blob: 0f0ef2a94640c177547f00427962351eb3823a7a [file] [log] [blame]
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::fs::File;
use std::io::Read;
use std::io::Result as IoResult;
use std::io::Write;
use std::mem;
use std::net;
use std::os::raw::*;
use std::os::unix::io::AsRawFd;
use std::os::unix::io::FromRawFd;
use std::os::unix::io::RawFd;
use base::add_fd_flags;
use base::error;
use base::ioctl_with_mut_ref;
use base::ioctl_with_ref;
use base::ioctl_with_val;
use base::volatile_impl;
use base::warn;
use base::AsRawDescriptor;
use base::Error as SysError;
use base::FileReadWriteVolatile;
use base::FromRawDescriptor;
use base::IoctlNr;
use base::RawDescriptor;
use base::ReadNotifier;
use cros_async::IntoAsync;
use crate::Error;
use crate::MacAddress;
use crate::Result;
use crate::TapT;
use crate::TapTCommon;
/// Handle for a network tap interface.
///
/// For now, this simply wraps the file descriptor for the tap device so methods
/// can run ioctls on the interface. The tap interface descriptor will be closed when
/// Tap goes out of scope, and the kernel will clean up the interface
/// automatically.
#[derive(Debug)]
pub struct Tap {
tap_file: File,
if_name: [c_char; 16usize],
if_flags: ::std::os::raw::c_short,
}
impl Tap {
/// # Safety
/// 1. descriptor's ownership must be released by the caller. It is now owned by
/// the returned value (`Tap`), or is closed (if an error is returned).
pub unsafe fn from_raw_descriptor(descriptor: RawDescriptor) -> Result<Tap> {
let tap_file = File::from_raw_descriptor(descriptor);
// Ensure that the file is opened non-blocking, otherwise
// ipvtaps with shell-provided FDs are very slow.
add_fd_flags(tap_file.as_raw_descriptor(), libc::O_NONBLOCK).map_err(Error::IoctlError)?;
// Get the interface name since we will need it for some ioctls.
let mut ifreq: net_sys::ifreq = Default::default();
let ret = ioctl_with_mut_ref(&tap_file, net_sys::TUNGETIFF(), &mut ifreq);
if ret < 0 {
return Err(Error::IoctlError(SysError::last()));
}
Ok(Tap {
tap_file,
if_name: ifreq.ifr_ifrn.ifrn_name,
if_flags: ifreq.ifr_ifru.ifru_flags,
})
}
pub fn create_tap_with_ifreq(ifreq: &mut net_sys::ifreq) -> Result<Tap> {
// Open calls are safe because we give a constant nul-terminated
// string and verify the result.
let rd = unsafe {
libc::open64(
b"/dev/net/tun\0".as_ptr() as *const c_char,
libc::O_RDWR | libc::O_NONBLOCK | libc::O_CLOEXEC,
)
};
if rd < 0 {
return Err(Error::OpenTun(SysError::last()));
}
// We just checked that the fd is valid.
let tuntap = unsafe { File::from_raw_descriptor(rd) };
// ioctl is safe since we call it with a valid tap fd and check the return
// value.
let ret = unsafe { ioctl_with_mut_ref(&tuntap, net_sys::TUNSETIFF(), ifreq) };
if ret < 0 {
return Err(Error::CreateTap(SysError::last()));
}
// Safe since only the name is accessed, and it's copied out.
Ok(Tap {
tap_file: tuntap,
if_name: unsafe { ifreq.ifr_ifrn.ifrn_name },
if_flags: unsafe { ifreq.ifr_ifru.ifru_flags },
})
}
pub fn try_clone(&self) -> Result<Tap> {
self.tap_file
.try_clone()
.map(|tap_file| Tap {
tap_file,
if_name: self.if_name,
if_flags: self.if_flags,
})
.map_err(SysError::from)
.map_err(Error::CloneTap)
}
}
impl TapTCommon for Tap {
/// Create a new tap interface.
///
/// Set the `vnet_hdr` flag to true to allow offloading on this tap,
/// which will add an extra 12 byte virtio net header to incoming frames. Offloading cannot
/// be used if `vnet_hdr` is false.
/// Set 'multi_vq' to true, if tap have multi virt queue pairs
fn new(vnet_hdr: bool, multi_vq: bool) -> Result<Self> {
const TUNTAP_DEV_FORMAT: &[u8] = b"vmtap%d";
Self::new_with_name(TUNTAP_DEV_FORMAT, vnet_hdr, multi_vq)
}
fn new_with_name(name: &[u8], vnet_hdr: bool, multi_vq: bool) -> Result<Tap> {
// This is pretty messy because of the unions used by ifreq. Since we
// don't call as_mut on the same union field more than once, this block
// is safe.
let mut ifreq: net_sys::ifreq = Default::default();
unsafe {
let ifrn_name = ifreq.ifr_ifrn.ifrn_name.as_mut();
for (dst, src) in ifrn_name
.iter_mut()
// Add a zero terminator to the source string.
.zip(name.iter().chain(std::iter::once(&0)))
{
*dst = *src as c_char;
}
ifreq.ifr_ifru.ifru_flags =
(libc::IFF_TAP | libc::IFF_NO_PI | if vnet_hdr { libc::IFF_VNET_HDR } else { 0 })
as c_short;
if multi_vq {
ifreq.ifr_ifru.ifru_flags |= libc::IFF_MULTI_QUEUE as c_short;
}
}
Tap::create_tap_with_ifreq(&mut ifreq)
}
fn into_mq_taps(self, vq_pairs: u16) -> Result<Vec<Tap>> {
let mut taps: Vec<Tap> = Vec::new();
if vq_pairs <= 1 {
taps.push(self);
return Ok(taps);
}
// Add other socket into the origin tap interface
for _ in 0..vq_pairs - 1 {
let mut ifreq = self.get_ifreq();
let tap = Tap::create_tap_with_ifreq(&mut ifreq)?;
tap.enable()?;
taps.push(tap);
}
taps.insert(0, self);
Ok(taps)
}
fn ip_addr(&self) -> Result<net::Ipv4Addr> {
let sock = create_socket()?;
let mut ifreq = self.get_ifreq();
// ioctl is safe. Called with a valid sock descriptor, and we check the return.
let ret = unsafe {
ioctl_with_mut_ref(&sock, net_sys::sockios::SIOCGIFADDR as IoctlNr, &mut ifreq)
};
if ret < 0 {
return Err(Error::IoctlError(SysError::last()));
}
// We only access one field of the ifru union, hence this is safe.
let addr = unsafe { ifreq.ifr_ifru.ifru_addr };
Ok(read_ipv4_addr(&addr))
}
fn set_ip_addr(&self, ip_addr: net::Ipv4Addr) -> Result<()> {
let sock = create_socket()?;
let addr = create_sockaddr(ip_addr);
let mut ifreq = self.get_ifreq();
ifreq.ifr_ifru.ifru_addr = addr;
// ioctl is safe. Called with a valid sock descriptor, and we check the return.
let ret =
unsafe { ioctl_with_ref(&sock, net_sys::sockios::SIOCSIFADDR as IoctlNr, &ifreq) };
if ret < 0 {
return Err(Error::IoctlError(SysError::last()));
}
Ok(())
}
fn netmask(&self) -> Result<net::Ipv4Addr> {
let sock = create_socket()?;
let mut ifreq = self.get_ifreq();
// ioctl is safe. Called with a valid sock descriptor, and we check the return.
let ret = unsafe {
ioctl_with_mut_ref(
&sock,
net_sys::sockios::SIOCGIFNETMASK as IoctlNr,
&mut ifreq,
)
};
if ret < 0 {
return Err(Error::IoctlError(SysError::last()));
}
// We only access one field of the ifru union, hence this is safe.
let addr = unsafe { ifreq.ifr_ifru.ifru_netmask };
Ok(read_ipv4_addr(&addr))
}
fn set_netmask(&self, netmask: net::Ipv4Addr) -> Result<()> {
let sock = create_socket()?;
let addr = create_sockaddr(netmask);
let mut ifreq = self.get_ifreq();
ifreq.ifr_ifru.ifru_netmask = addr;
// ioctl is safe. Called with a valid sock descriptor, and we check the return.
let ret =
unsafe { ioctl_with_ref(&sock, net_sys::sockios::SIOCSIFNETMASK as IoctlNr, &ifreq) };
if ret < 0 {
return Err(Error::IoctlError(SysError::last()));
}
Ok(())
}
fn mtu(&self) -> Result<u16> {
let sock = create_socket()?;
let mut ifreq = self.get_ifreq();
// ioctl is safe. Called with a valid sock fd, and we check the return.
let ret = unsafe {
ioctl_with_mut_ref(&sock, net_sys::sockios::SIOCGIFMTU as IoctlNr, &mut ifreq)
};
if ret < 0 {
return Err(Error::IoctlError(SysError::last()));
}
// We only access one field of the ifru union, hence this is safe.
let mtu = unsafe { ifreq.ifr_ifru.ifru_mtu } as u16;
Ok(mtu)
}
fn set_mtu(&self, mtu: u16) -> Result<()> {
let sock = create_socket()?;
let mut ifreq = self.get_ifreq();
ifreq.ifr_ifru.ifru_mtu = i32::from(mtu);
// ioctl is safe. Called with a valid sock fd, and we check the return.
let ret = unsafe { ioctl_with_ref(&sock, net_sys::sockios::SIOCSIFMTU as IoctlNr, &ifreq) };
if ret < 0 {
return Err(Error::IoctlError(SysError::last()));
}
Ok(())
}
fn mac_address(&self) -> Result<MacAddress> {
let sock = create_socket()?;
let mut ifreq = self.get_ifreq();
// ioctl is safe. Called with a valid sock descriptor, and we check the return.
let ret = unsafe {
ioctl_with_mut_ref(
&sock,
net_sys::sockios::SIOCGIFHWADDR as IoctlNr,
&mut ifreq,
)
};
if ret < 0 {
return Err(Error::IoctlError(SysError::last()));
}
// We only access one field of the ifru union, hence this is safe.
// This is safe since the MacAddress struct is already sized to match the C sockaddr
// struct. The address family has also been checked.
Ok(unsafe { mem::transmute(ifreq.ifr_ifru.ifru_hwaddr) })
}
fn set_mac_address(&self, mac_addr: MacAddress) -> Result<()> {
let sock = create_socket()?;
let mut ifreq = self.get_ifreq();
// We only access one field of the ifru union, hence this is safe.
unsafe {
// This is safe since the MacAddress struct is already sized to match the C sockaddr
// struct.
ifreq.ifr_ifru.ifru_hwaddr = std::mem::transmute(mac_addr);
}
// ioctl is safe. Called with a valid sock descriptor, and we check the return.
let ret =
unsafe { ioctl_with_ref(&sock, net_sys::sockios::SIOCSIFHWADDR as IoctlNr, &ifreq) };
if ret < 0 {
return Err(Error::IoctlError(SysError::last()));
}
Ok(())
}
fn set_offload(&self, flags: c_uint) -> Result<()> {
// ioctl is safe. Called with a valid tap descriptor, and we check the return.
let ret =
unsafe { ioctl_with_val(&self.tap_file, net_sys::TUNSETOFFLOAD(), flags as c_ulong) };
if ret < 0 {
return Err(Error::IoctlError(SysError::last()));
}
Ok(())
}
fn enable(&self) -> Result<()> {
let sock = create_socket()?;
let mut ifreq = self.get_ifreq();
ifreq.ifr_ifru.ifru_flags =
(net_sys::net_device_flags::IFF_UP | net_sys::net_device_flags::IFF_RUNNING).0 as i16;
// ioctl is safe. Called with a valid sock descriptor, and we check the return.
let ret =
unsafe { ioctl_with_ref(&sock, net_sys::sockios::SIOCSIFFLAGS as IoctlNr, &ifreq) };
if ret < 0 {
return Err(Error::IoctlError(SysError::last()));
}
Ok(())
}
fn set_vnet_hdr_size(&self, size: c_int) -> Result<()> {
// ioctl is safe. Called with a valid tap descriptor, and we check the return.
let ret = unsafe { ioctl_with_ref(&self.tap_file, net_sys::TUNSETVNETHDRSZ(), &size) };
if ret < 0 {
return Err(Error::IoctlError(SysError::last()));
}
Ok(())
}
fn get_ifreq(&self) -> net_sys::ifreq {
let mut ifreq: net_sys::ifreq = Default::default();
// This sets the name of the interface, which is the only entry
// in a single-field union.
unsafe {
let ifrn_name = ifreq.ifr_ifrn.ifrn_name.as_mut();
ifrn_name.clone_from_slice(&self.if_name);
}
// This sets the flags with which the interface was created, which is the only entry we set
// on the second union.
ifreq.ifr_ifru.ifru_flags = self.if_flags;
ifreq
}
fn if_flags(&self) -> u32 {
self.if_flags as u32
}
fn try_clone(&self) -> Result<Self> {
self.try_clone()
}
// Safe if caller provides a valid descriptor.
unsafe fn from_raw_descriptor(descriptor: RawDescriptor) -> Result<Self> {
Tap::from_raw_descriptor(descriptor)
}
}
impl Read for Tap {
fn read(&mut self, buf: &mut [u8]) -> IoResult<usize> {
self.tap_file.read(buf)
}
}
impl Write for Tap {
fn write(&mut self, buf: &[u8]) -> IoResult<usize> {
self.tap_file.write(buf)
}
fn flush(&mut self) -> IoResult<()> {
Ok(())
}
}
impl AsRawFd for Tap {
fn as_raw_fd(&self) -> RawFd {
self.tap_file.as_raw_descriptor()
}
}
impl AsRawDescriptor for Tap {
fn as_raw_descriptor(&self) -> RawDescriptor {
self.tap_file.as_raw_descriptor()
}
}
impl ReadNotifier for Tap {
fn get_read_notifier(&self) -> &dyn AsRawDescriptor {
self
}
}
fn create_socket() -> Result<net::UdpSocket> {
// This is safe since we check the return value.
let sock = unsafe { libc::socket(libc::AF_INET, libc::SOCK_DGRAM, 0) };
if sock >= 0 {
// This is safe; nothing else will use or hold onto the raw sock descriptor.
return Ok(unsafe { net::UdpSocket::from_raw_fd(sock) });
}
warn!("INET not supported on this machine. Trying to open an INET6 socket.");
// Open an AF_INET6 socket
let sock6 = unsafe { libc::socket(libc::AF_INET6, libc::SOCK_DGRAM, 0) };
if sock6 >= 0 {
// This is safe; nothing else will use or hold onto the raw sock descriptor.
return Ok(unsafe { net::UdpSocket::from_raw_fd(sock6) });
}
error!("Neither INET nor INET6 supported on this machine");
return Err(Error::CreateSocket(SysError::last()));
}
/// Create a sockaddr_in from an IPv4 address, and expose it as
/// an opaque sockaddr suitable for usage by socket ioctls.
fn create_sockaddr(ip_addr: net::Ipv4Addr) -> libc::sockaddr {
// IPv4 addresses big-endian (network order), but Ipv4Addr will give us
// a view of those bytes directly so we can avoid any endian trickiness.
let addr_in = libc::sockaddr_in {
sin_family: libc::AF_INET as u16,
sin_port: 0,
sin_addr: unsafe { mem::transmute(ip_addr.octets()) },
sin_zero: [0; 8usize],
};
unsafe { mem::transmute(addr_in) }
}
/// Extract the IPv4 address from a sockaddr. Assumes the sockaddr is a sockaddr_in.
fn read_ipv4_addr(addr: &libc::sockaddr) -> net::Ipv4Addr {
debug_assert_eq!(addr.sa_family as i32, libc::AF_INET);
// This is safe because sockaddr and sockaddr_in are the same size, and we've checked that
// this address is AF_INET.
let in_addr: libc::sockaddr_in = unsafe { mem::transmute(*addr) };
net::Ipv4Addr::from(in_addr.sin_addr.s_addr)
}
impl TapT for Tap {}
impl IntoAsync for Tap {}
volatile_impl!(Tap);
pub mod fakes {
use std::fs::remove_file;
use std::fs::OpenOptions;
use super::*;
const TMP_FILE: &str = "/tmp/crosvm_tap_test_file";
pub struct FakeTap {
tap_file: File,
}
impl TapTCommon for FakeTap {
fn new(_vnet_hdr: bool, _multi_vq: bool) -> Result<Self> {
// Params don't matter
Self::new_with_name(b"", false, false)
}
fn new_with_name(_: &[u8], _: bool, _: bool) -> Result<FakeTap> {
Ok(FakeTap {
tap_file: OpenOptions::new()
.read(true)
.append(true)
.create(true)
.open(TMP_FILE)
.unwrap(),
})
}
fn into_mq_taps(self, _vq_pairs: u16) -> Result<Vec<FakeTap>> {
Ok(Vec::new())
}
fn ip_addr(&self) -> Result<net::Ipv4Addr> {
Ok(net::Ipv4Addr::new(1, 2, 3, 4))
}
fn set_ip_addr(&self, _: net::Ipv4Addr) -> Result<()> {
Ok(())
}
fn netmask(&self) -> Result<net::Ipv4Addr> {
Ok(net::Ipv4Addr::new(255, 255, 255, 252))
}
fn set_netmask(&self, _: net::Ipv4Addr) -> Result<()> {
Ok(())
}
fn mtu(&self) -> Result<u16> {
Ok(1500)
}
fn set_mtu(&self, _: u16) -> Result<()> {
Ok(())
}
fn mac_address(&self) -> Result<MacAddress> {
Ok("01:02:03:04:05:06".parse().unwrap())
}
fn set_mac_address(&self, _: MacAddress) -> Result<()> {
Ok(())
}
fn set_offload(&self, _: c_uint) -> Result<()> {
Ok(())
}
fn enable(&self) -> Result<()> {
Ok(())
}
fn set_vnet_hdr_size(&self, _: c_int) -> Result<()> {
Ok(())
}
fn get_ifreq(&self) -> net_sys::ifreq {
let ifreq: net_sys::ifreq = Default::default();
ifreq
}
fn if_flags(&self) -> u32 {
net_sys::IFF_TAP
}
// Return self so it can compile
fn try_clone(&self) -> Result<Self> {
Ok(FakeTap {
tap_file: self.tap_file.try_clone().unwrap(),
})
}
unsafe fn from_raw_descriptor(_descriptor: RawDescriptor) -> Result<Self> {
unimplemented!()
}
}
impl Drop for FakeTap {
fn drop(&mut self) {
let _ = remove_file(TMP_FILE);
}
}
impl Read for FakeTap {
fn read(&mut self, _: &mut [u8]) -> IoResult<usize> {
Ok(0)
}
}
impl Write for FakeTap {
fn write(&mut self, _: &[u8]) -> IoResult<usize> {
Ok(0)
}
fn flush(&mut self) -> IoResult<()> {
Ok(())
}
}
impl AsRawFd for FakeTap {
fn as_raw_fd(&self) -> RawFd {
self.tap_file.as_raw_descriptor()
}
}
impl AsRawDescriptor for FakeTap {
fn as_raw_descriptor(&self) -> RawDescriptor {
self.tap_file.as_raw_descriptor()
}
}
impl TapT for FakeTap {}
volatile_impl!(FakeTap);
}