blob: 60ec2d1600975e84afccadb5aec51a18fe52dbc2 [file] [log] [blame]
// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! A safe wrapper around the kernel's KVM interface.
mod cap;
use std::cmp::{min, Ordering};
use std::collections::{BinaryHeap, HashMap};
use std::fs::File;
use std::mem::size_of;
use std::os::raw::*;
use std::os::unix::io::{AsRawFd, FromRawFd, RawFd};
use std::ptr::copy_nonoverlapping;
use libc::sigset_t;
use libc::{open, EINVAL, ENOENT, ENOSPC, O_CLOEXEC, O_RDWR};
use kvm_sys::*;
use msg_socket::MsgOnSocket;
#[allow(unused_imports)]
use sys_util::{
ioctl, ioctl_with_mut_ptr, ioctl_with_mut_ref, ioctl_with_ptr, ioctl_with_ref, ioctl_with_val,
pagesize, signal, warn, Error, EventFd, GuestAddress, GuestMemory, MemoryMapping,
MemoryMappingArena, Result,
};
pub use crate::cap::*;
fn errno_result<T>() -> Result<T> {
Err(Error::last())
}
// Returns a `Vec<T>` with a size in ytes at least as large as `size_in_bytes`.
fn vec_with_size_in_bytes<T: Default>(size_in_bytes: usize) -> Vec<T> {
let rounded_size = (size_in_bytes + size_of::<T>() - 1) / size_of::<T>();
let mut v = Vec::with_capacity(rounded_size);
for _ in 0..rounded_size {
v.push(T::default())
}
v
}
// The kvm API has many structs that resemble the following `Foo` structure:
//
// ```
// #[repr(C)]
// struct Foo {
// some_data: u32
// entries: __IncompleteArrayField<__u32>,
// }
// ```
//
// In order to allocate such a structure, `size_of::<Foo>()` would be too small because it would not
// include any space for `entries`. To make the allocation large enough while still being aligned
// for `Foo`, a `Vec<Foo>` is created. Only the first element of `Vec<Foo>` would actually be used
// as a `Foo`. The remaining memory in the `Vec<Foo>` is for `entries`, which must be contiguous
// with `Foo`. This function is used to make the `Vec<Foo>` with enough space for `count` entries.
fn vec_with_array_field<T: Default, F>(count: usize) -> Vec<T> {
let element_space = count * size_of::<F>();
let vec_size_bytes = size_of::<T>() + element_space;
vec_with_size_in_bytes(vec_size_bytes)
}
unsafe fn set_user_memory_region<F: AsRawFd>(
fd: &F,
slot: u32,
read_only: bool,
log_dirty_pages: bool,
guest_addr: u64,
memory_size: u64,
userspace_addr: *mut u8,
) -> Result<()> {
let mut flags = if read_only { KVM_MEM_READONLY } else { 0 };
if log_dirty_pages {
flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
let region = kvm_userspace_memory_region {
slot,
flags,
guest_phys_addr: guest_addr,
memory_size,
userspace_addr: userspace_addr as u64,
};
let ret = ioctl_with_ref(fd, KVM_SET_USER_MEMORY_REGION(), &region);
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Helper function to determine the size in bytes of a dirty log bitmap for the given memory region
/// size.
///
/// # Arguments
///
/// * `size` - Number of bytes in the memory region being queried.
pub fn dirty_log_bitmap_size(size: usize) -> usize {
let page_size = pagesize();
(((size + page_size - 1) / page_size) + 7) / 8
}
/// A wrapper around opening and using `/dev/kvm`.
///
/// Useful for querying extensions and basic values from the KVM backend. A `Kvm` is required to
/// create a `Vm` object.
pub struct Kvm {
kvm: File,
}
impl Kvm {
/// Opens `/dev/kvm/` and returns a Kvm object on success.
pub fn new() -> Result<Kvm> {
// Open calls are safe because we give a constant nul-terminated string and verify the
// result.
let ret = unsafe { open("/dev/kvm\0".as_ptr() as *const c_char, O_RDWR | O_CLOEXEC) };
if ret < 0 {
return errno_result();
}
// Safe because we verify that ret is valid and we own the fd.
Ok(Kvm {
kvm: unsafe { File::from_raw_fd(ret) },
})
}
fn check_extension_int(&self, c: Cap) -> i32 {
// Safe because we know that our file is a KVM fd and that the extension is one of the ones
// defined by kernel.
unsafe { ioctl_with_val(self, KVM_CHECK_EXTENSION(), c as c_ulong) }
}
/// Checks if a particular `Cap` is available.
pub fn check_extension(&self, c: Cap) -> bool {
self.check_extension_int(c) == 1
}
/// Gets the size of the mmap required to use vcpu's `kvm_run` structure.
pub fn get_vcpu_mmap_size(&self) -> Result<usize> {
// Safe because we know that our file is a KVM fd and we verify the return result.
let res = unsafe { ioctl(self, KVM_GET_VCPU_MMAP_SIZE() as c_ulong) };
if res > 0 {
Ok(res as usize)
} else {
errno_result()
}
}
/// Gets the recommended maximum number of VCPUs per VM.
pub fn get_nr_vcpus(&self) -> u32 {
match self.check_extension_int(Cap::NrVcpus) {
0 => 4, // according to api.txt
x if x > 0 => x as u32,
_ => {
warn!("kernel returned invalid number of VCPUs");
4
}
}
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn get_cpuid(&self, kind: u64) -> Result<CpuId> {
const MAX_KVM_CPUID_ENTRIES: usize = 256;
let mut cpuid = CpuId::new(MAX_KVM_CPUID_ENTRIES);
let ret = unsafe {
// ioctl is unsafe. The kernel is trusted not to write beyond the bounds of the memory
// allocated for the struct. The limit is read from nent, which is set to the allocated
// size(MAX_KVM_CPUID_ENTRIES) above.
ioctl_with_mut_ptr(self, kind, cpuid.as_mut_ptr())
};
if ret < 0 {
return errno_result();
}
Ok(cpuid)
}
/// X86 specific call to get the system supported CPUID values
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_supported_cpuid(&self) -> Result<CpuId> {
self.get_cpuid(KVM_GET_SUPPORTED_CPUID())
}
/// X86 specific call to get the system emulated CPUID values
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_emulated_cpuid(&self) -> Result<CpuId> {
self.get_cpuid(KVM_GET_EMULATED_CPUID())
}
/// X86 specific call to get list of supported MSRS
///
/// See the documentation for KVM_GET_MSR_INDEX_LIST.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_msr_index_list(&self) -> Result<Vec<u32>> {
const MAX_KVM_MSR_ENTRIES: usize = 256;
let mut msr_list = vec_with_array_field::<kvm_msr_list, u32>(MAX_KVM_MSR_ENTRIES);
msr_list[0].nmsrs = MAX_KVM_MSR_ENTRIES as u32;
let ret = unsafe {
// ioctl is unsafe. The kernel is trusted not to write beyond the bounds of the memory
// allocated for the struct. The limit is read from nmsrs, which is set to the allocated
// size (MAX_KVM_MSR_ENTRIES) above.
ioctl_with_mut_ref(self, KVM_GET_MSR_INDEX_LIST(), &mut msr_list[0])
};
if ret < 0 {
return errno_result();
}
let mut nmsrs = msr_list[0].nmsrs;
// Mapping the unsized array to a slice is unsafe because the length isn't known. Using
// the length we originally allocated with eliminates the possibility of overflow.
let indices: &[u32] = unsafe {
if nmsrs > MAX_KVM_MSR_ENTRIES as u32 {
nmsrs = MAX_KVM_MSR_ENTRIES as u32;
}
msr_list[0].indices.as_slice(nmsrs as usize)
};
Ok(indices.to_vec())
}
}
impl AsRawFd for Kvm {
fn as_raw_fd(&self) -> RawFd {
self.kvm.as_raw_fd()
}
}
/// An address either in programmable I/O space or in memory mapped I/O space.
#[derive(Copy, Clone, Debug, MsgOnSocket)]
pub enum IoeventAddress {
Pio(u64),
Mmio(u64),
}
/// Used in `Vm::register_ioevent` to indicate a size and optionally value to match.
pub enum Datamatch {
AnyLength,
U8(Option<u8>),
U16(Option<u16>),
U32(Option<u32>),
U64(Option<u64>),
}
/// A source of IRQs in an `IrqRoute`.
pub enum IrqSource {
Irqchip { chip: u32, pin: u32 },
Msi { address: u64, data: u32 },
}
/// A single route for an IRQ.
pub struct IrqRoute {
pub gsi: u32,
pub source: IrqSource,
}
/// Interrupt controller IDs
pub enum PicId {
Primary = 0,
Secondary = 1,
}
/// Number of pins on the IOAPIC.
pub const NUM_IOAPIC_PINS: usize = 24;
// Used to invert the order when stored in a max-heap.
#[derive(Copy, Clone, Eq, PartialEq)]
struct MemSlot(u32);
impl Ord for MemSlot {
fn cmp(&self, other: &MemSlot) -> Ordering {
// Notice the order is inverted so the lowest magnitude slot has the highest priority in a
// max-heap.
other.0.cmp(&self.0)
}
}
impl PartialOrd for MemSlot {
fn partial_cmp(&self, other: &MemSlot) -> Option<Ordering> {
Some(self.cmp(other))
}
}
/// A wrapper around creating and using a VM.
pub struct Vm {
vm: File,
guest_mem: GuestMemory,
device_memory: HashMap<u32, MemoryMapping>,
mmap_arenas: HashMap<u32, MemoryMappingArena>,
mem_slot_gaps: BinaryHeap<MemSlot>,
}
impl Vm {
/// Constructs a new `Vm` using the given `Kvm` instance.
pub fn new(kvm: &Kvm, guest_mem: GuestMemory) -> Result<Vm> {
// Safe because we know kvm is a real kvm fd as this module is the only one that can make
// Kvm objects.
let ret = unsafe { ioctl(kvm, KVM_CREATE_VM()) };
if ret >= 0 {
// Safe because we verify the value of ret and we are the owners of the fd.
let vm_file = unsafe { File::from_raw_fd(ret) };
guest_mem.with_regions(|index, guest_addr, size, host_addr, _| {
unsafe {
// Safe because the guest regions are guaranteed not to overlap.
set_user_memory_region(
&vm_file,
index as u32,
false,
false,
guest_addr.offset() as u64,
size as u64,
host_addr as *mut u8,
)
}
})?;
Ok(Vm {
vm: vm_file,
guest_mem,
device_memory: HashMap::new(),
mmap_arenas: HashMap::new(),
mem_slot_gaps: BinaryHeap::new(),
})
} else {
errno_result()
}
}
// Helper method for `set_user_memory_region` that tracks available slots.
unsafe fn set_user_memory_region(
&mut self,
read_only: bool,
log_dirty_pages: bool,
guest_addr: u64,
memory_size: u64,
userspace_addr: *mut u8,
) -> Result<u32> {
let slot = match self.mem_slot_gaps.pop() {
Some(gap) => gap.0,
None => {
(self.device_memory.len()
+ self.guest_mem.num_regions() as usize
+ self.mmap_arenas.len()) as u32
}
};
let res = set_user_memory_region(
&self.vm,
slot,
read_only,
log_dirty_pages,
guest_addr,
memory_size,
userspace_addr,
);
match res {
Ok(_) => Ok(slot),
Err(e) => {
self.mem_slot_gaps.push(MemSlot(slot));
Err(e)
}
}
}
// Helper method for `set_user_memory_region` that tracks available slots.
unsafe fn remove_user_memory_region(&mut self, slot: u32) -> Result<()> {
set_user_memory_region(&self.vm, slot, false, false, 0, 0, std::ptr::null_mut())?;
self.mem_slot_gaps.push(MemSlot(slot));
Ok(())
}
/// Checks if a particular `Cap` is available.
///
/// This is distinct from the `Kvm` version of this method because the some extensions depend on
/// the particular `Vm` existence. This method is encouraged by the kernel because it more
/// accurately reflects the usable capabilities.
pub fn check_extension(&self, c: Cap) -> bool {
// Safe because we know that our file is a KVM fd and that the extension is one of the ones
// defined by kernel.
unsafe { ioctl_with_val(self, KVM_CHECK_EXTENSION(), c as c_ulong) == 1 }
}
/// Inserts the given `MemoryMapping` into the VM's address space at `guest_addr`.
///
/// The slot that was assigned the device memory mapping is returned on success. The slot can be
/// given to `Vm::remove_device_memory` to remove the memory from the VM's address space and
/// take back ownership of `mem`.
///
/// Note that memory inserted into the VM's address space must not overlap with any other memory
/// slot's region.
///
/// If `read_only` is true, the guest will be able to read the memory as normal, but attempts to
/// write will trigger a mmio VM exit, leaving the memory untouched.
///
/// If `log_dirty_pages` is true, the slot number can be used to retrieve the pages written to
/// by the guest with `get_dirty_log`.
pub fn add_device_memory(
&mut self,
guest_addr: GuestAddress,
mem: MemoryMapping,
read_only: bool,
log_dirty_pages: bool,
) -> Result<u32> {
if guest_addr < self.guest_mem.end_addr() {
return Err(Error::new(ENOSPC));
}
// Safe because we check that the given guest address is valid and has no overlaps. We also
// know that the pointer and size are correct because the MemoryMapping interface ensures
// this. We take ownership of the memory mapping so that it won't be unmapped until the slot
// is removed.
let slot = unsafe {
self.set_user_memory_region(
read_only,
log_dirty_pages,
guest_addr.offset() as u64,
mem.size() as u64,
mem.as_ptr(),
)?
};
self.device_memory.insert(slot, mem);
Ok(slot)
}
/// Removes device memory that was previously added at the given slot.
///
/// Ownership of the host memory mapping associated with the given slot is returned on success.
pub fn remove_device_memory(&mut self, slot: u32) -> Result<MemoryMapping> {
if self.device_memory.contains_key(&slot) {
// Safe because the slot is checked against the list of device memory slots.
unsafe {
self.remove_user_memory_region(slot)?;
}
// Safe to unwrap since map is checked to contain key
Ok(self.device_memory.remove(&slot).unwrap())
} else {
Err(Error::new(ENOENT))
}
}
/// Inserts the given `MemoryMappingArena` into the VM's address space at `guest_addr`.
///
/// The slot that was assigned the device memory mapping is returned on success. The slot can be
/// given to `Vm::remove_mmap_arena` to remove the memory from the VM's address space and
/// take back ownership of `mmap_arena`.
///
/// Note that memory inserted into the VM's address space must not overlap with any other memory
/// slot's region.
///
/// If `read_only` is true, the guest will be able to read the memory as normal, but attempts to
/// write will trigger a mmio VM exit, leaving the memory untouched.
///
/// If `log_dirty_pages` is true, the slot number can be used to retrieve the pages written to
/// by the guest with `get_dirty_log`.
pub fn add_mmap_arena(
&mut self,
guest_addr: GuestAddress,
mmap_arena: MemoryMappingArena,
read_only: bool,
log_dirty_pages: bool,
) -> Result<u32> {
if guest_addr < self.guest_mem.end_addr() {
return Err(Error::new(ENOSPC));
}
// Safe because we check that the given guest address is valid and has no overlaps. We also
// know that the pointer and size are correct because the MemoryMapping interface ensures
// this. We take ownership of the memory mapping so that it won't be unmapped until the slot
// is removed.
let slot = unsafe {
self.set_user_memory_region(
read_only,
log_dirty_pages,
guest_addr.offset() as u64,
mmap_arena.size() as u64,
mmap_arena.as_ptr(),
)?
};
self.mmap_arenas.insert(slot, mmap_arena);
Ok(slot)
}
/// Removes memory map arena that was previously added at the given slot.
///
/// Ownership of the host memory mapping associated with the given slot is returned on success.
pub fn remove_mmap_arena(&mut self, slot: u32) -> Result<MemoryMappingArena> {
if self.mmap_arenas.contains_key(&slot) {
// Safe because the slot is checked against the list of device memory slots.
unsafe {
self.remove_user_memory_region(slot)?;
}
// Safe to unwrap since map is checked to contain key
Ok(self.mmap_arenas.remove(&slot).unwrap())
} else {
Err(Error::new(ENOENT))
}
}
/// Get a mutable reference to the memory map arena added at the given slot.
pub fn get_mmap_arena(&mut self, slot: u32) -> Option<&mut MemoryMappingArena> {
self.mmap_arenas.get_mut(&slot)
}
/// Gets the bitmap of dirty pages since the last call to `get_dirty_log` for the memory at
/// `slot`.
///
/// The size of `dirty_log` must be at least as many bits as there are pages in the memory
/// region `slot` represents. For example, if the size of `slot` is 16 pages, `dirty_log` must
/// be 2 bytes or greater.
pub fn get_dirty_log(&self, slot: u32, dirty_log: &mut [u8]) -> Result<()> {
match self.device_memory.get(&slot) {
Some(mmap) => {
// Ensures that there are as many bytes in dirty_log as there are pages in the mmap.
if dirty_log_bitmap_size(mmap.size()) > dirty_log.len() {
return Err(Error::new(EINVAL));
}
let mut dirty_log_kvm = kvm_dirty_log {
slot,
..Default::default()
};
dirty_log_kvm.__bindgen_anon_1.dirty_bitmap = dirty_log.as_ptr() as *mut c_void;
// Safe because the `dirty_bitmap` pointer assigned above is guaranteed to be valid
// (because it's from a slice) and we checked that it will be large enough to hold
// the entire log.
let ret = unsafe { ioctl_with_ref(self, KVM_GET_DIRTY_LOG(), &dirty_log_kvm) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
_ => Err(Error::new(ENOENT)),
}
}
/// Gets a reference to the guest memory owned by this VM.
///
/// Note that `GuestMemory` does not include any device memory that may have been added after
/// this VM was constructed.
pub fn get_memory(&self) -> &GuestMemory {
&self.guest_mem
}
/// Sets the address of the three-page region in the VM's address space.
///
/// See the documentation on the KVM_SET_TSS_ADDR ioctl.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_tss_addr(&self, addr: GuestAddress) -> Result<()> {
// Safe because we know that our file is a VM fd and we verify the return result.
let ret = unsafe { ioctl_with_val(self, KVM_SET_TSS_ADDR(), addr.offset() as u64) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Sets the address of a one-page region in the VM's address space.
///
/// See the documentation on the KVM_SET_IDENTITY_MAP_ADDR ioctl.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_identity_map_addr(&self, addr: GuestAddress) -> Result<()> {
// Safe because we know that our file is a VM fd and we verify the return result.
let ret =
unsafe { ioctl_with_ref(self, KVM_SET_IDENTITY_MAP_ADDR(), &(addr.offset() as u64)) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Retrieves the current timestamp of kvmclock as seen by the current guest.
///
/// See the documentation on the KVM_GET_CLOCK ioctl.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_clock(&self) -> Result<kvm_clock_data> {
// Safe because we know that our file is a VM fd, we know the kernel will only write
// correct amount of memory to our pointer, and we verify the return result.
let mut clock_data = unsafe { std::mem::zeroed() };
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_CLOCK(), &mut clock_data) };
if ret == 0 {
Ok(clock_data)
} else {
errno_result()
}
}
/// Sets the current timestamp of kvmclock to the specified value.
///
/// See the documentation on the KVM_SET_CLOCK ioctl.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_clock(&self, clock_data: &kvm_clock_data) -> Result<()> {
// Safe because we know that our file is a VM fd, we know the kernel will only read
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_CLOCK(), clock_data) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Crates an in kernel interrupt controller.
///
/// See the documentation on the KVM_CREATE_IRQCHIP ioctl.
#[cfg(any(
target_arch = "x86",
target_arch = "x86_64",
target_arch = "arm",
target_arch = "aarch64"
))]
pub fn create_irq_chip(&self) -> Result<()> {
// Safe because we know that our file is a VM fd and we verify the return result.
let ret = unsafe { ioctl(self, KVM_CREATE_IRQCHIP()) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Retrieves the state of given interrupt controller by issuing KVM_GET_IRQCHIP ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_pic_state(&self, id: PicId) -> Result<kvm_pic_state> {
let mut irqchip_state = kvm_irqchip::default();
irqchip_state.chip_id = id as u32;
let ret = unsafe {
// Safe because we know our file is a VM fd, we know the kernel will only write
// correct amount of memory to our pointer, and we verify the return result.
ioctl_with_mut_ref(self, KVM_GET_IRQCHIP(), &mut irqchip_state)
};
if ret == 0 {
Ok(unsafe {
// Safe as we know that we are retrieving data related to the
// PIC (primary or secondary) and not IOAPIC.
irqchip_state.chip.pic
})
} else {
errno_result()
}
}
/// Sets the state of given interrupt controller by issuing KVM_SET_IRQCHIP ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_pic_state(&self, id: PicId, state: &kvm_pic_state) -> Result<()> {
let mut irqchip_state = kvm_irqchip::default();
irqchip_state.chip_id = id as u32;
irqchip_state.chip.pic = *state;
// Safe because we know that our file is a VM fd, we know the kernel will only read
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_IRQCHIP(), &irqchip_state) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Retrieves the state of IOAPIC by issuing KVM_GET_IRQCHIP ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_ioapic_state(&self) -> Result<kvm_ioapic_state> {
let mut irqchip_state = kvm_irqchip::default();
irqchip_state.chip_id = 2;
let ret = unsafe {
// Safe because we know our file is a VM fd, we know the kernel will only write
// correct amount of memory to our pointer, and we verify the return result.
ioctl_with_mut_ref(self, KVM_GET_IRQCHIP(), &mut irqchip_state)
};
if ret == 0 {
Ok(unsafe {
// Safe as we know that we are retrieving data related to the
// IOAPIC and not PIC.
irqchip_state.chip.ioapic
})
} else {
errno_result()
}
}
/// Sets the state of IOAPIC by issuing KVM_SET_IRQCHIP ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_ioapic_state(&self, state: &kvm_ioapic_state) -> Result<()> {
let mut irqchip_state = kvm_irqchip::default();
irqchip_state.chip_id = 2;
irqchip_state.chip.ioapic = *state;
// Safe because we know that our file is a VM fd, we know the kernel will only read
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_IRQCHIP(), &irqchip_state) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Sets the level on the given irq to 1 if `active` is true, and 0 otherwise.
#[cfg(any(
target_arch = "x86",
target_arch = "x86_64",
target_arch = "arm",
target_arch = "aarch64"
))]
pub fn set_irq_line(&self, irq: u32, active: bool) -> Result<()> {
let mut irq_level = kvm_irq_level::default();
irq_level.__bindgen_anon_1.irq = irq;
irq_level.level = if active { 1 } else { 0 };
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_IRQ_LINE(), &irq_level) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Creates a PIT as per the KVM_CREATE_PIT2 ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn create_pit(&self) -> Result<()> {
let pit_config = kvm_pit_config::default();
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_CREATE_PIT2(), &pit_config) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Retrieves the state of PIT by issuing KVM_GET_PIT2 ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_pit`.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_pit_state(&self) -> Result<kvm_pit_state2> {
// Safe because we know that our file is a VM fd, we know the kernel will only write
// correct amount of memory to our pointer, and we verify the return result.
let mut pit_state = unsafe { std::mem::zeroed() };
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_PIT2(), &mut pit_state) };
if ret == 0 {
Ok(pit_state)
} else {
errno_result()
}
}
/// Sets the state of PIT by issuing KVM_SET_PIT2 ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_pit`.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_pit_state(&self, pit_state: &kvm_pit_state2) -> Result<()> {
// Safe because we know that our file is a VM fd, we know the kernel will only read
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_PIT2(), pit_state) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Registers an event to be signaled whenever a certain address is written to.
///
/// The `datamatch` parameter can be used to limit signaling `evt` to only the cases where the
/// value being written is equal to `datamatch`. Note that the size of `datamatch` is important
/// and must match the expected size of the guest's write.
///
/// In all cases where `evt` is signaled, the ordinary vmexit to userspace that would be
/// triggered is prevented.
pub fn register_ioevent(
&self,
evt: &EventFd,
addr: IoeventAddress,
datamatch: Datamatch,
) -> Result<()> {
self.ioeventfd(evt, addr, datamatch, false)
}
/// Unregisters an event previously registered with `register_ioevent`.
///
/// The `evt`, `addr`, and `datamatch` set must be the same as the ones passed into
/// `register_ioevent`.
pub fn unregister_ioevent(
&self,
evt: &EventFd,
addr: IoeventAddress,
datamatch: Datamatch,
) -> Result<()> {
self.ioeventfd(evt, addr, datamatch, true)
}
fn ioeventfd(
&self,
evt: &EventFd,
addr: IoeventAddress,
datamatch: Datamatch,
deassign: bool,
) -> Result<()> {
let (do_datamatch, datamatch_value, datamatch_len) = match datamatch {
Datamatch::AnyLength => (false, 0, 0),
Datamatch::U8(v) => match v {
Some(u) => (true, u as u64, 1),
None => (false, 0, 1),
},
Datamatch::U16(v) => match v {
Some(u) => (true, u as u64, 2),
None => (false, 0, 2),
},
Datamatch::U32(v) => match v {
Some(u) => (true, u as u64, 4),
None => (false, 0, 4),
},
Datamatch::U64(v) => match v {
Some(u) => (true, u as u64, 8),
None => (false, 0, 8),
},
};
let mut flags = 0;
if deassign {
flags |= 1 << kvm_ioeventfd_flag_nr_deassign;
}
if do_datamatch {
flags |= 1 << kvm_ioeventfd_flag_nr_datamatch
}
if let IoeventAddress::Pio(_) = addr {
flags |= 1 << kvm_ioeventfd_flag_nr_pio;
}
let ioeventfd = kvm_ioeventfd {
datamatch: datamatch_value,
len: datamatch_len,
addr: match addr {
IoeventAddress::Pio(p) => p as u64,
IoeventAddress::Mmio(m) => m,
},
fd: evt.as_raw_fd(),
flags,
..Default::default()
};
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_IOEVENTFD(), &ioeventfd) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Registers an event that will, when signalled, trigger the `gsi` irq.
#[cfg(any(
target_arch = "x86",
target_arch = "x86_64",
target_arch = "arm",
target_arch = "aarch64"
))]
pub fn register_irqfd(&self, evt: &EventFd, gsi: u32) -> Result<()> {
let irqfd = kvm_irqfd {
fd: evt.as_raw_fd() as u32,
gsi,
..Default::default()
};
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_IRQFD(), &irqfd) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Registers an event that will, when signalled, trigger the `gsi` irq, and `resample_evt` will
/// get triggered when the irqchip is resampled.
#[cfg(any(
target_arch = "x86",
target_arch = "x86_64",
target_arch = "arm",
target_arch = "aarch64"
))]
pub fn register_irqfd_resample(
&self,
evt: &EventFd,
resample_evt: &EventFd,
gsi: u32,
) -> Result<()> {
let irqfd = kvm_irqfd {
flags: KVM_IRQFD_FLAG_RESAMPLE,
fd: evt.as_raw_fd() as u32,
resamplefd: resample_evt.as_raw_fd() as u32,
gsi,
..Default::default()
};
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_IRQFD(), &irqfd) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Unregisters an event that was previously registered with
/// `register_irqfd`/`register_irqfd_resample`.
///
/// The `evt` and `gsi` pair must be the same as the ones passed into
/// `register_irqfd`/`register_irqfd_resample`.
#[cfg(any(
target_arch = "x86",
target_arch = "x86_64",
target_arch = "arm",
target_arch = "aarch64"
))]
pub fn unregister_irqfd(&self, evt: &EventFd, gsi: u32) -> Result<()> {
let irqfd = kvm_irqfd {
fd: evt.as_raw_fd() as u32,
gsi,
flags: KVM_IRQFD_FLAG_DEASSIGN,
..Default::default()
};
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_IRQFD(), &irqfd) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Sets the GSI routing table, replacing any table set with previous calls to
/// `set_gsi_routing`.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_gsi_routing(&self, routes: &[IrqRoute]) -> Result<()> {
let mut irq_routing =
vec_with_array_field::<kvm_irq_routing, kvm_irq_routing_entry>(routes.len());
irq_routing[0].nr = routes.len() as u32;
// Safe because we ensured there is enough space in irq_routing to hold the number of
// route entries.
let irq_routes = unsafe { irq_routing[0].entries.as_mut_slice(routes.len()) };
for (route, irq_route) in routes.iter().zip(irq_routes.iter_mut()) {
irq_route.gsi = route.gsi;
match route.source {
IrqSource::Irqchip { chip, pin } => {
irq_route.type_ = KVM_IRQ_ROUTING_IRQCHIP;
irq_route.u.irqchip = kvm_irq_routing_irqchip { irqchip: chip, pin }
}
IrqSource::Msi { address, data } => {
irq_route.type_ = KVM_IRQ_ROUTING_MSI;
irq_route.u.msi = kvm_irq_routing_msi {
address_lo: address as u32,
address_hi: (address >> 32) as u32,
data,
..Default::default()
}
}
}
}
let ret = unsafe { ioctl_with_ref(self, KVM_SET_GSI_ROUTING(), &irq_routing[0]) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Does KVM_CREATE_DEVICE for a generic device.
pub fn create_device(&self, device: &mut kvm_create_device) -> Result<()> {
let ret = unsafe { sys_util::ioctl_with_ref(self, KVM_CREATE_DEVICE(), device) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// This queries the kernel for the preferred target CPU type.
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
pub fn arm_preferred_target(&self, kvi: &mut kvm_vcpu_init) -> Result<()> {
// The ioctl is safe because we allocated the struct and we know the
// kernel will write exactly the size of the struct.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_ARM_PREFERRED_TARGET(), kvi) };
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Enable the specified capability.
/// See documentation for KVM_ENABLE_CAP.
pub fn kvm_enable_cap(&self, cap: &kvm_enable_cap) -> Result<()> {
// safe becuase we allocated the struct and we know the kernel will read
// exactly the size of the struct
let ret = unsafe { ioctl_with_ref(self, KVM_ENABLE_CAP(), cap) };
if ret < 0 {
errno_result()
} else {
Ok(())
}
}
/// (x86-only): Enable support for split-irqchip.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn enable_split_irqchip(&self) -> Result<()> {
let mut cap: kvm_enable_cap = Default::default();
cap.cap = KVM_CAP_SPLIT_IRQCHIP;
cap.args[0] = NUM_IOAPIC_PINS as u64;
self.kvm_enable_cap(&cap)
}
/// Request that the kernel inject the specified MSI message.
/// Returns Ok(true) on delivery, Ok(false) if the guest blocked delivery, or an error.
/// See kernel documentation for KVM_SIGNAL_MSI.
pub fn signal_msi(&self, msi: &kvm_msi) -> Result<bool> {
// safe becuase we allocated the struct and we know the kernel will read
// exactly the size of the struct
let ret = unsafe { ioctl_with_ref(self, KVM_SIGNAL_MSI(), msi) };
if ret < 0 {
errno_result()
} else {
Ok(ret > 0)
}
}
}
impl AsRawFd for Vm {
fn as_raw_fd(&self) -> RawFd {
self.vm.as_raw_fd()
}
}
/// A reason why a VCPU exited. One of these returns every time `Vcpu::run` is called.
#[derive(Debug)]
pub enum VcpuExit {
/// An out port instruction was run on the given port with the given data.
IoOut {
port: u16,
size: usize,
data: [u8; 8],
},
/// An in port instruction was run on the given port.
///
/// The date that the instruction receives should be set with `set_data` before `Vcpu::run` is
/// called again.
IoIn {
port: u16,
size: usize,
},
/// A read instruction was run against the given MMIO address.
///
/// The date that the instruction receives should be set with `set_data` before `Vcpu::run` is
/// called again.
MmioRead {
address: u64,
size: usize,
},
/// A write instruction was run against the given MMIO address with the given data.
MmioWrite {
address: u64,
size: usize,
data: [u8; 8],
},
Unknown,
Exception,
Hypercall,
Debug,
Hlt,
IrqWindowOpen,
Shutdown,
FailEntry,
Intr,
SetTpr,
TprAccess,
S390Sieic,
S390Reset,
Dcr,
Nmi,
InternalError,
Osi,
PaprHcall,
S390Ucontrol,
Watchdog,
S390Tsch,
Epr,
/// The cpu triggered a system level event which is specified by the type field.
/// The first field is the event type and the second field is flags.
/// The possible event types are shutdown, reset, or crash. So far there
/// are not any flags defined.
SystemEvent(u32 /* event_type */, u64 /* flags */),
}
/// A wrapper around creating and using a VCPU.
pub struct Vcpu {
vcpu: File,
run_mmap: MemoryMapping,
guest_mem: GuestMemory,
}
impl Vcpu {
/// Constructs a new VCPU for `vm`.
///
/// The `id` argument is the CPU number between [0, max vcpus).
pub fn new(id: c_ulong, kvm: &Kvm, vm: &Vm) -> Result<Vcpu> {
let run_mmap_size = kvm.get_vcpu_mmap_size()?;
// Safe because we know that vm a VM fd and we verify the return result.
let vcpu_fd = unsafe { ioctl_with_val(vm, KVM_CREATE_VCPU(), id) };
if vcpu_fd < 0 {
return errno_result();
}
// Wrap the vcpu now in case the following ? returns early. This is safe because we verified
// the value of the fd and we own the fd.
let vcpu = unsafe { File::from_raw_fd(vcpu_fd) };
let run_mmap =
MemoryMapping::from_fd(&vcpu, run_mmap_size).map_err(|_| Error::new(ENOSPC))?;
let guest_mem = vm.guest_mem.clone();
Ok(Vcpu {
vcpu,
run_mmap,
guest_mem,
})
}
/// Gets a reference to the guest memory owned by this VM of this VCPU.
///
/// Note that `GuestMemory` does not include any device memory that may have been added after
/// this VM was constructed.
pub fn get_memory(&self) -> &GuestMemory {
&self.guest_mem
}
/// Sets the data received by an mmio or ioport read/in instruction.
///
/// This function should be called after `Vcpu::run` returns an `VcpuExit::IoIn` or
/// `Vcpu::MmioRead`.
#[allow(clippy::cast_ptr_alignment)]
pub fn set_data(&self, data: &[u8]) -> Result<()> {
// Safe because we know we mapped enough memory to hold the kvm_run struct because the
// kernel told us how large it was. The pointer is page aligned so casting to a different
// type is well defined, hence the clippy allow attribute.
let run = unsafe { &mut *(self.run_mmap.as_ptr() as *mut kvm_run) };
match run.exit_reason {
KVM_EXIT_IO => {
let run_start = run as *mut kvm_run as *mut u8;
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let io = unsafe { run.__bindgen_anon_1.io };
if io.direction as u32 != KVM_EXIT_IO_IN {
return Err(Error::new(EINVAL));
}
let data_size = (io.count as usize) * (io.size as usize);
if data_size != data.len() {
return Err(Error::new(EINVAL));
}
// The data_offset is defined by the kernel to be some number of bytes into the
// kvm_run structure, which we have fully mmap'd.
unsafe {
let data_ptr = run_start.offset(io.data_offset as isize);
copy_nonoverlapping(data.as_ptr(), data_ptr, data_size);
}
Ok(())
}
KVM_EXIT_MMIO => {
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let mmio = unsafe { &mut run.__bindgen_anon_1.mmio };
if mmio.is_write != 0 {
return Err(Error::new(EINVAL));
}
let len = mmio.len as usize;
if len != data.len() {
return Err(Error::new(EINVAL));
}
mmio.data[..len].copy_from_slice(data);
Ok(())
}
_ => Err(Error::new(EINVAL)),
}
}
/// Runs the VCPU until it exits, returning the reason.
///
/// Note that the state of the VCPU and associated VM must be setup first for this to do
/// anything useful.
#[allow(clippy::cast_ptr_alignment)]
// The pointer is page aligned so casting to a different type is well defined, hence the clippy
// allow attribute.
pub fn run(&self) -> Result<VcpuExit> {
// Safe because we know that our file is a VCPU fd and we verify the return result.
let ret = unsafe { ioctl(self, KVM_RUN()) };
if ret == 0 {
// Safe because we know we mapped enough memory to hold the kvm_run struct because the
// kernel told us how large it was.
let run = unsafe { &*(self.run_mmap.as_ptr() as *const kvm_run) };
match run.exit_reason {
KVM_EXIT_IO => {
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let io = unsafe { run.__bindgen_anon_1.io };
let port = io.port;
let size = (io.count as usize) * (io.size as usize);
match io.direction as u32 {
KVM_EXIT_IO_IN => Ok(VcpuExit::IoIn { port, size }),
KVM_EXIT_IO_OUT => {
let mut data = [0; 8];
let run_start = run as *const kvm_run as *const u8;
// The data_offset is defined by the kernel to be some number of bytes
// into the kvm_run structure, which we have fully mmap'd.
unsafe {
let data_ptr = run_start.offset(io.data_offset as isize);
copy_nonoverlapping(
data_ptr,
data.as_mut_ptr(),
min(size, data.len()),
);
}
Ok(VcpuExit::IoOut { port, size, data })
}
_ => Err(Error::new(EINVAL)),
}
}
KVM_EXIT_MMIO => {
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let mmio = unsafe { &run.__bindgen_anon_1.mmio };
let address = mmio.phys_addr;
let size = min(mmio.len as usize, mmio.data.len());
if mmio.is_write != 0 {
Ok(VcpuExit::MmioWrite {
address,
size,
data: mmio.data,
})
} else {
Ok(VcpuExit::MmioRead { address, size })
}
}
KVM_EXIT_UNKNOWN => Ok(VcpuExit::Unknown),
KVM_EXIT_EXCEPTION => Ok(VcpuExit::Exception),
KVM_EXIT_HYPERCALL => Ok(VcpuExit::Hypercall),
KVM_EXIT_DEBUG => Ok(VcpuExit::Debug),
KVM_EXIT_HLT => Ok(VcpuExit::Hlt),
KVM_EXIT_IRQ_WINDOW_OPEN => Ok(VcpuExit::IrqWindowOpen),
KVM_EXIT_SHUTDOWN => Ok(VcpuExit::Shutdown),
KVM_EXIT_FAIL_ENTRY => Ok(VcpuExit::FailEntry),
KVM_EXIT_INTR => Ok(VcpuExit::Intr),
KVM_EXIT_SET_TPR => Ok(VcpuExit::SetTpr),
KVM_EXIT_TPR_ACCESS => Ok(VcpuExit::TprAccess),
KVM_EXIT_S390_SIEIC => Ok(VcpuExit::S390Sieic),
KVM_EXIT_S390_RESET => Ok(VcpuExit::S390Reset),
KVM_EXIT_DCR => Ok(VcpuExit::Dcr),
KVM_EXIT_NMI => Ok(VcpuExit::Nmi),
KVM_EXIT_INTERNAL_ERROR => Ok(VcpuExit::InternalError),
KVM_EXIT_OSI => Ok(VcpuExit::Osi),
KVM_EXIT_PAPR_HCALL => Ok(VcpuExit::PaprHcall),
KVM_EXIT_S390_UCONTROL => Ok(VcpuExit::S390Ucontrol),
KVM_EXIT_WATCHDOG => Ok(VcpuExit::Watchdog),
KVM_EXIT_S390_TSCH => Ok(VcpuExit::S390Tsch),
KVM_EXIT_EPR => Ok(VcpuExit::Epr),
KVM_EXIT_SYSTEM_EVENT => {
// Safe because we know the exit reason told us this union
// field is valid
let event_type = unsafe { run.__bindgen_anon_1.system_event.type_ };
let event_flags = unsafe { run.__bindgen_anon_1.system_event.flags };
Ok(VcpuExit::SystemEvent(event_type, event_flags))
}
r => panic!("unknown kvm exit reason: {}", r),
}
} else {
errno_result()
}
}
/// Gets the VCPU registers.
#[cfg(not(any(target_arch = "arm", target_arch = "aarch64")))]
pub fn get_regs(&self) -> Result<kvm_regs> {
// Safe because we know that our file is a VCPU fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let mut regs = unsafe { std::mem::zeroed() };
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_REGS(), &mut regs) };
if ret != 0 {
return errno_result();
}
Ok(regs)
}
/// Sets the VCPU registers.
#[cfg(not(any(target_arch = "arm", target_arch = "aarch64")))]
pub fn set_regs(&self, regs: &kvm_regs) -> Result<()> {
// Safe because we know that our file is a VCPU fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_REGS(), regs) };
if ret != 0 {
return errno_result();
}
Ok(())
}
/// Gets the VCPU special registers.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_sregs(&self) -> Result<kvm_sregs> {
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
let mut regs = unsafe { std::mem::zeroed() };
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_SREGS(), &mut regs) };
if ret != 0 {
return errno_result();
}
Ok(regs)
}
/// Sets the VCPU special registers.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_sregs(&self, sregs: &kvm_sregs) -> Result<()> {
// Safe because we know that our file is a VCPU fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_SREGS(), sregs) };
if ret != 0 {
return errno_result();
}
Ok(())
}
/// Gets the VCPU FPU registers.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_fpu(&self) -> Result<kvm_fpu> {
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
let mut regs = unsafe { std::mem::zeroed() };
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_FPU(), &mut regs) };
if ret != 0 {
return errno_result();
}
Ok(regs)
}
/// X86 specific call to setup the FPU
///
/// See the documentation for KVM_SET_FPU.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_fpu(&self, fpu: &kvm_fpu) -> Result<()> {
let ret = unsafe {
// Here we trust the kernel not to read past the end of the kvm_fpu struct.
ioctl_with_ref(self, KVM_SET_FPU(), fpu)
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Gets the VCPU debug registers.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_debugregs(&self) -> Result<kvm_debugregs> {
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
let mut regs = unsafe { std::mem::zeroed() };
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_DEBUGREGS(), &mut regs) };
if ret != 0 {
return errno_result();
}
Ok(regs)
}
/// Sets the VCPU debug registers
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_debugregs(&self, dregs: &kvm_debugregs) -> Result<()> {
let ret = unsafe {
// Here we trust the kernel not to read past the end of the kvm_fpu struct.
ioctl_with_ref(self, KVM_SET_DEBUGREGS(), dregs)
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Gets the VCPU extended control registers
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_xcrs(&self) -> Result<kvm_xcrs> {
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
let mut regs = unsafe { std::mem::zeroed() };
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_XCRS(), &mut regs) };
if ret != 0 {
return errno_result();
}
Ok(regs)
}
/// Sets the VCPU extended control registers
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_xcrs(&self, xcrs: &kvm_xcrs) -> Result<()> {
let ret = unsafe {
// Here we trust the kernel not to read past the end of the kvm_xcrs struct.
ioctl_with_ref(self, KVM_SET_XCRS(), xcrs)
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// X86 specific call to get the MSRS
///
/// See the documentation for KVM_SET_MSRS.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_msrs(&self, msr_entries: &mut Vec<kvm_msr_entry>) -> Result<()> {
let mut msrs = vec_with_array_field::<kvm_msrs, kvm_msr_entry>(msr_entries.len());
unsafe {
// Mapping the unsized array to a slice is unsafe because the length isn't known.
// Providing the length used to create the struct guarantees the entire slice is valid.
let entries: &mut [kvm_msr_entry] = msrs[0].entries.as_mut_slice(msr_entries.len());
entries.copy_from_slice(&msr_entries);
}
msrs[0].nmsrs = msr_entries.len() as u32;
let ret = unsafe {
// Here we trust the kernel not to read or write past the end of the kvm_msrs struct.
ioctl_with_ref(self, KVM_GET_MSRS(), &msrs[0])
};
if ret < 0 {
// KVM_SET_MSRS actually returns the number of msr entries written.
return errno_result();
}
unsafe {
let count = ret as usize;
assert!(count <= msr_entries.len());
let entries: &mut [kvm_msr_entry] = msrs[0].entries.as_mut_slice(count);
msr_entries.truncate(count);
msr_entries.copy_from_slice(&entries);
}
Ok(())
}
/// X86 specific call to setup the MSRS
///
/// See the documentation for KVM_SET_MSRS.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_msrs(&self, msrs: &kvm_msrs) -> Result<()> {
let ret = unsafe {
// Here we trust the kernel not to read past the end of the kvm_msrs struct.
ioctl_with_ref(self, KVM_SET_MSRS(), msrs)
};
if ret < 0 {
// KVM_SET_MSRS actually returns the number of msr entries written.
return errno_result();
}
Ok(())
}
/// X86 specific call to setup the CPUID registers
///
/// See the documentation for KVM_SET_CPUID2.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_cpuid2(&self, cpuid: &CpuId) -> Result<()> {
let ret = unsafe {
// Here we trust the kernel not to read past the end of the kvm_msrs struct.
ioctl_with_ptr(self, KVM_SET_CPUID2(), cpuid.as_ptr())
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// X86 specific call to get the state of the "Local Advanced Programmable Interrupt Controller".
///
/// See the documentation for KVM_GET_LAPIC.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_lapic(&self) -> Result<kvm_lapic_state> {
let mut klapic: kvm_lapic_state = Default::default();
let ret = unsafe {
// The ioctl is unsafe unless you trust the kernel not to write past the end of the
// local_apic struct.
ioctl_with_mut_ref(self, KVM_GET_LAPIC(), &mut klapic)
};
if ret < 0 {
return errno_result();
}
Ok(klapic)
}
/// X86 specific call to set the state of the "Local Advanced Programmable Interrupt Controller".
///
/// See the documentation for KVM_SET_LAPIC.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_lapic(&self, klapic: &kvm_lapic_state) -> Result<()> {
let ret = unsafe {
// The ioctl is safe because the kernel will only read from the klapic struct.
ioctl_with_ref(self, KVM_SET_LAPIC(), klapic)
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Gets the vcpu's current "multiprocessing state".
///
/// See the documentation for KVM_GET_MP_STATE. This call can only succeed after
/// a call to `Vm::create_irq_chip`.
///
/// Note that KVM defines the call for both x86 and s390 but we do not expect anyone
/// to run crosvm on s390.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_mp_state(&self) -> Result<kvm_mp_state> {
// Safe because we know that our file is a VCPU fd, we know the kernel will only
// write correct amount of memory to our pointer, and we verify the return result.
let mut state: kvm_mp_state = unsafe { std::mem::zeroed() };
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_MP_STATE(), &mut state) };
if ret < 0 {
return errno_result();
}
Ok(state)
}
/// Sets the vcpu's current "multiprocessing state".
///
/// See the documentation for KVM_SET_MP_STATE. This call can only succeed after
/// a call to `Vm::create_irq_chip`.
///
/// Note that KVM defines the call for both x86 and s390 but we do not expect anyone
/// to run crosvm on s390.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_mp_state(&self, state: &kvm_mp_state) -> Result<()> {
let ret = unsafe {
// The ioctl is safe because the kernel will only read from the kvm_mp_state struct.
ioctl_with_ref(self, KVM_SET_MP_STATE(), state)
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Gets the vcpu's currently pending exceptions, interrupts, NMIs, etc
///
/// See the documentation for KVM_GET_VCPU_EVENTS.
///
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn get_vcpu_events(&self) -> Result<kvm_vcpu_events> {
// Safe because we know that our file is a VCPU fd, we know the kernel
// will only write correct amount of memory to our pointer, and we
// verify the return result.
let mut events: kvm_vcpu_events = unsafe { std::mem::zeroed() };
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_VCPU_EVENTS(), &mut events) };
if ret < 0 {
return errno_result();
}
Ok(events)
}
/// Sets the vcpu's currently pending exceptions, interrupts, NMIs, etc
///
/// See the documentation for KVM_SET_VCPU_EVENTS.
///
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn set_vcpu_events(&self, events: &kvm_vcpu_events) -> Result<()> {
let ret = unsafe {
// The ioctl is safe because the kernel will only read from the
// kvm_vcpu_events.
ioctl_with_ref(self, KVM_SET_VCPU_EVENTS(), events)
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Signals to the host kernel that this VCPU is about to be paused.
///
/// See the documentation for KVM_KVMCLOCK_CTRL.
pub fn kvmclock_ctrl(&self) -> Result<()> {
let ret = unsafe {
// The ioctl is safe because it does not read or write memory in this process.
ioctl(self, KVM_KVMCLOCK_CTRL())
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Specifies set of signals that are blocked during execution of KVM_RUN.
/// Signals that are not blocked will will cause KVM_RUN to return
/// with -EINTR.
///
/// See the documentation for KVM_SET_SIGNAL_MASK
pub fn set_signal_mask(&self, signals: &[c_int]) -> Result<()> {
let sigset = signal::create_sigset(signals)?;
let mut kvm_sigmask = vec_with_array_field::<kvm_signal_mask, sigset_t>(1);
// Rust definition of sigset_t takes 128 bytes, but the kernel only
// expects 8-bytes structure, so we can't write
// kvm_sigmask.len = size_of::<sigset_t>() as u32;
kvm_sigmask[0].len = 8;
// Ensure the length is not too big.
const _ASSERT: usize = size_of::<sigset_t>() - 8 as usize;
// Safe as we allocated exactly the needed space
unsafe {
copy_nonoverlapping(
&sigset as *const sigset_t as *const u8,
kvm_sigmask[0].sigset.as_mut_ptr(),
8,
);
}
let ret = unsafe {
// The ioctl is safe because the kernel will only read from the
// kvm_signal_mask structure.
ioctl_with_ref(self, KVM_SET_SIGNAL_MASK(), &kvm_sigmask[0])
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Sets the value of one register on this VCPU. The id of the register is
/// encoded as specified in the kernel documentation for KVM_SET_ONE_REG.
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
pub fn set_one_reg(&self, reg_id: u64, data: u64) -> Result<()> {
let data_ref = &data as *const u64;
let onereg = kvm_one_reg {
id: reg_id,
addr: data_ref as u64,
};
// safe becuase we allocated the struct and we know the kernel will read
// exactly the size of the struct
let ret = unsafe { ioctl_with_ref(self, KVM_SET_ONE_REG(), &onereg) };
if ret < 0 {
return errno_result();
}
Ok(())
}
/// This initializes an ARM VCPU to the specified type with the specified features
/// and resets the values of all of its registers to defaults.
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
pub fn arm_vcpu_init(&self, kvi: &kvm_vcpu_init) -> Result<()> {
// safe becuase we allocated the struct and we know the kernel will read
// exactly the size of the struct
let ret = unsafe { ioctl_with_ref(self, KVM_ARM_VCPU_INIT(), kvi) };
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Use the KVM_INTERRUPT ioctl to inject the specified interrupt vector.
///
/// While this ioctl exits on PPC and MIPS as well as x86, the semantics are different and
/// ChromeOS doesn't support PPC or MIPS.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub fn interrupt(&self, irq: u32) -> Result<()> {
let interrupt = kvm_interrupt { irq };
// safe becuase we allocated the struct and we know the kernel will read
// exactly the size of the struct
let ret = unsafe { ioctl_with_ref(self, KVM_INTERRUPT(), &interrupt) };
if ret < 0 {
errno_result()
} else {
Ok(())
}
}
}
impl AsRawFd for Vcpu {
fn as_raw_fd(&self) -> RawFd {
self.vcpu.as_raw_fd()
}
}
/// Wrapper for kvm_cpuid2 which has a zero length array at the end.
/// Hides the zero length array behind a bounds check.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub struct CpuId {
kvm_cpuid: Vec<kvm_cpuid2>,
allocated_len: usize, // Number of kvm_cpuid_entry2 structs at the end of kvm_cpuid2.
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
impl CpuId {
pub fn new(array_len: usize) -> CpuId {
let mut kvm_cpuid = vec_with_array_field::<kvm_cpuid2, kvm_cpuid_entry2>(array_len);
kvm_cpuid[0].nent = array_len as u32;
CpuId {
kvm_cpuid,
allocated_len: array_len,
}
}
/// Get the entries slice so they can be modified before passing to the VCPU.
pub fn mut_entries_slice(&mut self) -> &mut [kvm_cpuid_entry2] {
// Mapping the unsized array to a slice is unsafe because the length isn't known. Using
// the length we originally allocated with eliminates the possibility of overflow.
if self.kvm_cpuid[0].nent as usize > self.allocated_len {
self.kvm_cpuid[0].nent = self.allocated_len as u32;
}
let nent = self.kvm_cpuid[0].nent as usize;
unsafe { self.kvm_cpuid[0].entries.as_mut_slice(nent) }
}
/// Get a pointer so it can be passed to the kernel. Using this pointer is unsafe.
pub fn as_ptr(&self) -> *const kvm_cpuid2 {
&self.kvm_cpuid[0]
}
/// Get a mutable pointer so it can be passed to the kernel. Using this pointer is unsafe.
pub fn as_mut_ptr(&mut self) -> *mut kvm_cpuid2 {
&mut self.kvm_cpuid[0]
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn dirty_log_size() {
let page_size = pagesize();
assert_eq!(dirty_log_bitmap_size(0), 0);
assert_eq!(dirty_log_bitmap_size(page_size), 1);
assert_eq!(dirty_log_bitmap_size(page_size * 8), 1);
assert_eq!(dirty_log_bitmap_size(page_size * 8 + 1), 2);
assert_eq!(dirty_log_bitmap_size(page_size * 100), 13);
}
#[test]
fn new() {
Kvm::new().unwrap();
}
#[test]
fn create_vm() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x1000)]).unwrap();
Vm::new(&kvm, gm).unwrap();
}
#[test]
fn check_extension() {
let kvm = Kvm::new().unwrap();
assert!(kvm.check_extension(Cap::UserMemory));
// I assume nobody is testing this on s390
assert!(!kvm.check_extension(Cap::S390UserSigp));
}
#[test]
fn check_vm_extension() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x1000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
assert!(vm.check_extension(Cap::UserMemory));
// I assume nobody is testing this on s390
assert!(!vm.check_extension(Cap::S390UserSigp));
}
#[test]
fn get_supported_cpuid() {
let kvm = Kvm::new().unwrap();
let mut cpuid = kvm.get_supported_cpuid().unwrap();
let cpuid_entries = cpuid.mut_entries_slice();
assert!(cpuid_entries.len() > 0);
}
#[test]
fn get_emulated_cpuid() {
let kvm = Kvm::new().unwrap();
kvm.get_emulated_cpuid().unwrap();
}
#[test]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn get_msr_index_list() {
let kvm = Kvm::new().unwrap();
let msr_list = kvm.get_msr_index_list().unwrap();
assert!(msr_list.len() >= 2);
}
#[test]
fn add_memory() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x1000)]).unwrap();
let mut vm = Vm::new(&kvm, gm).unwrap();
let mem_size = 0x1000;
let mem = MemoryMapping::new(mem_size).unwrap();
vm.add_device_memory(GuestAddress(0x1000), mem, false, false)
.unwrap();
}
#[test]
fn add_memory_ro() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x1000)]).unwrap();
let mut vm = Vm::new(&kvm, gm).unwrap();
let mem_size = 0x1000;
let mem = MemoryMapping::new(mem_size).unwrap();
vm.add_device_memory(GuestAddress(0x1000), mem, true, false)
.unwrap();
}
#[test]
fn remove_memory() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x1000)]).unwrap();
let mut vm = Vm::new(&kvm, gm).unwrap();
let mem_size = 0x1000;
let mem = MemoryMapping::new(mem_size).unwrap();
let mem_ptr = mem.as_ptr();
let slot = vm
.add_device_memory(GuestAddress(0x1000), mem, false, false)
.unwrap();
let mem = vm.remove_device_memory(slot).unwrap();
assert_eq!(mem.size(), mem_size);
assert_eq!(mem.as_ptr(), mem_ptr);
}
#[test]
fn remove_invalid_memory() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x1000)]).unwrap();
let mut vm = Vm::new(&kvm, gm).unwrap();
assert!(vm.remove_device_memory(0).is_err());
}
#[test]
fn overlap_memory() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let mut vm = Vm::new(&kvm, gm).unwrap();
let mem_size = 0x2000;
let mem = MemoryMapping::new(mem_size).unwrap();
assert!(vm
.add_device_memory(GuestAddress(0x2000), mem, false, false)
.is_err());
}
#[test]
fn get_memory() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x1000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
let obj_addr = GuestAddress(0xf0);
vm.get_memory().write_obj_at_addr(67u8, obj_addr).unwrap();
let read_val: u8 = vm.get_memory().read_obj_from_addr(obj_addr).unwrap();
assert_eq!(read_val, 67u8);
}
#[test]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn clock_handling() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
let mut clock_data = vm.get_clock().unwrap();
clock_data.clock += 1000;
vm.set_clock(&clock_data).unwrap();
}
#[test]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn pic_handling() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
vm.create_irq_chip().unwrap();
let pic_state = vm.get_pic_state(PicId::Secondary).unwrap();
vm.set_pic_state(PicId::Secondary, &pic_state).unwrap();
}
#[test]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn ioapic_handling() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
vm.create_irq_chip().unwrap();
let ioapic_state = vm.get_ioapic_state().unwrap();
vm.set_ioapic_state(&ioapic_state).unwrap();
}
#[test]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn pit_handling() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
vm.create_irq_chip().unwrap();
vm.create_pit().unwrap();
let pit_state = vm.get_pit_state().unwrap();
vm.set_pit_state(&pit_state).unwrap();
}
#[test]
fn register_ioevent() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
let evtfd = EventFd::new().unwrap();
vm.register_ioevent(&evtfd, IoeventAddress::Pio(0xf4), Datamatch::AnyLength)
.unwrap();
vm.register_ioevent(&evtfd, IoeventAddress::Mmio(0x1000), Datamatch::AnyLength)
.unwrap();
vm.register_ioevent(
&evtfd,
IoeventAddress::Pio(0xc1),
Datamatch::U8(Some(0x7fu8)),
)
.unwrap();
vm.register_ioevent(
&evtfd,
IoeventAddress::Pio(0xc2),
Datamatch::U16(Some(0x1337u16)),
)
.unwrap();
vm.register_ioevent(
&evtfd,
IoeventAddress::Pio(0xc4),
Datamatch::U32(Some(0xdeadbeefu32)),
)
.unwrap();
vm.register_ioevent(
&evtfd,
IoeventAddress::Pio(0xc8),
Datamatch::U64(Some(0xdeadbeefdeadbeefu64)),
)
.unwrap();
}
#[test]
fn unregister_ioevent() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
let evtfd = EventFd::new().unwrap();
vm.register_ioevent(&evtfd, IoeventAddress::Pio(0xf4), Datamatch::AnyLength)
.unwrap();
vm.register_ioevent(&evtfd, IoeventAddress::Mmio(0x1000), Datamatch::AnyLength)
.unwrap();
vm.register_ioevent(
&evtfd,
IoeventAddress::Mmio(0x1004),
Datamatch::U8(Some(0x7fu8)),
)
.unwrap();
vm.unregister_ioevent(&evtfd, IoeventAddress::Pio(0xf4), Datamatch::AnyLength)
.unwrap();
vm.unregister_ioevent(&evtfd, IoeventAddress::Mmio(0x1000), Datamatch::AnyLength)
.unwrap();
vm.unregister_ioevent(
&evtfd,
IoeventAddress::Mmio(0x1004),
Datamatch::U8(Some(0x7fu8)),
)
.unwrap();
}
#[test]
fn register_irqfd() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
let evtfd1 = EventFd::new().unwrap();
let evtfd2 = EventFd::new().unwrap();
let evtfd3 = EventFd::new().unwrap();
vm.register_irqfd(&evtfd1, 4).unwrap();
vm.register_irqfd(&evtfd2, 8).unwrap();
vm.register_irqfd(&evtfd3, 4).unwrap();
vm.register_irqfd(&evtfd3, 4).unwrap_err();
}
#[test]
fn unregister_irqfd() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
let evtfd1 = EventFd::new().unwrap();
let evtfd2 = EventFd::new().unwrap();
let evtfd3 = EventFd::new().unwrap();
vm.register_irqfd(&evtfd1, 4).unwrap();
vm.register_irqfd(&evtfd2, 8).unwrap();
vm.register_irqfd(&evtfd3, 4).unwrap();
vm.unregister_irqfd(&evtfd1, 4).unwrap();
vm.unregister_irqfd(&evtfd2, 8).unwrap();
vm.unregister_irqfd(&evtfd3, 4).unwrap();
}
#[test]
fn irqfd_resample() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
let evtfd1 = EventFd::new().unwrap();
let evtfd2 = EventFd::new().unwrap();
vm.register_irqfd_resample(&evtfd1, &evtfd2, 4).unwrap();
vm.unregister_irqfd(&evtfd1, 4).unwrap();
// Ensures the ioctl is actually reading the resamplefd.
vm.register_irqfd_resample(&evtfd1, unsafe { &EventFd::from_raw_fd(-1) }, 4)
.unwrap_err();
}
#[test]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn set_gsi_routing() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
vm.create_irq_chip().unwrap();
vm.set_gsi_routing(&[]).unwrap();
vm.set_gsi_routing(&[IrqRoute {
gsi: 1,
source: IrqSource::Irqchip {
chip: KVM_IRQCHIP_IOAPIC,
pin: 3,
},
}])
.unwrap();
vm.set_gsi_routing(&[IrqRoute {
gsi: 1,
source: IrqSource::Msi {
address: 0xf000000,
data: 0xa0,
},
}])
.unwrap();
vm.set_gsi_routing(&[
IrqRoute {
gsi: 1,
source: IrqSource::Irqchip {
chip: KVM_IRQCHIP_IOAPIC,
pin: 3,
},
},
IrqRoute {
gsi: 2,
source: IrqSource::Msi {
address: 0xf000000,
data: 0xa0,
},
},
])
.unwrap();
}
#[test]
fn create_vcpu() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
Vcpu::new(0, &kvm, &vm).unwrap();
}
#[test]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn debugregs() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
let vcpu = Vcpu::new(0, &kvm, &vm).unwrap();
let mut dregs = vcpu.get_debugregs().unwrap();
dregs.dr7 = 13;
vcpu.set_debugregs(&dregs).unwrap();
let dregs2 = vcpu.get_debugregs().unwrap();
assert_eq!(dregs.dr7, dregs2.dr7);
}
#[test]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn xcrs() {
let kvm = Kvm::new().unwrap();
if !kvm.check_extension(Cap::Xcrs) {
return;
}
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
let vcpu = Vcpu::new(0, &kvm, &vm).unwrap();
let mut xcrs = vcpu.get_xcrs().unwrap();
xcrs.xcrs[0].value = 1;
vcpu.set_xcrs(&xcrs).unwrap();
let xcrs2 = vcpu.get_xcrs().unwrap();
assert_eq!(xcrs.xcrs[0].value, xcrs2.xcrs[0].value);
}
#[test]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn get_msrs() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
let vcpu = Vcpu::new(0, &kvm, &vm).unwrap();
let mut msrs = vec![
// This one should succeed
kvm_msr_entry {
index: 0x0000011e,
..Default::default()
},
// This one will fail to fetch
kvm_msr_entry {
index: 0x000003f1,
..Default::default()
},
];
vcpu.get_msrs(&mut msrs).unwrap();
assert_eq!(msrs.len(), 1);
}
#[test]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn mp_state() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
vm.create_irq_chip().unwrap();
let vcpu = Vcpu::new(0, &kvm, &vm).unwrap();
let state = vcpu.get_mp_state().unwrap();
vcpu.set_mp_state(&state).unwrap();
}
#[test]
fn set_signal_mask() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
let vcpu = Vcpu::new(0, &kvm, &vm).unwrap();
vcpu.set_signal_mask(&[sys_util::SIGRTMIN() + 0]).unwrap();
}
#[test]
fn vcpu_mmap_size() {
let kvm = Kvm::new().unwrap();
let mmap_size = kvm.get_vcpu_mmap_size().unwrap();
let page_size = pagesize();
assert!(mmap_size >= page_size);
assert!(mmap_size % page_size == 0);
}
#[test]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn set_identity_map_addr() {
let kvm = Kvm::new().unwrap();
let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x10000)]).unwrap();
let vm = Vm::new(&kvm, gm).unwrap();
vm.set_identity_map_addr(GuestAddress(0x20000)).unwrap();
}
}