blob: db941e19f2ab1bb10417bc18807965ebcc831a99 [file] [log] [blame]
// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! x86 architecture support.
#![cfg(any(target_arch = "x86", target_arch = "x86_64"))]
mod fdt;
const SETUP_DTB: u32 = 2;
const X86_64_FDT_MAX_SIZE: u64 = 0x20_0000;
#[allow(dead_code)]
#[allow(non_upper_case_globals)]
#[allow(non_camel_case_types)]
#[allow(non_snake_case)]
mod bootparam;
// boot_params is just a series of ints, it is safe to initialize it.
unsafe impl data_model::DataInit for bootparam::boot_params {}
#[allow(dead_code)]
#[allow(non_upper_case_globals)]
mod msr_index;
#[allow(dead_code)]
#[allow(non_upper_case_globals)]
#[allow(non_camel_case_types)]
#[allow(clippy::all)]
mod mpspec;
// These mpspec types are only data, reading them from data is a safe initialization.
unsafe impl data_model::DataInit for mpspec::mpc_bus {}
unsafe impl data_model::DataInit for mpspec::mpc_cpu {}
unsafe impl data_model::DataInit for mpspec::mpc_intsrc {}
unsafe impl data_model::DataInit for mpspec::mpc_ioapic {}
unsafe impl data_model::DataInit for mpspec::mpc_table {}
unsafe impl data_model::DataInit for mpspec::mpc_lintsrc {}
unsafe impl data_model::DataInit for mpspec::mpf_intel {}
pub mod msr;
mod acpi;
mod bzimage;
mod cpuid;
mod gdt;
mod interrupts;
mod mptable;
mod regs;
mod smbios;
use once_cell::sync::OnceCell;
use std::arch::x86_64::__cpuid;
use std::collections::BTreeMap;
use std::ffi::{CStr, CString};
use std::fs::File;
use std::io::{self, Seek};
use std::mem;
use std::sync::Arc;
use crate::bootparam::boot_params;
use acpi_tables::sdt::SDT;
use acpi_tables::{aml, aml::Aml};
use arch::{
get_serial_cmdline, GetSerialCmdlineError, MsrAction, MsrConfig, MsrRWType, MsrValueFrom,
RunnableLinuxVm, VmComponents, VmImage,
};
use base::{warn, Event, SendTube, TubeError};
use devices::serial_device::{SerialHardware, SerialParameters};
use devices::{
BusDeviceObj, BusResumeDevice, IrqChip, IrqChipX86_64, PciAddress, PciConfigIo, PciConfigMmio,
PciDevice, PciVirtualConfigMmio,
};
use hypervisor::{HypervisorX86_64, ProtectionType, VcpuX86_64, Vm, VmCap, VmX86_64};
use minijail::Minijail;
use remain::sorted;
use resources::{MemRegion, SystemAllocator, SystemAllocatorConfig};
use sync::Mutex;
use thiserror::Error;
use vm_control::{BatControl, BatteryType};
use vm_memory::{GuestAddress, GuestMemory, GuestMemoryError};
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
use {
gdbstub_arch::x86::reg::{X86SegmentRegs, X86_64CoreRegs},
hypervisor::x86_64::{Regs, Sregs},
};
use crate::msr_index::*;
#[sorted]
#[derive(Error, Debug)]
pub enum Error {
#[error("error allocating IO resource: {0}")]
AllocateIOResouce(resources::Error),
#[error("error allocating a single irq")]
AllocateIrq,
#[error("unable to clone an Event: {0}")]
CloneEvent(base::Error),
#[error("failed to clone IRQ chip: {0}")]
CloneIrqChip(base::Error),
#[error("unable to clone a Tube: {0}")]
CloneTube(TubeError),
#[error("the given kernel command line was invalid: {0}")]
Cmdline(kernel_cmdline::Error),
#[error("failed to configure hotplugged pci device: {0}")]
ConfigurePciDevice(arch::DeviceRegistrationError),
#[error("error configuring the system")]
ConfigureSystem,
#[error("unable to create ACPI tables")]
CreateAcpi,
#[error("unable to create battery devices: {0}")]
CreateBatDevices(arch::DeviceRegistrationError),
#[error("unable to make an Event: {0}")]
CreateEvent(base::Error),
#[error("failed to create fdt: {0}")]
CreateFdt(arch::fdt::Error),
#[cfg(feature = "direct")]
#[error("failed to enable GPE forwarding: {0}")]
CreateGpe(devices::DirectIrqError),
#[error("failed to create IOAPIC device: {0}")]
CreateIoapicDevice(base::Error),
#[error("failed to create a PCI root hub: {0}")]
CreatePciRoot(arch::DeviceRegistrationError),
#[error("unable to create PIT: {0}")]
CreatePit(base::Error),
#[error("unable to make PIT device: {0}")]
CreatePitDevice(devices::PitError),
#[error("unable to create serial devices: {0}")]
CreateSerialDevices(arch::DeviceRegistrationError),
#[error("failed to create socket: {0}")]
CreateSocket(io::Error),
#[error("failed to create VCPU: {0}")]
CreateVcpu(base::Error),
#[error("invalid e820 setup params")]
E820Configuration,
#[error("failed to enable singlestep execution: {0}")]
EnableSinglestep(base::Error),
#[error("failed to enable split irqchip: {0}")]
EnableSplitIrqchip(base::Error),
#[error("failed to get serial cmdline: {0}")]
GetSerialCmdline(GetSerialCmdlineError),
#[error("the kernel extends past the end of RAM")]
KernelOffsetPastEnd,
#[error("error loading bios: {0}")]
LoadBios(io::Error),
#[error("error loading kernel bzImage: {0}")]
LoadBzImage(bzimage::Error),
#[error("error loading command line: {0}")]
LoadCmdline(kernel_loader::Error),
#[error("error loading initrd: {0}")]
LoadInitrd(arch::LoadImageError),
#[error("error loading Kernel: {0}")]
LoadKernel(kernel_loader::Error),
#[error("error translating address: Page not present")]
PageNotPresent,
#[error("error reading guest memory {0}")]
ReadingGuestMemory(vm_memory::GuestMemoryError),
#[error("error reading CPU registers {0}")]
ReadRegs(base::Error),
#[error("error registering an IrqFd: {0}")]
RegisterIrqfd(base::Error),
#[error("error registering virtual socket device: {0}")]
RegisterVsock(arch::DeviceRegistrationError),
#[error("error reserved pcie config mmio")]
ReservePcieCfgMmio(resources::Error),
#[error("failed to set a hardware breakpoint: {0}")]
SetHwBreakpoint(base::Error),
#[error("failed to set interrupts: {0}")]
SetLint(interrupts::Error),
#[error("failed to set tss addr: {0}")]
SetTssAddr(base::Error),
#[error("failed to set up cpuid: {0}")]
SetupCpuid(cpuid::Error),
#[error("failed to set up FPU: {0}")]
SetupFpu(regs::Error),
#[error("failed to set up guest memory: {0}")]
SetupGuestMemory(GuestMemoryError),
#[error("failed to set up mptable: {0}")]
SetupMptable(mptable::Error),
#[error("failed to set up MSRs: {0}")]
SetupMsrs(regs::Error),
#[error("failed to set up registers: {0}")]
SetupRegs(regs::Error),
#[error("failed to set up SMBIOS: {0}")]
SetupSmbios(smbios::Error),
#[error("failed to set up sregs: {0}")]
SetupSregs(regs::Error),
#[error("failed to translate virtual address")]
TranslatingVirtAddr,
#[error("protected VMs not supported on x86_64")]
UnsupportedProtectionType,
#[error("error writing CPU registers {0}")]
WriteRegs(base::Error),
#[error("error writing guest memory {0}")]
WritingGuestMemory(GuestMemoryError),
#[error("the zero page extends past the end of guest_mem")]
ZeroPagePastRamEnd,
#[error("error writing the zero page of guest memory")]
ZeroPageSetup,
}
pub type Result<T> = std::result::Result<T, Error>;
pub struct X8664arch;
enum E820Type {
Ram = 0x01,
Reserved = 0x2,
}
const MB: u64 = 1 << 20;
const GB: u64 = 1 << 30;
const BOOT_STACK_POINTER: u64 = 0x8000;
const START_OF_RAM_32BITS: u64 = if cfg!(feature = "direct") { 0x1000 } else { 0 };
const FIRST_ADDR_PAST_32BITS: u64 = 1 << 32;
// Reserve memory region for pcie virtual configuration
const PCIE_VCFG_MMIO_SIZE: u64 = 0x400_0000;
// Linux (with 4-level paging) has a physical memory limit of 46 bits (64 TiB).
const HIGH_MMIO_MAX_END: u64 = 1u64 << 46;
const KERNEL_64BIT_ENTRY_OFFSET: u64 = 0x200;
const ZERO_PAGE_OFFSET: u64 = 0x7000;
const TSS_ADDR: u64 = 0xfffb_d000;
const KERNEL_START_OFFSET: u64 = 0x20_0000;
const CMDLINE_OFFSET: u64 = 0x2_0000;
const CMDLINE_MAX_SIZE: u64 = KERNEL_START_OFFSET - CMDLINE_OFFSET;
const X86_64_SERIAL_1_3_IRQ: u32 = 4;
const X86_64_SERIAL_2_4_IRQ: u32 = 3;
// X86_64_SCI_IRQ is used to fill the ACPI FACP table.
// The sci_irq number is better to be a legacy
// IRQ number which is less than 16(actually most of the
// platforms have fixed IRQ number 9). So we can
// reserve the IRQ number 5 for SCI and let the
// the other devices starts from next.
pub const X86_64_SCI_IRQ: u32 = 5;
// The CMOS RTC uses IRQ 8; start allocating IRQs at 9.
pub const X86_64_IRQ_BASE: u32 = 9;
const ACPI_HI_RSDP_WINDOW_BASE: u64 = 0x000E_0000;
// Memory layout below 4G
struct LowMemoryLayout {
// the pci mmio start address below 4G
pci_start: u64,
// the pci mmio size below 4G
pci_size: u64,
// the pcie cfg mmio start address
pcie_cfg_mmio_start: u64,
// the pcie cfg mmio size
pcie_cfg_mmio_size: u64,
}
static LOW_MEMORY_LAYOUT: OnceCell<LowMemoryLayout> = OnceCell::new();
fn init_low_memory_layout(pcie_ecam: Option<MemRegion>, pci_low_start: Option<u64>) {
LOW_MEMORY_LAYOUT.get_or_init(|| {
// Make sure it align to 256MB for MTRR convenient
const MEM_32BIT_GAP_SIZE: u64 = if cfg!(feature = "direct") {
// Allow space for identity mapping coreboot memory regions on the host
// which is found at around 7a00_0000 (little bit before 2GB)
//
// TODO(b/188011323): stop hardcoding sizes and addresses here and instead
// determine the memory map from how the VM has been configured via the
// command line.
2560 * MB
} else {
768 * MB
};
// Reserved memory for nand_bios/LAPIC/IOAPIC/HPET/.....
const RESERVED_MEM_SIZE: u64 = 0x800_0000;
// Reserve 64MB for pcie enhanced configuration
const PCIE_CFG_MMIO_SIZE: u64 = 0x400_0000;
let (pcie_cfg_mmio_start, pcie_cfg_mmio_size) = if let Some(pcie_mem) = pcie_ecam {
(pcie_mem.base, pcie_mem.size)
} else {
(
(FIRST_ADDR_PAST_32BITS - RESERVED_MEM_SIZE - PCIE_CFG_MMIO_SIZE),
PCIE_CFG_MMIO_SIZE,
)
};
let pci_start = if let Some(pci_low) = pci_low_start {
pcie_cfg_mmio_start.min(pci_low)
} else {
pcie_cfg_mmio_start.min(FIRST_ADDR_PAST_32BITS - MEM_32BIT_GAP_SIZE)
};
let pci_size = FIRST_ADDR_PAST_32BITS - pci_start - RESERVED_MEM_SIZE;
LowMemoryLayout {
pci_start,
pci_size,
pcie_cfg_mmio_start,
pcie_cfg_mmio_size,
}
});
}
fn read_pci_start_before_32bit() -> u64 {
LOW_MEMORY_LAYOUT.get().unwrap().pci_start
}
fn read_pci_size_before_32bit() -> u64 {
LOW_MEMORY_LAYOUT.get().unwrap().pci_size
}
fn read_pcie_cfg_mmio_start() -> u64 {
LOW_MEMORY_LAYOUT.get().unwrap().pcie_cfg_mmio_start
}
fn read_pcie_cfg_mmio_size() -> u64 {
LOW_MEMORY_LAYOUT.get().unwrap().pcie_cfg_mmio_size
}
/// The x86 reset vector for i386+ and x86_64 puts the processor into an "unreal mode" where it
/// can access the last 1 MB of the 32-bit address space in 16-bit mode, and starts the instruction
/// pointer at the effective physical address 0xFFFF_FFF0.
fn bios_start(bios_size: u64) -> GuestAddress {
GuestAddress(FIRST_ADDR_PAST_32BITS - bios_size)
}
fn configure_system(
guest_mem: &GuestMemory,
kernel_addr: GuestAddress,
cmdline_addr: GuestAddress,
cmdline_size: usize,
setup_data: Option<GuestAddress>,
initrd: Option<(GuestAddress, usize)>,
mut params: boot_params,
) -> Result<()> {
const EBDA_START: u64 = 0x0009_fc00;
const KERNEL_BOOT_FLAG_MAGIC: u16 = 0xaa55;
const KERNEL_HDR_MAGIC: u32 = 0x5372_6448;
const KERNEL_LOADER_OTHER: u8 = 0xff;
const KERNEL_MIN_ALIGNMENT_BYTES: u32 = 0x100_0000; // Must be non-zero.
let first_addr_past_32bits = GuestAddress(FIRST_ADDR_PAST_32BITS);
let end_32bit_gap_start = GuestAddress(read_pci_start_before_32bit());
params.hdr.type_of_loader = KERNEL_LOADER_OTHER;
params.hdr.boot_flag = KERNEL_BOOT_FLAG_MAGIC;
params.hdr.header = KERNEL_HDR_MAGIC;
params.hdr.cmd_line_ptr = cmdline_addr.offset() as u32;
params.hdr.cmdline_size = cmdline_size as u32;
params.hdr.kernel_alignment = KERNEL_MIN_ALIGNMENT_BYTES;
if let Some(setup_data) = setup_data {
params.hdr.setup_data = setup_data.offset();
}
if let Some((initrd_addr, initrd_size)) = initrd {
params.hdr.ramdisk_image = initrd_addr.offset() as u32;
params.hdr.ramdisk_size = initrd_size as u32;
}
add_e820_entry(
&mut params,
START_OF_RAM_32BITS,
EBDA_START - START_OF_RAM_32BITS,
E820Type::Ram,
)?;
let mem_end = guest_mem.end_addr();
if mem_end < end_32bit_gap_start {
add_e820_entry(
&mut params,
kernel_addr.offset() as u64,
mem_end.offset_from(kernel_addr) as u64,
E820Type::Ram,
)?;
} else {
add_e820_entry(
&mut params,
kernel_addr.offset() as u64,
end_32bit_gap_start.offset_from(kernel_addr) as u64,
E820Type::Ram,
)?;
if mem_end > first_addr_past_32bits {
add_e820_entry(
&mut params,
first_addr_past_32bits.offset() as u64,
mem_end.offset_from(first_addr_past_32bits) as u64,
E820Type::Ram,
)?;
}
}
add_e820_entry(
&mut params,
read_pcie_cfg_mmio_start(),
read_pcie_cfg_mmio_size(),
E820Type::Reserved,
)?;
add_e820_entry(
&mut params,
X8664arch::get_pcie_vcfg_mmio_base(guest_mem),
PCIE_VCFG_MMIO_SIZE,
E820Type::Reserved,
)?;
let zero_page_addr = GuestAddress(ZERO_PAGE_OFFSET);
guest_mem
.checked_offset(zero_page_addr, mem::size_of::<boot_params>() as u64)
.ok_or(Error::ZeroPagePastRamEnd)?;
guest_mem
.write_obj_at_addr(params, zero_page_addr)
.map_err(|_| Error::ZeroPageSetup)?;
Ok(())
}
/// Add an e820 region to the e820 map.
/// Returns Ok(()) if successful, or an error if there is no space left in the map.
fn add_e820_entry(
params: &mut boot_params,
addr: u64,
size: u64,
mem_type: E820Type,
) -> Result<()> {
if params.e820_entries >= params.e820_table.len() as u8 {
return Err(Error::E820Configuration);
}
params.e820_table[params.e820_entries as usize].addr = addr;
params.e820_table[params.e820_entries as usize].size = size;
params.e820_table[params.e820_entries as usize].type_ = mem_type as u32;
params.e820_entries += 1;
Ok(())
}
/// Returns a Vec of the valid memory addresses.
/// These should be used to configure the GuestMemory structure for the platform.
/// For x86_64 all addresses are valid from the start of the kernel except a
/// carve out at the end of 32bit address space.
fn arch_memory_regions(size: u64, bios_size: Option<u64>) -> Vec<(GuestAddress, u64)> {
let mem_start = START_OF_RAM_32BITS;
let mem_end = GuestAddress(size + mem_start);
let first_addr_past_32bits = GuestAddress(FIRST_ADDR_PAST_32BITS);
let end_32bit_gap_start = GuestAddress(read_pci_start_before_32bit());
let mut regions = Vec::new();
if mem_end <= end_32bit_gap_start {
regions.push((GuestAddress(mem_start), size));
if let Some(bios_size) = bios_size {
regions.push((bios_start(bios_size), bios_size));
}
} else {
regions.push((
GuestAddress(mem_start),
end_32bit_gap_start.offset() - mem_start,
));
if let Some(bios_size) = bios_size {
regions.push((bios_start(bios_size), bios_size));
}
regions.push((
first_addr_past_32bits,
mem_end.offset_from(end_32bit_gap_start),
));
}
regions
}
impl arch::LinuxArch for X8664arch {
type Error = Error;
fn guest_memory_layout(
components: &VmComponents,
) -> std::result::Result<Vec<(GuestAddress, u64)>, Self::Error> {
init_low_memory_layout(components.pcie_ecam, components.pci_low_start);
let bios_size = match &components.vm_image {
VmImage::Bios(bios_file) => Some(bios_file.metadata().map_err(Error::LoadBios)?.len()),
VmImage::Kernel(_) => None,
};
Ok(arch_memory_regions(components.memory_size, bios_size))
}
fn get_system_allocator_config<V: Vm>(vm: &V) -> SystemAllocatorConfig {
let guest_mem = vm.get_memory();
let high_mmio_start = Self::get_high_mmio_base(guest_mem);
let high_mmio_size = Self::get_high_mmio_size(vm);
SystemAllocatorConfig {
io: Some(MemRegion {
base: 0xc000,
size: 0x4000,
}),
low_mmio: MemRegion {
base: read_pci_start_before_32bit(),
size: read_pci_size_before_32bit(),
},
high_mmio: MemRegion {
base: high_mmio_start,
size: high_mmio_size,
},
platform_mmio: None,
first_irq: X86_64_IRQ_BASE,
}
}
fn build_vm<V, Vcpu>(
mut components: VmComponents,
vm_evt_wrtube: &SendTube,
system_allocator: &mut SystemAllocator,
serial_parameters: &BTreeMap<(SerialHardware, u8), SerialParameters>,
serial_jail: Option<Minijail>,
battery: (&Option<BatteryType>, Option<Minijail>),
mut vm: V,
ramoops_region: Option<arch::pstore::RamoopsRegion>,
devs: Vec<(Box<dyn BusDeviceObj>, Option<Minijail>)>,
irq_chip: &mut dyn IrqChipX86_64,
vcpu_ids: &mut Vec<usize>,
) -> std::result::Result<RunnableLinuxVm<V, Vcpu>, Self::Error>
where
V: VmX86_64,
Vcpu: VcpuX86_64,
{
if components.protected_vm != ProtectionType::Unprotected {
return Err(Error::UnsupportedProtectionType);
}
let mem = vm.get_memory().clone();
let vcpu_count = components.vcpu_count;
let tss_addr = GuestAddress(TSS_ADDR);
vm.set_tss_addr(tss_addr).map_err(Error::SetTssAddr)?;
// Use IRQ info in ACPI if provided by the user.
let mut noirq = true;
let mut mptable = true;
let mut sci_irq = X86_64_SCI_IRQ;
// punch pcie config mmio from pci low mmio, so that it couldn't be
// allocated to any device.
system_allocator
.reserve_mmio(read_pcie_cfg_mmio_start(), read_pcie_cfg_mmio_size())
.map_err(Error::ReservePcieCfgMmio)?;
for sdt in components.acpi_sdts.iter() {
if sdt.is_signature(b"DSDT") || sdt.is_signature(b"APIC") {
noirq = false;
} else if sdt.is_signature(b"FACP") {
mptable = false;
let sci_irq_fadt: u16 = sdt.read(acpi::FADT_FIELD_SCI_INTERRUPT);
sci_irq = sci_irq_fadt.into();
if !system_allocator.reserve_irq(sci_irq) {
warn!("sci irq {} already reserved.", sci_irq);
}
}
}
let mmio_bus = Arc::new(devices::Bus::new());
let io_bus = Arc::new(devices::Bus::new());
let (pci_devices, _others): (Vec<_>, Vec<_>) = devs
.into_iter()
.partition(|(dev, _)| dev.as_pci_device().is_some());
let pci_devices = pci_devices
.into_iter()
.map(|(dev, jail_orig)| (dev.into_pci_device().unwrap(), jail_orig))
.collect();
let (pci, pci_irqs, pid_debug_label_map) = arch::generate_pci_root(
pci_devices,
irq_chip.as_irq_chip_mut(),
mmio_bus.clone(),
io_bus.clone(),
system_allocator,
&mut vm,
4, // Share the four pin interrupts (INTx#)
)
.map_err(Error::CreatePciRoot)?;
let pci = Arc::new(Mutex::new(pci));
pci.lock().enable_pcie_cfg_mmio(read_pcie_cfg_mmio_start());
let pci_cfg = PciConfigIo::new(
pci.clone(),
vm_evt_wrtube.try_clone().map_err(Error::CloneTube)?,
);
let pci_bus = Arc::new(Mutex::new(pci_cfg));
io_bus.insert(pci_bus, 0xcf8, 0x8).unwrap();
let pcie_cfg_mmio = Arc::new(Mutex::new(PciConfigMmio::new(pci.clone(), 12)));
mmio_bus
.insert(
pcie_cfg_mmio,
read_pcie_cfg_mmio_start(),
read_pcie_cfg_mmio_size(),
)
.unwrap();
let pcie_vcfg_mmio = Arc::new(Mutex::new(PciVirtualConfigMmio::new(pci.clone(), 12)));
mmio_bus
.insert(
pcie_vcfg_mmio,
Self::get_pcie_vcfg_mmio_base(&mem),
PCIE_VCFG_MMIO_SIZE,
)
.unwrap();
// Event used to notify crosvm that guest OS is trying to suspend.
let suspend_evt = Event::new().map_err(Error::CreateEvent)?;
if !components.no_legacy {
Self::setup_legacy_devices(
&io_bus,
irq_chip.pit_uses_speaker_port(),
vm_evt_wrtube.try_clone().map_err(Error::CloneTube)?,
components.memory_size,
)?;
}
Self::setup_serial_devices(
components.protected_vm,
irq_chip.as_irq_chip_mut(),
&io_bus,
serial_parameters,
serial_jail,
)?;
let mut resume_notify_devices = Vec::new();
// each bus occupy 1MB mmio for pcie enhanced configuration
let max_bus = ((read_pcie_cfg_mmio_size() / 0x100000) - 1) as u8;
let (acpi_dev_resource, bat_control) = Self::setup_acpi_devices(
&mem,
&io_bus,
system_allocator,
suspend_evt.try_clone().map_err(Error::CloneEvent)?,
vm_evt_wrtube.try_clone().map_err(Error::CloneTube)?,
components.acpi_sdts,
#[cfg(feature = "direct")]
&components.direct_gpe,
irq_chip.as_irq_chip_mut(),
sci_irq,
battery,
&mmio_bus,
max_bus,
&mut resume_notify_devices,
)?;
irq_chip
.finalize_devices(system_allocator, &io_bus, &mmio_bus)
.map_err(Error::RegisterIrqfd)?;
// All of these bios generated tables are set manually for the benefit of the kernel boot
// flow (since there's no BIOS to set it) and for the BIOS boot flow since crosvm doesn't
// have a way to pass the BIOS these configs.
// This works right now because the only guest BIOS used with crosvm (u-boot) ignores these
// tables and the guest OS picks them up.
// If another guest does need a way to pass these tables down to it's BIOS, this approach
// should be rethought.
if mptable {
// Note that this puts the mptable at 0x9FC00 in guest physical memory.
mptable::setup_mptable(&mem, vcpu_count as u8, &pci_irqs)
.map_err(Error::SetupMptable)?;
}
smbios::setup_smbios(&mem, components.dmi_path).map_err(Error::SetupSmbios)?;
let host_cpus = if components.host_cpu_topology {
components.vcpu_affinity.clone()
} else {
None
};
// TODO (tjeznach) Write RSDP to bootconfig before writing to memory
acpi::create_acpi_tables(
&mem,
vcpu_count as u8,
sci_irq,
0xcf9,
6, // RST_CPU|SYS_RST
&acpi_dev_resource,
host_cpus,
vcpu_ids,
&pci_irqs,
read_pcie_cfg_mmio_start(),
max_bus,
components.force_s2idle,
)
.ok_or(Error::CreateAcpi)?;
let mut cmdline = Self::get_base_linux_cmdline();
if noirq {
cmdline.insert_str("acpi=noirq").unwrap();
}
get_serial_cmdline(&mut cmdline, serial_parameters, "io")
.map_err(Error::GetSerialCmdline)?;
for param in components.extra_kernel_params {
cmdline.insert_str(&param).map_err(Error::Cmdline)?;
}
if let Some(ramoops_region) = ramoops_region {
arch::pstore::add_ramoops_kernel_cmdline(&mut cmdline, &ramoops_region)
.map_err(Error::Cmdline)?;
}
match components.vm_image {
VmImage::Bios(ref mut bios) => {
// Allow a bios to hardcode CMDLINE_OFFSET and read the kernel command line from it.
kernel_loader::load_cmdline(
&mem,
GuestAddress(CMDLINE_OFFSET),
&CString::new(cmdline).unwrap(),
)
.map_err(Error::LoadCmdline)?;
Self::load_bios(&mem, bios)?
}
VmImage::Kernel(ref mut kernel_image) => {
// separate out load_kernel from other setup to get a specific error for
// kernel loading
let (params, kernel_end) = Self::load_kernel(&mem, kernel_image)?;
Self::setup_system_memory(
&mem,
&CString::new(cmdline).unwrap(),
components.initrd_image,
components.android_fstab,
kernel_end,
params,
)?;
}
}
Ok(RunnableLinuxVm {
vm,
vcpu_count,
vcpus: None,
vcpu_affinity: components.vcpu_affinity,
no_smt: components.no_smt,
irq_chip: irq_chip.try_box_clone().map_err(Error::CloneIrqChip)?,
has_bios: matches!(components.vm_image, VmImage::Bios(_)),
io_bus,
mmio_bus,
pid_debug_label_map,
suspend_evt,
resume_notify_devices,
rt_cpus: components.rt_cpus,
delay_rt: components.delay_rt,
bat_control,
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
gdb: components.gdb,
pm: Some(acpi_dev_resource.pm),
root_config: pci,
hotplug_bus: Vec::new(),
})
}
fn configure_vcpu<V: Vm>(
vm: &V,
hypervisor: &dyn HypervisorX86_64,
irq_chip: &mut dyn IrqChipX86_64,
vcpu: &mut dyn VcpuX86_64,
vcpu_id: usize,
num_cpus: usize,
has_bios: bool,
no_smt: bool,
host_cpu_topology: bool,
itmt: bool,
) -> Result<()> {
if !vm.check_capability(VmCap::EarlyInitCpuid) {
cpuid::setup_cpuid(
hypervisor,
irq_chip,
vcpu,
vcpu_id,
num_cpus,
no_smt,
host_cpu_topology,
itmt,
)
.map_err(Error::SetupCpuid)?;
}
if has_bios {
regs::set_reset_vector(vcpu).map_err(Error::SetupRegs)?;
return Ok(());
}
let guest_mem = vm.get_memory();
let kernel_load_addr = GuestAddress(KERNEL_START_OFFSET);
regs::setup_msrs(vm, vcpu, read_pci_start_before_32bit()).map_err(Error::SetupMsrs)?;
let kernel_end = guest_mem
.checked_offset(kernel_load_addr, KERNEL_64BIT_ENTRY_OFFSET)
.ok_or(Error::KernelOffsetPastEnd)?;
regs::setup_regs(
vcpu,
(kernel_end).offset() as u64,
BOOT_STACK_POINTER as u64,
ZERO_PAGE_OFFSET as u64,
)
.map_err(Error::SetupRegs)?;
regs::setup_fpu(vcpu).map_err(Error::SetupFpu)?;
regs::setup_sregs(guest_mem, vcpu).map_err(Error::SetupSregs)?;
interrupts::set_lint(vcpu_id, irq_chip).map_err(Error::SetLint)?;
Ok(())
}
fn register_pci_device<V: VmX86_64, Vcpu: VcpuX86_64>(
linux: &mut RunnableLinuxVm<V, Vcpu>,
device: Box<dyn PciDevice>,
minijail: Option<Minijail>,
resources: &mut SystemAllocator,
) -> Result<PciAddress> {
let pci_address = arch::configure_pci_device(linux, device, minijail, resources)
.map_err(Error::ConfigurePciDevice)?;
Ok(pci_address)
}
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
fn debug_read_registers<T: VcpuX86_64>(vcpu: &T) -> Result<X86_64CoreRegs> {
// General registers: RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, r8-r15
let gregs = vcpu.get_regs().map_err(Error::ReadRegs)?;
let regs = [
gregs.rax, gregs.rbx, gregs.rcx, gregs.rdx, gregs.rsi, gregs.rdi, gregs.rbp, gregs.rsp,
gregs.r8, gregs.r9, gregs.r10, gregs.r11, gregs.r12, gregs.r13, gregs.r14, gregs.r15,
];
// GDB exposes 32-bit eflags instead of 64-bit rflags.
// https://github.com/bminor/binutils-gdb/blob/master/gdb/features/i386/64bit-core.xml
let eflags = gregs.rflags as u32;
let rip = gregs.rip;
// Segment registers: CS, SS, DS, ES, FS, GS
let sregs = vcpu.get_sregs().map_err(Error::ReadRegs)?;
let segments = X86SegmentRegs {
cs: sregs.cs.selector as u32,
ss: sregs.ss.selector as u32,
ds: sregs.ds.selector as u32,
es: sregs.es.selector as u32,
fs: sregs.fs.selector as u32,
gs: sregs.gs.selector as u32,
};
// TODO(keiichiw): Other registers such as FPU, xmm and mxcsr.
Ok(X86_64CoreRegs {
regs,
eflags,
rip,
segments,
..Default::default()
})
}
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
fn debug_write_registers<T: VcpuX86_64>(vcpu: &T, regs: &X86_64CoreRegs) -> Result<()> {
// General purpose registers (RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, r8-r15) + RIP + rflags
let orig_gregs = vcpu.get_regs().map_err(Error::ReadRegs)?;
let gregs = Regs {
rax: regs.regs[0],
rbx: regs.regs[1],
rcx: regs.regs[2],
rdx: regs.regs[3],
rsi: regs.regs[4],
rdi: regs.regs[5],
rbp: regs.regs[6],
rsp: regs.regs[7],
r8: regs.regs[8],
r9: regs.regs[9],
r10: regs.regs[10],
r11: regs.regs[11],
r12: regs.regs[12],
r13: regs.regs[13],
r14: regs.regs[14],
r15: regs.regs[15],
rip: regs.rip,
// Update the lower 32 bits of rflags.
rflags: (orig_gregs.rflags & !(u32::MAX as u64)) | (regs.eflags as u64),
};
vcpu.set_regs(&gregs).map_err(Error::WriteRegs)?;
// Segment registers: CS, SS, DS, ES, FS, GS
// Since GDB care only selectors, we call get_sregs() first.
let mut sregs = vcpu.get_sregs().map_err(Error::ReadRegs)?;
sregs.cs.selector = regs.segments.cs as u16;
sregs.ss.selector = regs.segments.ss as u16;
sregs.ds.selector = regs.segments.ds as u16;
sregs.es.selector = regs.segments.es as u16;
sregs.fs.selector = regs.segments.fs as u16;
sregs.gs.selector = regs.segments.gs as u16;
vcpu.set_sregs(&sregs).map_err(Error::WriteRegs)?;
// TODO(keiichiw): Other registers such as FPU, xmm and mxcsr.
Ok(())
}
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
fn debug_read_memory<T: VcpuX86_64>(
vcpu: &T,
guest_mem: &GuestMemory,
vaddr: GuestAddress,
len: usize,
) -> Result<Vec<u8>> {
let sregs = vcpu.get_sregs().map_err(Error::ReadRegs)?;
let mut buf = vec![0; len];
let mut total_read = 0u64;
// Handle reads across page boundaries.
while total_read < len as u64 {
let (paddr, psize) = phys_addr(guest_mem, vaddr.0 + total_read, &sregs)?;
let read_len = std::cmp::min(len as u64 - total_read, psize - (paddr & (psize - 1)));
guest_mem
.get_slice_at_addr(GuestAddress(paddr), read_len as usize)
.map_err(Error::ReadingGuestMemory)?
.copy_to(&mut buf[total_read as usize..]);
total_read += read_len;
}
Ok(buf)
}
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
fn debug_write_memory<T: VcpuX86_64>(
vcpu: &T,
guest_mem: &GuestMemory,
vaddr: GuestAddress,
buf: &[u8],
) -> Result<()> {
let sregs = vcpu.get_sregs().map_err(Error::ReadRegs)?;
let mut total_written = 0u64;
// Handle writes across page boundaries.
while total_written < buf.len() as u64 {
let (paddr, psize) = phys_addr(guest_mem, vaddr.0 + total_written, &sregs)?;
let write_len = std::cmp::min(
buf.len() as u64 - total_written,
psize - (paddr & (psize - 1)),
);
guest_mem
.write_all_at_addr(
&buf[total_written as usize..(total_written as usize + write_len as usize)],
GuestAddress(paddr),
)
.map_err(Error::WritingGuestMemory)?;
total_written += write_len;
}
Ok(())
}
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
fn debug_enable_singlestep<T: VcpuX86_64>(vcpu: &T) -> Result<()> {
vcpu.set_guest_debug(&[], true /* enable_singlestep */)
.map_err(Error::EnableSinglestep)
}
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
fn debug_set_hw_breakpoints<T: VcpuX86_64>(
vcpu: &T,
breakpoints: &[GuestAddress],
) -> Result<()> {
vcpu.set_guest_debug(breakpoints, false /* enable_singlestep */)
.map_err(Error::SetHwBreakpoint)
}
}
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
// return the translated address and the size of the page it resides in.
fn phys_addr(mem: &GuestMemory, vaddr: u64, sregs: &Sregs) -> Result<(u64, u64)> {
const CR0_PG_MASK: u64 = 1 << 31;
const CR4_PAE_MASK: u64 = 1 << 5;
const CR4_LA57_MASK: u64 = 1 << 12;
const MSR_EFER_LMA: u64 = 1 << 10;
// bits 12 through 51 are the address in a PTE.
const PTE_ADDR_MASK: u64 = ((1 << 52) - 1) & !0x0fff;
const PAGE_PRESENT: u64 = 0x1;
const PAGE_PSE_MASK: u64 = 0x1 << 7;
const PAGE_SIZE_4K: u64 = 4 * 1024;
const PAGE_SIZE_2M: u64 = 2 * 1024 * 1024;
const PAGE_SIZE_1G: u64 = 1024 * 1024 * 1024;
fn next_pte(mem: &GuestMemory, curr_table_addr: u64, vaddr: u64, level: usize) -> Result<u64> {
let ent: u64 = mem
.read_obj_from_addr(GuestAddress(
(curr_table_addr & PTE_ADDR_MASK) + page_table_offset(vaddr, level),
))
.map_err(|_| Error::TranslatingVirtAddr)?;
/* TODO - convert to a trace
println!(
"level {} vaddr {:x} table-addr {:x} mask {:x} ent {:x} offset {:x}",
level,
vaddr,
curr_table_addr,
PTE_ADDR_MASK,
ent,
page_table_offset(vaddr, level)
);
*/
if ent & PAGE_PRESENT == 0 {
return Err(Error::PageNotPresent);
}
Ok(ent)
}
// Get the offset in to the page of `vaddr`.
fn page_offset(vaddr: u64, page_size: u64) -> u64 {
vaddr & (page_size - 1)
}
// Get the offset in to the page table of the given `level` specified by the virtual `address`.
// `level` is 1 through 5 in x86_64 to handle the five levels of paging.
fn page_table_offset(addr: u64, level: usize) -> u64 {
let offset = (level - 1) * 9 + 12;
((addr >> offset) & 0x1ff) << 3
}
if sregs.cr0 & CR0_PG_MASK == 0 {
return Ok((vaddr, PAGE_SIZE_4K));
}
if sregs.cr4 & CR4_PAE_MASK == 0 {
return Err(Error::TranslatingVirtAddr);
}
if sregs.efer & MSR_EFER_LMA != 0 {
// TODO - check LA57
if sregs.cr4 & CR4_LA57_MASK != 0 {}
let p4_ent = next_pte(mem, sregs.cr3, vaddr, 4)?;
let p3_ent = next_pte(mem, p4_ent, vaddr, 3)?;
// TODO check if it's a 1G page with the PSE bit in p2_ent
if p3_ent & PAGE_PSE_MASK != 0 {
// It's a 1G page with the PSE bit in p3_ent
let paddr = p3_ent & PTE_ADDR_MASK | page_offset(vaddr, PAGE_SIZE_1G);
return Ok((paddr, PAGE_SIZE_1G));
}
let p2_ent = next_pte(mem, p3_ent, vaddr, 2)?;
if p2_ent & PAGE_PSE_MASK != 0 {
// It's a 2M page with the PSE bit in p2_ent
let paddr = p2_ent & PTE_ADDR_MASK | page_offset(vaddr, PAGE_SIZE_2M);
return Ok((paddr, PAGE_SIZE_2M));
}
let p1_ent = next_pte(mem, p2_ent, vaddr, 1)?;
let paddr = p1_ent & PTE_ADDR_MASK | page_offset(vaddr, PAGE_SIZE_4K);
return Ok((paddr, PAGE_SIZE_4K));
}
Err(Error::TranslatingVirtAddr)
}
// OSC returned status register in CDW1
const OSC_STATUS_UNSUPPORT_UUID: u32 = 0x4;
// pci host bridge OSC returned control register in CDW3
#[allow(dead_code)]
const PCI_HB_OSC_CONTROL_PCIE_HP: u32 = 0x1;
const PCI_HB_OSC_CONTROL_SHPC_HP: u32 = 0x2;
const PCI_HB_OSC_CONTROL_PCIE_PME: u32 = 0x4;
const PCI_HB_OSC_CONTROL_PCIE_AER: u32 = 0x8;
#[allow(dead_code)]
const PCI_HB_OSC_CONTROL_PCIE_CAP: u32 = 0x10;
struct PciRootOSC {}
// Method (_OSC, 4, NotSerialized) // _OSC: Operating System Capabilities
// {
// CreateDWordField (Arg3, Zero, CDW1) // flag and return value
// If (Arg0 == ToUUID ("33db4d5b-1ff7-401c-9657-7441c03dd766"))
// {
// CreateDWordField (Arg3, 8, CDW3) // control field
// if ( 0 == (CDW1 & 0x01)) // Query flag ?
// {
// CDW3 &= !(SHPC_HP | PME | AER)
// }
// } Else {
// CDW1 |= UNSUPPORT_UUID
// }
// Return (Arg3)
// }
impl Aml for PciRootOSC {
fn to_aml_bytes(&self, aml: &mut Vec<u8>) {
let osc_uuid = "33DB4D5B-1FF7-401C-9657-7441C03DD766";
// virtual pcie root port supports hotplug and pcie cap register only, clear all
// the other bits.
let mask = !(PCI_HB_OSC_CONTROL_SHPC_HP
| PCI_HB_OSC_CONTROL_PCIE_PME
| PCI_HB_OSC_CONTROL_PCIE_AER);
aml::Method::new(
"_OSC".into(),
4,
false,
vec![
&aml::CreateDWordField::new(
&aml::Name::new_field_name("CDW1"),
&aml::Arg(3),
&aml::ZERO,
),
&aml::If::new(
&aml::Equal::new(&aml::Arg(0), &aml::Uuid::new(osc_uuid)),
vec![
&aml::CreateDWordField::new(
&aml::Name::new_field_name("CDW3"),
&aml::Arg(3),
&(8_u8),
),
&aml::If::new(
&aml::Equal::new(
&aml::ZERO,
&aml::And::new(
&aml::Local(0),
&aml::Name::new_field_name("CDW1"),
&aml::ONE,
),
),
vec![&aml::And::new(
&aml::Name::new_field_name("CDW3"),
&mask,
&aml::Name::new_field_name("CDW3"),
)],
),
],
),
&aml::Else::new(vec![&aml::Or::new(
&aml::Name::new_field_name("CDW1"),
&OSC_STATUS_UNSUPPORT_UUID,
&aml::Name::new_field_name("CDW1"),
)]),
&aml::Return::new(&aml::Arg(3)),
],
)
.to_aml_bytes(aml)
}
}
impl X8664arch {
/// Loads the bios from an open file.
///
/// # Arguments
///
/// * `mem` - The memory to be used by the guest.
/// * `bios_image` - the File object for the specified bios
fn load_bios(mem: &GuestMemory, bios_image: &mut File) -> Result<()> {
let bios_image_length = bios_image
.seek(io::SeekFrom::End(0))
.map_err(Error::LoadBios)?;
if bios_image_length >= FIRST_ADDR_PAST_32BITS {
return Err(Error::LoadBios(io::Error::new(
io::ErrorKind::InvalidData,
format!(
"bios was {} bytes, expected less than {}",
bios_image_length, FIRST_ADDR_PAST_32BITS,
),
)));
}
bios_image
.seek(io::SeekFrom::Start(0))
.map_err(Error::LoadBios)?;
mem.read_to_memory(
bios_start(bios_image_length),
bios_image,
bios_image_length as usize,
)
.map_err(Error::SetupGuestMemory)?;
Ok(())
}
/// Loads the kernel from an open file.
///
/// # Arguments
///
/// * `mem` - The memory to be used by the guest.
/// * `kernel_image` - the File object for the specified kernel.
fn load_kernel(mem: &GuestMemory, kernel_image: &mut File) -> Result<(boot_params, u64)> {
let elf_result =
kernel_loader::load_kernel(mem, GuestAddress(KERNEL_START_OFFSET), kernel_image);
if elf_result == Err(kernel_loader::Error::InvalidElfMagicNumber) {
bzimage::load_bzimage(mem, GuestAddress(KERNEL_START_OFFSET), kernel_image)
.map_err(Error::LoadBzImage)
} else {
let kernel_end = elf_result.map_err(Error::LoadKernel)?;
Ok((Default::default(), kernel_end))
}
}
/// Configures the system memory space should be called once per vm before
/// starting vcpu threads.
///
/// # Arguments
///
/// * `mem` - The memory to be used by the guest.
/// * `cmdline` - the kernel commandline
/// * `initrd_file` - an initial ramdisk image
fn setup_system_memory(
mem: &GuestMemory,
cmdline: &CStr,
initrd_file: Option<File>,
android_fstab: Option<File>,
kernel_end: u64,
params: boot_params,
) -> Result<()> {
kernel_loader::load_cmdline(mem, GuestAddress(CMDLINE_OFFSET), cmdline)
.map_err(Error::LoadCmdline)?;
// Track the first free address after the kernel - this is where extra
// data like the device tree blob and initrd will be loaded.
let mut free_addr = kernel_end;
let setup_data = if let Some(android_fstab) = android_fstab {
let free_addr_aligned = (((free_addr + 64 - 1) / 64) * 64) + 64;
let dtb_start = GuestAddress(free_addr_aligned);
let dtb_size = fdt::create_fdt(
X86_64_FDT_MAX_SIZE as usize,
mem,
dtb_start.offset(),
android_fstab,
)
.map_err(Error::CreateFdt)?;
free_addr = dtb_start.offset() + dtb_size as u64;
Some(dtb_start)
} else {
None
};
let initrd = match initrd_file {
Some(mut initrd_file) => {
let mut initrd_addr_max = u64::from(params.hdr.initrd_addr_max);
// Default initrd_addr_max for old kernels (see Documentation/x86/boot.txt).
if initrd_addr_max == 0 {
initrd_addr_max = 0x37FFFFFF;
}
let mem_max = mem.end_addr().offset() - 1;
if initrd_addr_max > mem_max {
initrd_addr_max = mem_max;
}
let (initrd_start, initrd_size) = arch::load_image_high(
mem,
&mut initrd_file,
GuestAddress(free_addr),
GuestAddress(initrd_addr_max),
base::pagesize() as u64,
)
.map_err(Error::LoadInitrd)?;
Some((initrd_start, initrd_size))
}
None => None,
};
configure_system(
mem,
GuestAddress(KERNEL_START_OFFSET),
GuestAddress(CMDLINE_OFFSET),
cmdline.to_bytes().len() + 1,
setup_data,
initrd,
params,
)?;
Ok(())
}
fn get_pcie_vcfg_mmio_base(mem: &GuestMemory) -> u64 {
// Put PCIe VCFG region at a 2MB boundary after physical memory or 4gb, whichever is greater.
let ram_end_round_2mb = (mem.end_addr().offset() + 2 * MB - 1) / (2 * MB) * (2 * MB);
std::cmp::max(ram_end_round_2mb, 4 * GB)
}
/// This returns the start address of high mmio
///
/// # Arguments
///
/// * mem: The memory to be used by the guest
fn get_high_mmio_base(mem: &GuestMemory) -> u64 {
Self::get_pcie_vcfg_mmio_base(mem) + PCIE_VCFG_MMIO_SIZE
}
/// This returns the size of high mmio
///
/// # Arguments
///
/// * `vm`: The virtual machine
fn get_high_mmio_size<V: Vm>(vm: &V) -> u64 {
let phys_mem_end = 1u64 << vm.get_guest_phys_addr_bits();
let high_mmio_end = std::cmp::min(phys_mem_end, HIGH_MMIO_MAX_END);
high_mmio_end - Self::get_high_mmio_base(vm.get_memory())
}
/// This returns a minimal kernel command for this architecture
fn get_base_linux_cmdline() -> kernel_cmdline::Cmdline {
let mut cmdline = kernel_cmdline::Cmdline::new(CMDLINE_MAX_SIZE as usize);
cmdline.insert_str("panic=-1").unwrap();
cmdline
}
/// Sets up the legacy x86 IO platform devices
///
/// # Arguments
///
/// * - `io_bus` - the IO bus object
/// * - `pit_uses_speaker_port` - does the PIT use port 0x61 for the PC speaker
/// * - `vm_evt_wrtube` - Tube for sending exit events
/// * - `mem_size` - the size in bytes of physical ram for the guest
fn setup_legacy_devices(
io_bus: &devices::Bus,
pit_uses_speaker_port: bool,
vm_evt_wrtube: SendTube,
mem_size: u64,
) -> Result<()> {
let mem_regions = arch_memory_regions(mem_size, None);
let mem_below_4g = mem_regions
.iter()
.filter(|r| r.0.offset() < FIRST_ADDR_PAST_32BITS)
.map(|r| r.1)
.sum();
let mem_above_4g = mem_regions
.iter()
.filter(|r| r.0.offset() >= FIRST_ADDR_PAST_32BITS)
.map(|r| r.1)
.sum();
io_bus
.insert(
Arc::new(Mutex::new(devices::Cmos::new(mem_below_4g, mem_above_4g))),
0x70,
0x2,
)
.unwrap();
let i8042 = Arc::new(Mutex::new(devices::I8042Device::new(
vm_evt_wrtube.try_clone().map_err(Error::CloneTube)?,
)));
if pit_uses_speaker_port {
io_bus.insert(i8042, 0x062, 0x3).unwrap();
} else {
io_bus.insert(i8042, 0x061, 0x4).unwrap();
}
Ok(())
}
/// Sets up the acpi devices for this platform and
/// return the resources which is used to set the ACPI tables.
///
/// # Arguments
///
/// * - `io_bus` the I/O bus to add the devices to
/// * - `resources` the SystemAllocator to allocate IO and MMIO for acpi
/// devices.
/// * - `suspend_evt` the event object which used to suspend the vm
/// * - `sdts` ACPI system description tables
/// * - `irq_chip` the IrqChip object for registering irq events
/// * - `battery` indicate whether to create the battery
/// * - `mmio_bus` the MMIO bus to add the devices to
fn setup_acpi_devices(
mem: &GuestMemory,
io_bus: &devices::Bus,
resources: &mut SystemAllocator,
suspend_evt: Event,
vm_evt_wrtube: SendTube,
sdts: Vec<SDT>,
#[cfg(feature = "direct")] direct_gpe: &[u32],
irq_chip: &mut dyn IrqChip,
sci_irq: u32,
battery: (&Option<BatteryType>, Option<Minijail>),
mmio_bus: &devices::Bus,
max_bus: u8,
resume_notify_devices: &mut Vec<Arc<Mutex<dyn BusResumeDevice>>>,
) -> Result<(acpi::AcpiDevResource, Option<BatControl>)> {
// The AML data for the acpi devices
let mut amls = Vec::new();
let bat_control = if let Some(battery_type) = battery.0 {
match battery_type {
BatteryType::Goldfish => {
let control_tube = arch::add_goldfish_battery(
&mut amls, battery.1, mmio_bus, irq_chip, sci_irq, resources,
)
.map_err(Error::CreateBatDevices)?;
Some(BatControl {
type_: BatteryType::Goldfish,
control_tube,
})
}
}
} else {
None
};
let pm_alloc = resources.get_anon_alloc();
let pm_iobase = match resources.io_allocator() {
Some(io) => io
.allocate_with_align(
devices::acpi::ACPIPM_RESOURCE_LEN as u64,
pm_alloc,
"ACPIPM".to_string(),
4, // must be 32-bit aligned
)
.map_err(Error::AllocateIOResouce)?,
None => 0x600,
};
let pcie_vcfg = aml::Name::new("VCFG".into(), &Self::get_pcie_vcfg_mmio_base(mem));
pcie_vcfg.to_aml_bytes(&mut amls);
let pm_sci_evt = devices::IrqLevelEvent::new().map_err(Error::CreateEvent)?;
irq_chip
.register_level_irq_event(sci_irq, &pm_sci_evt)
.map_err(Error::RegisterIrqfd)?;
#[cfg(feature = "direct")]
let direct_gpe_info = if direct_gpe.is_empty() {
None
} else {
let direct_sci_evt = devices::IrqLevelEvent::new().map_err(Error::CreateEvent)?;
let mut sci_devirq =
devices::DirectIrq::new_level(&direct_sci_evt).map_err(Error::CreateGpe)?;
sci_devirq.sci_irq_prepare().map_err(Error::CreateGpe)?;
for gpe in direct_gpe {
sci_devirq
.gpe_enable_forwarding(*gpe)
.map_err(Error::CreateGpe)?;
}
Some((direct_sci_evt, direct_gpe))
};
let mut pmresource = devices::ACPIPMResource::new(
pm_sci_evt,
#[cfg(feature = "direct")]
direct_gpe_info,
suspend_evt,
vm_evt_wrtube,
);
pmresource.to_aml_bytes(&mut amls);
pmresource.start();
let mut crs_entries: Vec<Box<dyn Aml>> = vec![
Box::new(aml::AddressSpace::new_bus_number(0x0u16, max_bus as u16)),
Box::new(aml::IO::new(0xcf8, 0xcf8, 1, 0x8)),
];
for r in resources.mmio_pools() {
let entry: Box<dyn Aml> = match (u32::try_from(*r.start()), u32::try_from(*r.end())) {
(Ok(start), Ok(end)) => Box::new(aml::AddressSpace::new_memory(
aml::AddressSpaceCachable::NotCacheable,
true,
start,
end,
)),
_ => Box::new(aml::AddressSpace::new_memory(
aml::AddressSpaceCachable::NotCacheable,
true,
*r.start(),
*r.end(),
)),
};
crs_entries.push(entry);
}
let mut pci_dsdt_inner_data: Vec<&dyn aml::Aml> = Vec::new();
let hid = aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0A08"));
pci_dsdt_inner_data.push(&hid);
let cid = aml::Name::new("_CID".into(), &aml::EISAName::new("PNP0A03"));
pci_dsdt_inner_data.push(&cid);
let adr = aml::Name::new("_ADR".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&adr);
let seg = aml::Name::new("_SEG".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&seg);
let uid = aml::Name::new("_UID".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&uid);
let supp = aml::Name::new("SUPP".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&supp);
let crs = aml::Name::new(
"_CRS".into(),
&aml::ResourceTemplate::new(crs_entries.iter().map(|b| b.as_ref()).collect()),
);
pci_dsdt_inner_data.push(&crs);
let pci_root_osc = PciRootOSC {};
pci_dsdt_inner_data.push(&pci_root_osc);
aml::Device::new("_SB_.PCI0".into(), pci_dsdt_inner_data).to_aml_bytes(&mut amls);
let pm = Arc::new(Mutex::new(pmresource));
io_bus
.insert(
pm.clone(),
pm_iobase as u64,
devices::acpi::ACPIPM_RESOURCE_LEN as u64,
)
.unwrap();
resume_notify_devices.push(pm.clone());
Ok((
acpi::AcpiDevResource {
amls,
pm_iobase,
pm,
sdts,
},
bat_control,
))
}
/// Sets up the serial devices for this platform. Returns the serial port number and serial
/// device to be used for stdout
///
/// # Arguments
///
/// * - `irq_chip` the IrqChip object for registering irq events
/// * - `io_bus` the I/O bus to add the devices to
/// * - `serial_parmaters` - definitions for how the serial devices should be configured
fn setup_serial_devices(
protected_vm: ProtectionType,
irq_chip: &mut dyn IrqChip,
io_bus: &devices::Bus,
serial_parameters: &BTreeMap<(SerialHardware, u8), SerialParameters>,
serial_jail: Option<Minijail>,
) -> Result<()> {
let com_evt_1_3 = devices::IrqEdgeEvent::new().map_err(Error::CreateEvent)?;
let com_evt_2_4 = devices::IrqEdgeEvent::new().map_err(Error::CreateEvent)?;
arch::add_serial_devices(
protected_vm,
io_bus,
com_evt_1_3.get_trigger(),
com_evt_2_4.get_trigger(),
serial_parameters,
serial_jail,
)
.map_err(Error::CreateSerialDevices)?;
irq_chip
.register_edge_irq_event(X86_64_SERIAL_1_3_IRQ, &com_evt_1_3)
.map_err(Error::RegisterIrqfd)?;
irq_chip
.register_edge_irq_event(X86_64_SERIAL_2_4_IRQ, &com_evt_2_4)
.map_err(Error::RegisterIrqfd)?;
Ok(())
}
}
#[sorted]
#[derive(Error, Debug)]
pub enum ItmtError {
#[error("CPU not support. Only intel CPUs support ITMT.")]
CpuUnSupport,
#[error("msr must be unique: {0}")]
MsrDuplicate(u32),
}
const EBX_INTEL_GENU: u32 = 0x756e6547; // "Genu"
const ECX_INTEL_NTEL: u32 = 0x6c65746e; // "ntel"
const EDX_INTEL_INEI: u32 = 0x49656e69; // "ineI"
fn check_itmt_cpu_support() -> std::result::Result<(), ItmtError> {
// Safe because we pass 0 for this call and the host supports the
// `cpuid` instruction
let entry = unsafe { __cpuid(0) };
if entry.ebx == EBX_INTEL_GENU && entry.ecx == ECX_INTEL_NTEL && entry.edx == EDX_INTEL_INEI {
Ok(())
} else {
Err(ItmtError::CpuUnSupport)
}
}
fn insert_msr(
msr_map: &mut BTreeMap<u32, MsrConfig>,
key: u32,
rw_type: MsrRWType,
action: MsrAction,
from: MsrValueFrom,
) -> std::result::Result<(), ItmtError> {
if msr_map
.insert(
key,
MsrConfig {
rw_type,
action,
from,
},
)
.is_some()
{
Err(ItmtError::MsrDuplicate(key))
} else {
Ok(())
}
}
pub fn set_itmt_msr_config(
msr_map: &mut BTreeMap<u32, MsrConfig>,
) -> std::result::Result<(), ItmtError> {
check_itmt_cpu_support()?;
let msrs = vec![
(
MSR_HWP_CAPABILITIES,
MsrRWType::ReadOnly,
MsrAction::MsrPassthrough,
MsrValueFrom::RWFromRunningCPU,
),
(
MSR_PM_ENABLE,
MsrRWType::ReadWrite,
MsrAction::MsrEmulate,
MsrValueFrom::RWFromRunningCPU,
),
(
MSR_HWP_REQUEST,
MsrRWType::ReadWrite,
MsrAction::MsrEmulate,
MsrValueFrom::RWFromRunningCPU,
),
(
MSR_TURBO_RATIO_LIMIT,
MsrRWType::ReadOnly,
MsrAction::MsrPassthrough,
MsrValueFrom::RWFromRunningCPU,
),
(
MSR_PLATFORM_INFO,
MsrRWType::ReadOnly,
MsrAction::MsrPassthrough,
MsrValueFrom::RWFromRunningCPU,
),
(
MSR_IA32_PERF_CTL,
MsrRWType::ReadWrite,
MsrAction::MsrEmulate,
MsrValueFrom::RWFromRunningCPU,
),
];
for msr in msrs {
insert_msr(msr_map, msr.0, msr.1, msr.2, msr.3)?;
}
Ok(())
}
#[cfg(test)]
mod test_integration;
#[cfg(test)]
mod tests {
use super::*;
const TEST_MEMORY_SIZE: u64 = 2 * GB;
fn setup() {
let pcie_ecam = Some(MemRegion {
base: 3 * GB,
size: 256 * MB,
});
let pci_start = Some(2 * GB);
init_low_memory_layout(pcie_ecam, pci_start);
}
#[test]
fn regions_lt_4gb_nobios() {
setup();
let regions = arch_memory_regions(512 * MB, /* bios_size */ None);
assert_eq!(1, regions.len());
assert_eq!(GuestAddress(START_OF_RAM_32BITS), regions[0].0);
assert_eq!(1u64 << 29, regions[0].1);
}
#[test]
fn regions_gt_4gb_nobios() {
setup();
let size = 4 * GB + 0x8000;
let regions = arch_memory_regions(size, /* bios_size */ None);
assert_eq!(2, regions.len());
assert_eq!(GuestAddress(START_OF_RAM_32BITS), regions[0].0);
assert_eq!(GuestAddress(4 * GB), regions[1].0);
assert_eq!(4 * GB + 0x8000, regions[0].1 + regions[1].1);
}
#[test]
fn regions_lt_4gb_bios() {
setup();
let bios_len = 1 * MB;
let regions = arch_memory_regions(512 * MB, Some(bios_len));
assert_eq!(2, regions.len());
assert_eq!(GuestAddress(START_OF_RAM_32BITS), regions[0].0);
assert_eq!(512 * MB, regions[0].1);
assert_eq!(
GuestAddress(FIRST_ADDR_PAST_32BITS - bios_len),
regions[1].0
);
assert_eq!(bios_len, regions[1].1);
}
#[test]
fn regions_gt_4gb_bios() {
setup();
let bios_len = 1 * MB;
let regions = arch_memory_regions(4 * GB + 0x8000, Some(bios_len));
assert_eq!(3, regions.len());
assert_eq!(GuestAddress(START_OF_RAM_32BITS), regions[0].0);
assert_eq!(
GuestAddress(FIRST_ADDR_PAST_32BITS - bios_len),
regions[1].0
);
assert_eq!(bios_len, regions[1].1);
assert_eq!(GuestAddress(4 * GB), regions[2].0);
}
#[test]
fn regions_eq_4gb_nobios() {
setup();
// Test with exact size of 4GB - the overhead.
let regions = arch_memory_regions(
TEST_MEMORY_SIZE - START_OF_RAM_32BITS,
/* bios_size */ None,
);
dbg!(&regions);
assert_eq!(1, regions.len());
assert_eq!(GuestAddress(START_OF_RAM_32BITS), regions[0].0);
assert_eq!(TEST_MEMORY_SIZE - START_OF_RAM_32BITS, regions[0].1);
}
#[test]
fn regions_eq_4gb_bios() {
setup();
// Test with exact size of 4GB - the overhead.
let bios_len = 1 * MB;
let regions = arch_memory_regions(TEST_MEMORY_SIZE - START_OF_RAM_32BITS, Some(bios_len));
assert_eq!(2, regions.len());
assert_eq!(GuestAddress(START_OF_RAM_32BITS), regions[0].0);
assert_eq!(TEST_MEMORY_SIZE - START_OF_RAM_32BITS, regions[0].1);
assert_eq!(
GuestAddress(FIRST_ADDR_PAST_32BITS - bios_len),
regions[1].0
);
assert_eq!(bios_len, regions[1].1);
}
#[test]
fn check_pci_mmio_layout() {
setup();
assert_eq!(read_pci_start_before_32bit(), 2 * GB);
assert_eq!(read_pcie_cfg_mmio_start(), 3 * GB);
assert_eq!(read_pcie_cfg_mmio_size(), 256 * MB);
}
#[test]
#[cfg(feature = "direct")]
fn end_addr_before_32bits() {
setup();
// On volteer, type16 (coreboot) region is at 0x00000000769f3000-0x0000000076ffffff.
// On brya, type16 region is at 0x0000000076876000-0x00000000803fffff
let brya_type16_address = 0x7687_6000;
assert!(
read_pci_start_before_32bit() < brya_type16_address,
"{} < {}",
read_pci_start_before_32bit(),
brya_type16_address
);
}
#[test]
fn check_32bit_gap_size_alignment() {
setup();
// pci_low_start is 256 MB aligned to be friendly for MTRR mappings.
assert_eq!(read_pci_start_before_32bit() % (256 * MB), 0);
}
}