 4x4 float type matrix:
* | 0 1 2 3|
* | 4 5 6 7|
* | 8 9 10 11|
* |12 13 14 15|
*
* R_out = R*0 + G*4 + B*8 + 12
* G_out = R*1 + G*5 + B*9 + 13
* B_out = R*2 + G*6 + B*10 + 14
*
* DRM expects a 3x3 s31.32 fixed point matrix:
* out matrix in
* |R| |0 1 2| |R|
* |G| = |3 4 5| x |G|
* |B| |6 7 8| |B|
*
* R_out = R*0 + G*1 + B*2
* G_out = R*3 + G*4 + B*5
* B_out = R*6 + G*7 + B*8
*/
auto color_matrix = std::make_shared<drm_color_ctm>();
for (int i = 0; i < kCtmCols; i++) {
for (int j = 0; j < kCtmRows; j++) {
constexpr int kInCtmRows = 4;
color_matrix->matrix[(i * kCtmRows) + j] = To3132FixPt(
color_transform_matrix[(j * kInCtmRows) + i]);
}
}
return color_matrix;
}
} // namespace
auto HwcDisplay::GetDisplayName() -> std::string {
std::ostringstream stream;
if (IsInHeadlessMode()) {
stream << "null-display";
} else {
stream << "display-" << GetPipe().connector->Get()->GetId();
}
return stream.str();
}
auto HwcDisplay::GetDisplayConfigs() const -> std::vector<HwcDisplayConfig> {
std::vector<HwcDisplayConfig> filtered_configs;
for (const auto &[_, config] : configs_.hwc_configs) {
if (config.disabled) {
continue;
}
filtered_configs.emplace_back(config);
}
return filtered_configs;
}
HwcDisplay::HwcDisplay(DisplayHandle handle, bool is_virtual, DrmHwc *hwc)
: hwc_(hwc), handle_(handle), is_virtual_(is_virtual), client_layer_(this) {
// Create writeback layer for both virtual displays and potential readback
// operations
writeback_layer_ = std::make_unique<HwcLayer>(this);
identity_color_matrix_ = ToColorTransform(kIdentityMatrix);
}
void HwcDisplay::SetColorTransformMatrix(
const std::array<float, 16> &color_transform_matrix) {
color_transform_is_identity_ = std::equal(color_transform_matrix.begin(),
color_transform_matrix.end(),
kIdentityMatrix.begin(),
float_equals);
ctm_has_offset_ = false;
if (IsInHeadlessMode())
return;
if (color_transform_is_identity_) {
SetColorMatrixToIdentity();
return;
}
ctm_has_offset_ = TransformHasOffsetValue(color_transform_matrix.data());
color_matrix_ = ToColorTransform(color_transform_matrix);
}
void HwcDisplay::SetColorMatrixToIdentity() {
ctm_has_offset_ = false;
color_matrix_ = identity_color_matrix_;
color_transform_is_identity_ = true;
}
HwcDisplay::~HwcDisplay() {
Deinit();
};
auto HwcDisplay::GetConfig(ConfigId config_id) const
-> const HwcDisplayConfig * {
auto config_iter = configs_.hwc_configs.find(config_id);
if (config_iter == configs_.hwc_configs.end()) {
return nullptr;
}
if (config_iter->second.disabled) {
return nullptr;
}
return &config_iter->second;
}
auto HwcDisplay::GetCurrentConfig() const -> const HwcDisplayConfig * {
return GetConfig(configs_.active_config_id);
}
auto HwcDisplay::GetLastRequestedConfig() const -> const HwcDisplayConfig * {
return GetConfig(staged_mode_config_id_.value_or(configs_.active_config_id));
}
const HwcDisplayConfig *HwcDisplay::GetNextConfig() const {
if (staged_mode_config_id_ &&
staged_mode_change_time_ <= vsync_worker_->GetNextVsyncTimestamp(
ResourceManager::GetTimeMonotonicNs())) {
return GetLastRequestedConfig();
}
return GetCurrentConfig();
}
void HwcDisplay::SetOutputType(OutputType hdr_output_type) {
switch (hdr_output_type) {
case OutputType::kHdr10: {
SetHdrOutputMetadata(ui::Hdr::HDR10);
min_bpc_ = 8;
colorspace_ = Colorspace::kBt2020Rgb;
break;
}
case OutputType::kSystem: {
std::vector<ui::Hdr> hdr_types;
GetEdid()->GetSupportedHdrTypes(hdr_types);
if (!hdr_types.empty()) {
SetHdrOutputMetadata(hdr_types.front());
min_bpc_ = 8;
colorspace_ = Colorspace::kBt2020Rgb;
break;
}
[[fallthrough]];
}
case OutputType::kInvalid:
[[fallthrough]];
case OutputType::kSdr:
[[fallthrough]];
default:
hdr_metadata_.reset();
min_bpc_ = 6;
colorspace_ = Colorspace::kDefault;
}
}
HwcDisplay::ConfigError HwcDisplay::SetConfig(ConfigId config) {
const HwcDisplayConfig *new_config = GetConfig(config);
if (new_config == nullptr) {
ALOGE("Could not find active mode for %u", config);
return ConfigError::kBadConfig;
}
if (IsInHeadlessMode()) {
configs_.active_config_id = config;
return ConfigError::kNone;
}
ALOGV("Create modeset commit.");
SetOutputType(new_config->output_type);
// Create atomic commit args for a blocking modeset. There's no need to do a
// separate test commit, since the commit does a test anyways.
std::optional<LayerData> modeset_layer_data = GetModesetLayerData(new_config);
AtomicCommitArgs commit_args = CreateModesetCommit(new_config,
modeset_layer_data);
commit_args.blocking = true;
if (!GetPipe().atomic_state_manager->ExecuteAtomicCommit(commit_args)) {
ALOGE("Blocking config failed.");
return HwcDisplay::ConfigError::kConfigFailed;
}
ALOGV("Blocking config succeeded.");
configs_.active_config_id = config;
staged_mode_config_id_.reset();
vsync_worker_->SetVsyncPeriodNs(new_config->mode.GetVSyncPeriodNs());
// set new vsync period
return ConfigError::kNone;
}
auto HwcDisplay::QueueConfig(ConfigId config, int64_t desired_time,
QueuedConfigTiming *out_timing) -> ConfigError {
const HwcDisplayConfig *new_config = GetConfig(config);
if (!new_config) {
ALOGE("Could not find active mode for %u", config);
return ConfigError::kBadConfig;
}
const HwcDisplayConfig *current_config = GetCurrentConfig();
if (!current_config || current_config->group_id != new_config->group_id) {
return ConfigError::kSeamlessNotAllowed;
}
// Estimate the timestamp of the next vsync after the desired time.
int64_t next_vsync = vsync_worker_->GetNextVsyncTimestamp(desired_time);
// Request a refresh from the client one vsync period before the estimated
// timestamp.
out_timing->refresh_time_ns = next_vsync -
current_config->mode.GetVSyncPeriodNs();
out_timing->new_vsync_time_ns = next_vsync;
// Queue the config change timing to be consistent with the requested
// refresh time.
staged_mode_change_time_ = out_timing->refresh_time_ns;
staged_mode_config_id_ = config;
// Allow HDR only on external displays
if (current_config && !IsInHeadlessMode() &&
GetPipe().connector->Get()->IsExternal()) {
SetOutputType(current_config->output_type);
}
// Enable vsync events until the mode has been applied.
vsync_worker_->SetVsyncTimestampTracking(true);
return ConfigError::kNone;
}
auto HwcDisplay::ValidateStagedComposition() -> std::vector<ChangedLayer> {
if (IsInHeadlessMode()) {
return {};
}
if (layers_.empty()) {
ALOGI("No layers to validate.");
return {};
}
/* In current drm_hwc design in case previous frame layer was not validated as
* a CLIENT, it is used by display controller (Front buffer). We have to store
* this state to provide the CLIENT with the release fences for such buffers.
*/
for (auto &l : layers_) {
l.second.SetPriorBufferScanOutFlag(l.second.GetValidatedType() !=
CompositionType::kClient);
/* Populate layer data for layers that might be mapped to a drm plane. */
if (l.second.GetSfType() == CompositionType::kDevice ||
l.second.GetSfType() == CompositionType::kCursor) {
l.second.PopulateLayerData();
}
}
// ValidateDisplay returns CompositionTypeMap to indicate the composition
// type that the Backend has determined for each layer.
auto result = backend_->ValidateDisplay(this);
// Iterate through the layers to find which layers actually changed.
std::vector<ChangedLayer> changed_layers;
for (auto &[id, layer] : layers_) {
// Set the validated type
auto it = result.find(&layer);
ALOGE_IF(it == result.end(), "Backend did not composite layer %ld", id);
if (it != result.end()) {
layer.SetValidatedType(it->second);
}
if (layer.IsTypeChanged()) {
changed_layers.emplace_back(id, layer.GetValidatedType());
}
}
return changed_layers;
}
auto HwcDisplay::GetDisplayBoundsMm() -> std::pair<int32_t, int32_t> {
if (IsInHeadlessMode()) {
return {configs_.mm_width, -1};
}
const auto bounds = GetEdid()->GetBoundsMm();
if (bounds.first > 0 || bounds.second > 0) {
return bounds;
}
ALOGE("Failed to get display bounds for d=%d\n", int(handle_));
// mm_width and mm_height are unreliable. so only provide mm_width to avoid
// wrong dpi computations or other use of the values.
return {configs_.mm_width, -1};
}
auto HwcDisplay::AcceptValidatedComposition() -> void {
for (auto &[_, layer] : layers_) {
layer.AcceptTypeChange();
}
}
auto HwcDisplay::PresentStagedComposition(
std::optional<int64_t> desired_present_time, SharedFd &out_present_fence,
std::vector<ReleaseFence> &out_release_fences) -> bool {
if (IsInHeadlessMode()) {
return true;
}
if (layers_.empty()) {
ALOGI("No layers to present.");
return true;
}
++total_stats_.total_frames;
uint32_t vperiod_ns = GetCurrentVsyncPeriodNs();
if (desired_present_time && vperiod_ns != 0) {
// DRM atomic uAPI does not support specifying that a commit should be
// applied to some future vsync. Until such uAPI is available, sleep in
// userspace until the next expected vsync time is consistent with the
// desired present time.
WaitForPresentTime(desired_present_time.value(), vperiod_ns);
}
Backend::CompositionTypeMap composition;
for (auto &l : layers_) {
composition.emplace(&l.second, l.second.GetValidatedType());
}
AtomicCommitArgs a_args{};
if (!CreateComposition(a_args, composition)) {
++total_stats_.failed_kms_present;
return false;
}
out_present_fence = a_args.out_fence;
// Reset the hdr output metadata blobs so we don't apply it repeatedly.
hdr_metadata_.reset();
++frame_no_;
if (!out_present_fence) {
return true;
}
for (auto &l : layers_) {
if (l.second.GetPriorBufferScanOutFlag()) {
out_release_fences.emplace_back(l.first, out_present_fence);
}
}
return true;
}
auto HwcDisplay::GetRawEdid() -> std::vector<uint8_t> {
if (IsInHeadlessMode()) {
return {};
}
auto *connector = GetPipe().connector->Get();
auto blob = connector->GetEdidBlob();
if (!blob || blob->length == 0) {
return {};
}
const uint8_t *edid_data = static_cast<uint8_t *>(blob->data);
return {edid_data, edid_data + blob->length};
}
auto HwcDisplay::GetPort() -> uint8_t {
if (IsInHeadlessMode()) {
return 0;
}
auto *connector = GetPipe().connector->Get();
constexpr uint8_t kDrmDeviceBitShift = 5U;
constexpr uint8_t kDrmDeviceBitMask = 0xE0;
constexpr uint8_t kConnectorBitMask = 0x1F;
const auto kDrmIdx = static_cast<uint8_t>(
connector->GetDev().GetIndexInDevArray());
const auto kConnectorIdx = static_cast<uint8_t>(
connector->GetIndexInResArray());
return (((kDrmIdx << kDrmDeviceBitShift) & kDrmDeviceBitMask) |
(kConnectorIdx & kConnectorBitMask));
}
auto HwcDisplay::GetDisplayType() -> DisplayType {
if (is_virtual_) {
return kVirtual;
}
if (IsInHeadlessMode()) {
return kInternal;
}
/* Primary display should be always internal,
* otherwise SF will be unhappy and will crash
*/
if (handle_ == kPrimaryDisplay) {
return kInternal;
}
auto displays = GetHwc()->GetResMan().GetInternalDisplayNames();
if (!displays.empty()) {
std::string name = GetPipe().connector->Get()->GetName();
const bool is_internal = (displays.find(name) != displays.end());
return is_internal ? kInternal : kExternal;
}
if (GetPipe().connector->Get()->IsInternal())
return kInternal;
ALOGW_IF(!GetPipe().connector->Get()->IsExternal(),
"Connector type is neither internal nor external.");
return kExternal;
}
void HwcDisplay::SetVsyncCallbacksEnabled(bool enabled) {
// Enabling vsync callbacks for a virtual display succeeds with no effect.
if (!vsync_worker_) {
ALOGE_IF(!is_virtual_, "Invalid VSyncWorker. Did HwcDisplay::Init fail?");
return;
}
vsync_event_en_ = enabled;
std::optional<VSyncWorker::VsyncTimestampCallback> callback = std::nullopt;
if (vsync_event_en_) {
DrmHwc *hwc = hwc_;
DisplayHandle id = handle_;
// Callback will be called from the vsync thread.
callback = [hwc, id](int64_t timestamp, uint32_t period_ns) {
hwc->SendVsyncEventToClient(id, timestamp, period_ns);
};
}
vsync_worker_->SetTimestampCallback(std::move(callback));
}
bool HwcDisplay::SetDisplayEnabled(bool enabled) {
if (IsInHeadlessMode()) {
return true;
}
if (enabled) {
/*
* Setting the display to active before we have a composition
* can break some drivers, so skip setting a_args.active to
* true, as the next composition frame will implicitly activate
* the display
*/
return GetPipe().atomic_state_manager->ActivateDisplayUsingDPMS() == 0;
};
// Disable the display.
AtomicCommitArgs a_args{};
a_args.active = false;
const bool commit_success = GetPipe()
.atomic_state_manager->ExecuteAtomicCommit(
a_args);
ALOGE_IF(!commit_success, "Failed to apply the dpms composition.");
return commit_success;
}
void HwcDisplay::SetPipeline(std::shared_ptr<DrmDisplayPipeline> pipeline) {
Deinit();
pipeline_ = std::move(pipeline);
if (pipeline_ != nullptr || handle_ == kPrimaryDisplay) {
bool success = Init();
ALOGE_IF(!success, "Failed to init HwcDisplay after setting pipeline.");
hwc_->ScheduleHotplugEvent(handle_, DrmHwc::kConnected);
} else {
hwc_->ScheduleHotplugEvent(handle_, DrmHwc::kDisconnected);
}
}
void HwcDisplay::Deinit() {
if (pipeline_ != nullptr) {
AtomicCommitArgs a_args{};
a_args.composition = std::make_shared<DrmKmsPlan>();
GetPipe().atomic_state_manager->ExecuteAtomicCommit(a_args);
a_args.composition = {};
a_args.active = false;
a_args.teardown = true;
GetPipe().atomic_state_manager->ExecuteAtomicCommit(a_args);
current_plan_.reset();
backend_.reset();
if (flatcon_) {
flatcon_->StopThread();
flatcon_.reset();
}
}
if (vsync_worker_) {
vsync_worker_->StopThread();
vsync_worker_ = {};
}
client_layer_.ClearSlots();
}
bool HwcDisplay::Init() {
if (!is_virtual_) {
vsync_worker_ = VSyncWorker::CreateInstance(pipeline_);
if (!vsync_worker_) {
ALOGE("Failed to create event worker for d=%d\n", int(handle_));
return false;
}
}
if (!IsInHeadlessMode()) {
auto ret = BackendManager::GetInstance().SetBackendForDisplay(this);
if (ret) {
ALOGE("Failed to set backend for d=%d %d\n", int(handle_), ret);
return false;
}
auto flatcbk = (struct FlatConCallbacks){
.trigger = [this]() { hwc_->SendRefreshEventToClient(handle_); }};
flatcon_ = FlatteningController::CreateInstance(flatcbk);
}
HwcLayer::LayerProperties lp;
lp.blend_mode = BufferBlendMode::kPreMult;
client_layer_.SetLayerProperties(lp);
SetColorMatrixToIdentity();
if (is_virtual_) {
configs_.GenFakeMode(virtual_disp_width_, virtual_disp_height_);
pipeline_->writeback_connector = pipeline_->connector;
} else if (IsInHeadlessMode()) {
configs_.GenFakeMode(0, 0);
} else if (!configs_.Init(*pipeline_->connector->Get())) {
return false;
}
if (SetConfig(configs_.preferred_config_id) !=
HwcDisplay::ConfigError::kNone) {
return false;
}
if (!IsInHeadlessMode() && GetPipe().connector->Get()->IsInternal()) {
SetConfigGroupsForActiveConfig();
}
return true;
}
std::optional<PanelOrientation> HwcDisplay::getDisplayPhysicalOrientation() {
if (IsInHeadlessMode()) {
// The pipeline can be nullptr in headless mode, so return the default
// "normal" mode.
return PanelOrientation::kModePanelOrientationNormal;
}
DrmDisplayPipeline &pipeline = GetPipe();
if (pipeline.connector == nullptr || pipeline.connector->Get() == nullptr) {
ALOGW(
"No display pipeline present to query the panel orientation property.");
return {};
}
return pipeline.connector->Get()->GetPanelOrientation();
}
auto HwcDisplay::CreateLayer(ILayerId new_layer_id) -> bool {
if (layers_.count(new_layer_id) > 0)
return false;
layers_.emplace(new_layer_id, HwcLayer(this));
return true;
}
auto HwcDisplay::DestroyLayer(ILayerId layer_id) -> bool {
auto count = layers_.erase(layer_id);
return count != 0;
}
auto HwcDisplay::GetColorModes() -> std::vector<ColorMode> {
if (IsInHeadlessMode())
return {ColorMode::kNative};
std::vector<ColorMode> modes;
GetEdid()->GetColorModes(modes);
if (modes.empty())
modes.emplace_back(ColorMode::kNative);
return modes;
}
void HwcDisplay::SetColorMode(ColorMode mode) {
/* Maps to the Colorspace DRM connector property:
* https://elixir.bootlin.com/linux/v6.11/source/include/drm/drm_connector.h#L538
*/
switch (mode) {
case ColorMode::kNative:
colorspace_ = Colorspace::kDefault;
break;
case ColorMode::kBt601_625:
case ColorMode::kBt601_625Unadjusted:
case ColorMode::kBt601_525:
case ColorMode::kBt601_525Unadjusted:
// The DP spec does not say whether this is the 525 or the 625 line version.
colorspace_ = Colorspace::kBt601Ycc;
break;
case ColorMode::kBt709:
case ColorMode::kSrgb:
colorspace_ = Colorspace::kBt709Ycc;
break;
case ColorMode::kDciP3:
case ColorMode::kDisplayP3:
colorspace_ = Colorspace::kDciP3RgbD65;
break;
case ColorMode::kDisplayBt2020:
case ColorMode::kAdobeRgb:
case ColorMode::kBt2020:
case ColorMode::kBt2100Pq:
case ColorMode::kBt2100Hlg:
// HDR color modes should be requested during modeset
ALOGW("HDR color modes are not supported with this API.");
return;
}
}
void HwcDisplay::GetHdrCapabilities(std::vector<ui::Hdr> *types,
float *max_luminance,
float *max_average_luminance,
float *min_luminance) {
if (IsInHeadlessMode())
return;
// Return HDR caps only when we have the ability to set HDR
DrmDisplayPipeline &pipeline = GetPipe();
if (pipeline.connector == nullptr || pipeline.connector->Get() == nullptr ||
!pipeline.connector->Get()->GetHdrOutputMetadataProperty()) {
return;
}
GetEdid()->GetHdrCapabilities(*types, max_luminance, max_average_luminance,
min_luminance);
}
AtomicCommitArgs HwcDisplay::CreateModesetCommit(
const HwcDisplayConfig *config,
const std::optional<LayerData> &modeset_layer) {
AtomicCommitArgs args{};
args.color_matrix = color_matrix_;
args.content_type = content_type_;
args.colorspace = colorspace_;
args.hdr_metadata = hdr_metadata_;
args.min_bpc = min_bpc_;
std::vector<LayerData> composition_layers;
if (modeset_layer) {
composition_layers.emplace_back(modeset_layer.value());
}
if (composition_layers.empty()) {
ALOGW("Attempting to create a modeset commit without a layer.");
}
args.display_mode = config->mode;
args.active = true;
args.composition = DrmKmsPlan::CreateDrmKmsPlan(GetPipe(),
std::move(
composition_layers));
ALOGW_IF(!args.composition, "No composition for blocking modeset");
return args;
}
void HwcDisplay::WaitForPresentTime(int64_t present_time,
uint32_t vsync_period_ns) {
const int64_t current_time = ResourceManager::GetTimeMonotonicNs();
int64_t next_vsync_time = vsync_worker_->GetNextVsyncTimestamp(current_time);
int64_t vsync_after_present_time = vsync_worker_->GetNextVsyncTimestamp(
present_time);
int64_t vsync_before_present_time = vsync_after_present_time -
vsync_period_ns;
// Check if |present_time| is closer to the expected vsync before or after.
int64_t desired_vsync = (vsync_after_present_time - present_time) <
(present_time - vsync_before_present_time)
? vsync_after_present_time
: vsync_before_present_time;
// Don't sleep if desired_vsync is before or nearly equal to vsync_period of
// the next expected vsync.
const int64_t quarter_vsync_period = vsync_period_ns / 4;
if ((desired_vsync - next_vsync_time) < quarter_vsync_period) {
return;
}
// Sleep until 75% vsync_period before the desired_vsync.
int64_t sleep_until = desired_vsync - (quarter_vsync_period * 3);
struct timespec sleep_until_ts{};
constexpr int64_t kOneSecondNs = 1LL * 1000 * 1000 * 1000;
sleep_until_ts.tv_sec = int(sleep_until / kOneSecondNs);
sleep_until_ts.tv_nsec = int(sleep_until -
(sleep_until_ts.tv_sec * kOneSecondNs));
clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &sleep_until_ts, nullptr);
}
uint32_t HwcDisplay::GetCurrentVsyncPeriodNs() const {
const HwcDisplayConfig *config = GetCurrentConfig();
if (config == nullptr) {
return 0;
}
return config->mode.GetVSyncPeriodNs();
}
bool HwcDisplay::TestComposition(
const Backend::CompositionTypeMap &composition) {
AtomicCommitArgs a_args = {.test_only = true};
return CreateComposition(a_args, composition);
}
// NOLINTNEXTLINE(readability-function-cognitive-complexity)
bool HwcDisplay::CreateComposition(
AtomicCommitArgs &a_args, const Backend::CompositionTypeMap &composition) {
if (IsInHeadlessMode()) {
ALOGE("%s: Display is in headless mode, should never reach here", __func__);
return true;
}
a_args.color_matrix = color_matrix_;
a_args.content_type = content_type_;
a_args.colorspace = colorspace_;
a_args.hdr_metadata = hdr_metadata_;
a_args.min_bpc = min_bpc_;
if (staged_mode_config_id_ &&
staged_mode_change_time_ <= ResourceManager::GetTimeMonotonicNs()) {
const auto *staged_config = GetConfig(staged_mode_config_id_.value());
if (staged_config == nullptr) {
return false;
}
a_args.display_mode = staged_config->mode;
a_args.seamless = true;
}
// order the layers by z-order
size_t client_layer_count = 0;
bool use_client_layer = false;
uint32_t client_z_order = UINT32_MAX;
std::map<uint32_t, HwcLayer *> z_map;
std::optional<LayerData> cursor_layer = std::nullopt;
for (auto &[_, layer] : layers_) {
auto it = composition.find(&layer);
CompositionType type = it != composition.end() ? it->second
: CompositionType::kInvalid;
switch (type) {
case CompositionType::kDevice:
z_map.emplace(layer.GetZOrder(), &layer);
break;
case CompositionType::kCursor:
if (!cursor_layer.has_value()) {
cursor_layer = layer.GetLayerData();
} else {
ALOGW("Detected multiple cursor layers");
z_map.emplace(layer.GetZOrder(), &layer);
}
break;
case CompositionType::kClient:
// Place it at the z_order of the lowest client layer
use_client_layer = true;
client_layer_count++;
client_z_order = std::min(client_z_order, layer.GetZOrder());
break;
case CompositionType::kSolidColor:
case CompositionType::kInvalid:
ALOGE("Invalid layer type: %d", static_cast<int>(type));
continue;
}
}
// CTM will be applied by the client, don't apply DRM CTM
if (client_layer_count == layers_.size())
a_args.color_matrix = identity_color_matrix_;
else
a_args.color_matrix = color_matrix_;
if (use_client_layer) {
z_map.emplace(client_z_order, &client_layer_);
client_layer_.PopulateLayerData();
if (!client_layer_.IsLayerUsableAsDevice()) {
ALOGE_IF(!a_args.test_only,
"Client layer must be always usable by DRM/KMS");
/* This may be normally triggered on validation of the first frame
* containing CLIENT layer. At this moment client buffer is not yet
* provided by the CLIENT.
* This may be triggered once in HwcLayer lifecycle in case FB can't be
* imported. For example when non-contiguous buffer is imported into
* contiguous-only DRM/KMS driver.
*/
return false;
}
}
ALOGW_IF(z_map.empty() && !cursor_layer.has_value(), "Empty composition");
std::vector<LayerData> composition_layers;
// now that they're ordered by z, add them to the composition
for (std::pair<const uint32_t, HwcLayer *> &l : z_map) {
if (!l.second->IsLayerUsableAsDevice()) {
return false;
}
composition_layers.emplace_back(l.second->GetLayerData());
}
/* Store plan to ensure shared planes won't be stolen by other display
* in between of ValidateDisplay() and PresentDisplay() calls
*/
current_plan_ = DrmKmsPlan::CreateDrmKmsPlan(GetPipe(),
std::move(composition_layers),
cursor_layer);
if (!current_plan_) {
ALOGE_IF(!a_args.test_only, "Failed to create DrmKmsPlan");
return false;
}
a_args.composition = current_plan_;
if (pipeline_->writeback_connector) {
writeback_layer_->PopulateLayerData();
if (!writeback_layer_->IsLayerUsableAsDevice()) {
ALOGE("Writeback layer not usable by DRM/KMS - no valid buffer set");
return false;
}
a_args.writeback_fb = writeback_layer_->GetLayerData().fb;
a_args.writeback_release_fence = writeback_layer_->GetLayerData()
.acquire_fence;
}
if (!GetPipe().atomic_state_manager->ExecuteAtomicCommit(a_args)) {
ALOGE_IF(!a_args.test_only, "Failed to apply the frame composition.");
return false;
}
if (!a_args.test_only) {
writeback_complete_fence_ = a_args.out_writeback_complete_fence;
if (a_args.display_mode) {
// Get the vsync period before updating active_config_id.
uint32_t prev_vperiod_ns = GetCurrentVsyncPeriodNs();
vsync_worker_->SetVsyncTimestampTracking(false);
uint32_t last_vsync_ts = vsync_worker_->GetLastVsyncTimestamp();
if (last_vsync_ts != 0) {
hwc_->SendVsyncPeriodTimingChangedEventToClient(handle_,
last_vsync_ts +
prev_vperiod_ns);
}
// Update the active_config_id and update the vsync period for the
// VsyncWorker.
configs_.active_config_id = staged_mode_config_id_.value();
staged_mode_config_id_.reset();
vsync_worker_->SetVsyncPeriodNs(a_args.display_mode->GetVSyncPeriodNs());
}
}
return true;
}
bool HwcDisplay::CtmByGpu() {
if (color_transform_is_identity_)
return false;
if (GetPipe().crtc->Get()->GetCtmProperty() && !ctm_has_offset_)
return false;
if (GetHwc()->GetResMan().GetCtmHandling() == CtmHandling::kDrmOrIgnore)
return false;
return true;
}
bool HwcDisplay::IsWritebackSupported() {
if (IsInHeadlessMode()) {
return false;
}
return !is_virtual_ &&
pipeline_->FindWritebackConnectorForPipeline() != nullptr;
}
bool HwcDisplay::SetWritebackEnabled(bool enabled) {
if (IsInHeadlessMode()) {
return false;
}
// Handle Disable
if (!enabled) {
pipeline_->writeback_connector = nullptr;
return true;
}
// Handle Enable
if (pipeline_->writeback_connector != nullptr) {
return true;
}
auto *wb_connector = pipeline_->FindWritebackConnectorForPipeline();
if (!wb_connector) {
ALOGE("HwcDisplay: No writeback connector found");
return false;
}
auto bound_connector = wb_connector->BindPipeline(pipeline_.get());
if (!bound_connector) {
ALOGE("HwcDisplay: Failed to bind writeback connector");
return false;
}
pipeline_->writeback_connector = bound_connector;
return true;
}
SharedFd HwcDisplay::GetWritebackBufferFence() {
if (!writeback_complete_fence_) {
ALOGE("HwcDisplay: No readback fence available for display");
return nullptr;
}
return std::move(writeback_complete_fence_);
}
std::vector<const HwcLayer *> HwcDisplay::GetOrderLayersByZPos() const {
std::vector<const HwcLayer *> ordered_layers;
ordered_layers.reserve(layers_.size());
for (const auto &[handle, layer] : layers_) {
ordered_layers.emplace_back(&layer);
}
std::sort(std::begin(ordered_layers), std::end(ordered_layers),
[](const HwcLayer *lhs, const HwcLayer *rhs) {
// Cursor layers should always have highest zpos.
if ((lhs->GetSfType() == CompositionType::kCursor) !=
(rhs->GetSfType() == CompositionType::kCursor)) {
return rhs->GetSfType() == CompositionType::kCursor;
}
return lhs->GetZOrder() < rhs->GetZOrder();
});
return ordered_layers;
}
// Display primary values are coded as unsigned 16-bit values in units of
// 0.00002, where 0x0000 represents zero and 0xC350 represents 1.0000.
static uint64_t ToU16ColorValue(float in) {
constexpr float kPrimariesFixedPoint = 50000.F;
return static_cast<uint64_t>(kPrimariesFixedPoint * in);
}
void HwcDisplay::SetHdrOutputMetadata(ui::Hdr type) {
hdr_metadata_ = std::make_shared<hdr_output_metadata>();
hdr_metadata_->metadata_type = 0;
auto *m = &hdr_metadata_->hdmi_metadata_type1;
m->metadata_type = 0;
switch (type) {
case ui::Hdr::HDR10:
m->eotf = 2; // PQ
break;
case ui::Hdr::HLG:
m->eotf = 3; // HLG
break;
default:
ALOGW("HDR type %d is not supported.", type);
return;
}
// Most luminance values are coded as an unsigned 16-bit value in units of 1
// cd/m2, where 0x0001 represents 1 cd/m2 and 0xFFFF represents 65535 cd/m2.
std::vector<ui::Hdr> types;
float hdr_luminance[3]{0.F, 0.F, 0.F};
GetEdid()->GetHdrCapabilities(types, &hdr_luminance[0], &hdr_luminance[1],
&hdr_luminance[2]);
m->max_display_mastering_luminance = m->max_cll = static_cast<uint64_t>(
hdr_luminance[0]);
m->max_fall = static_cast<uint64_t>(hdr_luminance[1]);
// The min luminance value is coded as an unsigned 16-bit value in units of
// 0.0001 cd/m2, where 0x0001 represents 0.0001 cd/m2 and 0xFFFF
// represents 6.5535 cd/m2.
m->min_display_mastering_luminance = static_cast<uint64_t>(hdr_luminance[2] *
10000.F);
auto gamut = ColorGamut::BT2020();
auto primaries = gamut.getPrimaries();
m->display_primaries[0].x = ToU16ColorValue(primaries[0].x);
m->display_primaries[0].y = ToU16ColorValue(primaries[0].y);
m->display_primaries[1].x = ToU16ColorValue(primaries[1].x);
m->display_primaries[1].y = ToU16ColorValue(primaries[1].y);
m->display_primaries[2].x = ToU16ColorValue(primaries[2].x);
m->display_primaries[2].y = ToU16ColorValue(primaries[2].y);
auto whitePoint = gamut.getWhitePoint();
m->white_point.x = ToU16ColorValue(whitePoint.x);
m->white_point.y = ToU16ColorValue(whitePoint.y);
}
const Backend *HwcDisplay::backend() const {
return backend_.get();
}
void HwcDisplay::set_backend(std::unique_ptr<Backend> backend) {
backend_ = std::move(backend);
}
bool HwcDisplay::NeedsClientLayerUpdate() const {
return std::any_of(layers_.begin(), layers_.end(), [](const auto &pair) {
const auto &layer = pair.second;
return layer.GetSfType() == CompositionType::kClient ||
layer.GetValidatedType() == CompositionType::kClient;
});
}
std::optional<LayerData> HwcDisplay::GetModesetLayerData(
const HwcDisplayConfig *new_config) {
const uint32_t new_width = new_config->mode.GetRawMode().hdisplay;
const uint32_t new_height = new_config->mode.GetRawMode().vdisplay;
const HwcDisplayConfig *active_config = GetCurrentConfig();
if (client_layer_.IsLayerUsableAsDevice() && active_config &&
active_config->mode.GetRawMode().hdisplay == new_width &&
active_config->mode.GetRawMode().vdisplay == new_height) {
ALOGV("Use existing client_layer for config.");
return client_layer_.GetLayerData();
}
ALOGV("Allocate modeset buffer.");
auto modeset_buffer = GetPipe().device->CreateBufferForModeset(new_width,
new_height);
if (!modeset_buffer)
return std::nullopt;
auto modeset_layer = std::make_unique<HwcLayer>(this);
modeset_layer->SetLayerProperties({
.slot_buffer = std::optional<HwcLayer::Buffer>({
.slot_id = 0,
.bi = modeset_buffer,
}),
.active_slot = std::optional<HwcLayer::Slot>({
.slot_id = 0,
.fence = {},
}),
.blend_mode = BufferBlendMode::kNone,
});
modeset_layer->PopulateLayerData();
return modeset_layer->GetLayerData();
}
void HwcDisplay::SetConfigGroupsForActiveConfig() {
const auto *active_config = GetCurrentConfig();
if (!active_config) {
ALOGW("Could not fetch active config for config group assignment.");
return;
}
const std::optional<LayerData> modeset_layer_data = GetModesetLayerData(
active_config);
for (auto &[_, config] : configs_.hwc_configs) {
AtomicCommitArgs commit_args = CreateModesetCommit(&config,
modeset_layer_data);
commit_args.test_only = true;
commit_args.seamless = true;
if (pipeline_->atomic_state_manager->ExecuteAtomicCommit(commit_args)) {
config.group_id = active_config->group_id;
}
}
configs_.SanitizeGroups();
}
} // namespace android