blob: bde5c90fb87380b1c01ecafc7bbf1dd652d92e59 [file] [log] [blame]
// Copyright 2018 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std;
use std::error::Error;
use std::fmt::{self, Display};
use std::io::Write;
use std::os::unix::io::RawFd;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use std::thread;
use std::time::Instant;
use audio_streams::{
capture::{CaptureBuffer, CaptureBufferStream},
PlaybackBuffer, PlaybackBufferStream, StreamControl, StreamSource,
};
use data_model::{VolatileMemory, VolatileSlice};
use sync::Mutex;
use sys_util::{
self, error, set_rt_prio_limit, set_rt_round_robin, warn, EventFd, GuestAddress, GuestMemory,
};
use crate::pci::ac97_mixer::Ac97Mixer;
use crate::pci::ac97_regs::*;
const DEVICE_SAMPLE_RATE: usize = 48000;
// Bus Master registers. Keeps the state of the bus master register values. Used to share the state
// between the main and audio threads.
struct Ac97BusMasterRegs {
pi_regs: Ac97FunctionRegs, // Input
po_regs: Ac97FunctionRegs, // Output
po_pointer_update_time: Instant, // Time the picb and civ regs were last updated.
mc_regs: Ac97FunctionRegs, // Microphone
glob_cnt: u32,
glob_sta: u32,
// IRQ event - driven by the glob_sta register.
irq_evt: Option<EventFd>,
}
impl Ac97BusMasterRegs {
fn new() -> Ac97BusMasterRegs {
Ac97BusMasterRegs {
pi_regs: Ac97FunctionRegs::new(),
po_regs: Ac97FunctionRegs::new(),
po_pointer_update_time: Instant::now(),
mc_regs: Ac97FunctionRegs::new(),
glob_cnt: 0,
glob_sta: GLOB_STA_RESET_VAL,
irq_evt: None,
}
}
fn func_regs(&self, func: Ac97Function) -> &Ac97FunctionRegs {
match func {
Ac97Function::Input => &self.pi_regs,
Ac97Function::Output => &self.po_regs,
Ac97Function::Microphone => &self.mc_regs,
}
}
fn func_regs_mut(&mut self, func: Ac97Function) -> &mut Ac97FunctionRegs {
match func {
Ac97Function::Input => &mut self.pi_regs,
Ac97Function::Output => &mut self.po_regs,
Ac97Function::Microphone => &mut self.mc_regs,
}
}
}
// Internal error type used for reporting errors from guest memory reading.
#[derive(Debug)]
enum GuestMemoryError {
// Failure getting the address of the audio buffer.
ReadingGuestBufferAddress(sys_util::GuestMemoryError),
// Failure reading samples from guest memory.
ReadingGuestSamples(data_model::VolatileMemoryError),
}
impl std::error::Error for GuestMemoryError {}
impl Display for GuestMemoryError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::GuestMemoryError::*;
match self {
ReadingGuestBufferAddress(e) => {
write!(f, "Failed to get the address of the audio buffer: {}.", e)
}
ReadingGuestSamples(e) => write!(f, "Failed to read samples from guest memory: {}.", e),
}
}
}
impl From<GuestMemoryError> for PlaybackError {
fn from(err: GuestMemoryError) -> Self {
PlaybackError::ReadingGuestError(err)
}
}
impl From<GuestMemoryError> for CaptureError {
fn from(err: GuestMemoryError) -> Self {
CaptureError::ReadingGuestError(err)
}
}
type GuestMemoryResult<T> = std::result::Result<T, GuestMemoryError>;
// Internal error type used for reporting errors from the audio playback thread.
#[derive(Debug)]
enum PlaybackError {
// Failure to read guest memory.
ReadingGuestError(GuestMemoryError),
// Failure to get an buffer from the stream.
StreamError(Box<dyn Error>),
// Failure writing to the audio output.
WritingOutput(std::io::Error),
}
impl std::error::Error for PlaybackError {}
impl Display for PlaybackError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::PlaybackError::*;
match self {
ReadingGuestError(e) => write!(f, "Failed to read guest memory: {}.", e),
StreamError(e) => write!(f, "Failed to get a buffer from the stream: {}", e),
WritingOutput(e) => write!(f, "Failed to write audio output: {}.", e),
}
}
}
type PlaybackResult<T> = std::result::Result<T, PlaybackError>;
// Internal error type used for reporting errors from the audio capture thread.
#[derive(Debug)]
enum CaptureError {
// Failure to read guest memory.
ReadingGuestError(GuestMemoryError),
// Failure to get an buffer from the stream.
StreamError(Box<dyn Error>),
}
impl std::error::Error for CaptureError {}
impl Display for CaptureError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::CaptureError::*;
match self {
ReadingGuestError(e) => write!(f, "Failed to read guest memory: {}.", e),
StreamError(e) => write!(f, "Failed to get a buffer from the stream: {}", e),
}
}
}
type CaptureResult<T> = std::result::Result<T, CaptureError>;
/// `Ac97BusMaster` emulates the bus master portion of AC97. It exposes a register read/write
/// interface compliant with the ICH bus master.
pub struct Ac97BusMaster {
// Keep guest memory as each function will use it for buffer descriptors.
mem: GuestMemory,
regs: Arc<Mutex<Ac97BusMasterRegs>>,
acc_sema: u8,
// Audio thread for capture stream.
audio_thread_pi: Option<thread::JoinHandle<()>>,
audio_thread_pi_run: Arc<AtomicBool>,
pi_stream_control: Option<Box<dyn StreamControl>>,
// Audio thread book keeping.
audio_thread_po: Option<thread::JoinHandle<()>>,
audio_thread_po_run: Arc<AtomicBool>,
po_stream_control: Option<Box<dyn StreamControl>>,
// Audio server used to create playback or capture streams.
audio_server: Box<dyn StreamSource>,
// Thread for hadlind IRQ resample events from the guest.
irq_resample_thread: Option<thread::JoinHandle<()>>,
}
impl Ac97BusMaster {
/// Creates an Ac97BusMaster` object that plays audio from `mem` to streams provided by
/// `audio_server`.
pub fn new(mem: GuestMemory, audio_server: Box<dyn StreamSource>) -> Self {
Ac97BusMaster {
mem,
regs: Arc::new(Mutex::new(Ac97BusMasterRegs::new())),
acc_sema: 0,
audio_thread_pi: None,
audio_thread_pi_run: Arc::new(AtomicBool::new(false)),
pi_stream_control: None,
audio_thread_po: None,
audio_thread_po_run: Arc::new(AtomicBool::new(false)),
po_stream_control: None,
audio_server,
irq_resample_thread: None,
}
}
/// Returns any file descriptors that need to be kept open when entering a jail.
pub fn keep_fds(&self) -> Option<Vec<RawFd>> {
self.audio_server.keep_fds()
}
/// Provides the events needed to raise interrupts in the guest.
pub fn set_irq_event_fd(&mut self, irq_evt: EventFd, irq_resample_evt: EventFd) {
let thread_regs = self.regs.clone();
self.regs.lock().irq_evt = Some(irq_evt);
self.irq_resample_thread = Some(thread::spawn(move || {
loop {
if let Err(e) = irq_resample_evt.read() {
error!(
"Failed to read the irq event from the resample thread: {}.",
e,
);
break;
}
{
// Scope for the lock on thread_regs.
let regs = thread_regs.lock();
// Check output irq
let po_int_mask = regs.func_regs(Ac97Function::Output).int_mask();
if regs.func_regs(Ac97Function::Output).sr & po_int_mask != 0 {
if let Some(irq_evt) = regs.irq_evt.as_ref() {
if let Err(e) = irq_evt.write(1) {
error!("Failed to set the irq from the resample thread: {}.", e);
break;
}
}
}
// Check input irq
let pi_int_mask = regs.func_regs(Ac97Function::Input).int_mask();
if regs.func_regs(Ac97Function::Input).sr & pi_int_mask != 0 {
if let Some(irq_evt) = regs.irq_evt.as_ref() {
if let Err(e) = irq_evt.write(1) {
error!("Failed to set the irq from the resample thread: {}.", e);
break;
}
}
}
}
}
}));
}
/// Called when `mixer` has been changed and the new values should be applied to currently
/// active streams.
pub fn update_mixer_settings(&mut self, mixer: &Ac97Mixer) {
if let Some(control) = self.po_stream_control.as_mut() {
// The audio server only supports one volume, not separate left and right.
let (muted, left_volume, _right_volume) = mixer.get_master_volume();
control.set_volume(left_volume);
control.set_mute(muted);
}
}
/// Checks if the bus master is in the cold reset state.
pub fn is_cold_reset(&self) -> bool {
self.regs.lock().glob_cnt & GLOB_CNT_COLD_RESET == 0
}
/// Reads a byte from the given `offset`.
pub fn readb(&mut self, offset: u64) -> u8 {
fn readb_func_regs(func_regs: &Ac97FunctionRegs, offset: u64) -> u8 {
match offset {
CIV_OFFSET => func_regs.civ,
LVI_OFFSET => func_regs.lvi,
SR_OFFSET => func_regs.sr as u8,
PIV_OFFSET => func_regs.piv,
CR_OFFSET => func_regs.cr,
_ => 0,
}
}
let regs = self.regs.lock();
match offset {
PI_BASE_00...PI_CR_0B => readb_func_regs(&regs.pi_regs, offset - PI_BASE_00),
PO_BASE_10...PO_CR_1B => readb_func_regs(&regs.po_regs, offset - PO_BASE_10),
MC_BASE_20...MC_CR_2B => readb_func_regs(&regs.mc_regs, offset - MC_BASE_20),
ACC_SEMA_34 => self.acc_sema,
_ => 0,
}
}
/// Reads a word from the given `offset`.
pub fn readw(&mut self, offset: u64) -> u16 {
let regs = self.regs.lock();
match offset {
PI_SR_06 => regs.pi_regs.sr,
PI_PICB_08 => regs.pi_regs.picb,
PO_SR_16 => regs.po_regs.sr,
PO_PICB_18 => {
// PO PICB
if !self.audio_thread_po_run.load(Ordering::Relaxed) {
// Not running, no need to estimate what has been consumed.
regs.po_regs.picb
} else {
// Estimate how many samples have been played since the last audio callback.
let num_channels = 2;
let micros = regs.po_pointer_update_time.elapsed().subsec_micros();
// Round down to the next 10 millisecond boundary. The linux driver often
// assumes that two rapid reads from picb will return the same value.
let millis = micros / 1000 / 10 * 10;
let frames_consumed = DEVICE_SAMPLE_RATE as u64 * u64::from(millis) / 1000;
regs.po_regs
.picb
.saturating_sub((num_channels * frames_consumed) as u16)
}
}
MC_SR_26 => regs.mc_regs.sr,
MC_PICB_28 => regs.mc_regs.picb,
_ => 0,
}
}
/// Reads a 32-bit word from the given `offset`.
pub fn readl(&mut self, offset: u64) -> u32 {
let regs = self.regs.lock();
match offset {
PI_BDBAR_00 => regs.pi_regs.bdbar,
PI_CIV_04 => regs.pi_regs.atomic_status_regs(),
PO_BDBAR_10 => regs.po_regs.bdbar,
PO_CIV_14 => regs.po_regs.atomic_status_regs(),
MC_BDBAR_20 => regs.mc_regs.bdbar,
MC_CIV_24 => regs.mc_regs.atomic_status_regs(),
GLOB_CNT_2C => regs.glob_cnt,
GLOB_STA_30 => regs.glob_sta,
_ => 0,
}
}
/// Writes the byte `val` to the register specified by `offset`.
pub fn writeb(&mut self, offset: u64, val: u8, mixer: &Ac97Mixer) {
// Only process writes to the control register when cold reset is set.
if self.is_cold_reset() {
return;
}
match offset {
PI_CIV_04 => (), // RO
PI_LVI_05 => self.set_lvi(Ac97Function::Input, val),
PI_SR_06 => self.set_sr(Ac97Function::Input, u16::from(val)),
PI_PIV_0A => (), // RO
PI_CR_0B => self.set_cr(Ac97Function::Input, val, mixer),
PO_CIV_14 => (), // RO
PO_LVI_15 => self.set_lvi(Ac97Function::Output, val),
PO_SR_16 => self.set_sr(Ac97Function::Output, u16::from(val)),
PO_PIV_1A => (), // RO
PO_CR_1B => self.set_cr(Ac97Function::Output, val, mixer),
MC_CIV_24 => (), // RO
MC_LVI_25 => self.set_lvi(Ac97Function::Microphone, val),
MC_PIV_2A => (), // RO
MC_CR_2B => self.set_cr(Ac97Function::Microphone, val, mixer),
ACC_SEMA_34 => self.acc_sema = val,
o => warn!("write byte to 0x{:x}", o),
}
}
/// Writes the word `val` to the register specified by `offset`.
pub fn writew(&mut self, offset: u64, val: u16) {
// Only process writes to the control register when cold reset is set.
if self.is_cold_reset() {
return;
}
match offset {
PI_SR_06 => self.set_sr(Ac97Function::Input, val),
PI_PICB_08 => (), // RO
PO_SR_16 => self.set_sr(Ac97Function::Output, val),
PO_PICB_18 => (), // RO
MC_SR_26 => self.set_sr(Ac97Function::Microphone, val),
MC_PICB_28 => (), // RO
o => warn!("write word to 0x{:x}", o),
}
}
/// Writes the 32-bit `val` to the register specified by `offset`.
pub fn writel(&mut self, offset: u64, val: u32) {
// Only process writes to the control register when cold reset is set.
if self.is_cold_reset() && offset != 0x2c {
return;
}
match offset {
PI_BDBAR_00 => self.set_bdbar(Ac97Function::Input, val),
PO_BDBAR_10 => self.set_bdbar(Ac97Function::Output, val),
MC_BDBAR_20 => self.set_bdbar(Ac97Function::Microphone, val),
GLOB_CNT_2C => self.set_glob_cnt(val),
GLOB_STA_30 => (), // RO
o => warn!("write long to 0x{:x}", o),
}
}
fn set_bdbar(&mut self, func: Ac97Function, val: u32) {
self.regs.lock().func_regs_mut(func).bdbar = val & !0x07;
}
fn set_lvi(&mut self, func: Ac97Function, val: u8) {
let mut regs = self.regs.lock();
let func_regs = regs.func_regs_mut(func);
func_regs.lvi = val % 32; // LVI wraps at 32.
// If running and stalled waiting for more valid buffers, restart by clearing the "DMA
// stopped" bit.
if func_regs.cr & CR_RPBM == CR_RPBM
&& func_regs.sr & SR_DCH == SR_DCH
&& func_regs.civ != func_regs.lvi
{
func_regs.sr &= !SR_DCH;
}
}
fn set_sr(&mut self, func: Ac97Function, val: u16) {
let mut sr = self.regs.lock().func_regs(func).sr;
if val & SR_FIFOE != 0 {
sr &= !SR_FIFOE;
}
if val & SR_LVBCI != 0 {
sr &= !SR_LVBCI;
}
if val & SR_BCIS != 0 {
sr &= !SR_BCIS;
}
update_sr(&mut self.regs.lock(), func, sr);
}
fn set_cr(&mut self, func: Ac97Function, val: u8, mixer: &Ac97Mixer) {
if val & CR_RR != 0 {
self.stop_audio(func);
let mut regs = self.regs.lock();
regs.func_regs_mut(func).do_reset();
} else {
let cr = self.regs.lock().func_regs(func).cr;
if val & CR_RPBM == 0 {
// Run/Pause set to pause.
self.stop_audio(func);
let mut regs = self.regs.lock();
regs.func_regs_mut(func).sr |= SR_DCH;
} else if cr & CR_RPBM == 0 {
// Not already running.
// Run/Pause set to run.
{
let mut regs = self.regs.lock();
let func_regs = regs.func_regs_mut(func);
func_regs.piv = 1;
func_regs.civ = 0;
func_regs.sr &= !SR_DCH;
}
if self.start_audio(func, mixer).is_err() {
warn!("Failed to start audio");
}
}
let mut regs = self.regs.lock();
regs.func_regs_mut(func).cr = val & CR_VALID_MASK;
}
}
fn set_glob_cnt(&mut self, new_glob_cnt: u32) {
// Only the reset bits are emulated, the GPI and PCM formatting are not supported.
if new_glob_cnt & GLOB_CNT_COLD_RESET == 0 {
self.reset_audio_regs();
let mut regs = self.regs.lock();
regs.glob_cnt = new_glob_cnt & GLOB_CNT_STABLE_BITS;
self.acc_sema = 0;
return;
}
if new_glob_cnt & GLOB_CNT_WARM_RESET != 0 {
// Check if running and if so, ignore. Warm reset is specified to no-op when the device
// is playing or recording audio.
if !self.audio_thread_po_run.load(Ordering::Relaxed) {
self.stop_all_audio();
let mut regs = self.regs.lock();
regs.glob_cnt = new_glob_cnt & !GLOB_CNT_WARM_RESET; // Auto-cleared reset bit.
return;
}
}
self.regs.lock().glob_cnt = new_glob_cnt;
}
fn start_audio(&mut self, func: Ac97Function, mixer: &Ac97Mixer) -> Result<(), Box<dyn Error>> {
const AUDIO_THREAD_RTPRIO: u16 = 12; // Matches other cros audio clients.
match func {
Ac97Function::Input => {
let num_channels = 2;
let buffer_samples =
current_buffer_size(self.regs.lock().func_regs(func), &self.mem)?;
let buffer_frames = buffer_samples / num_channels;
let (stream_control, input_stream) = self.audio_server.new_capture_stream(
num_channels,
DEVICE_SAMPLE_RATE,
buffer_frames,
)?;
self.pi_stream_control = Some(stream_control);
self.update_mixer_settings(mixer);
self.audio_thread_pi_run.store(true, Ordering::Relaxed);
let thread_run = self.audio_thread_pi_run.clone();
let thread_mem = self.mem.clone();
let thread_regs = self.regs.clone();
self.audio_thread_pi = Some(thread::spawn(move || {
if set_rt_prio_limit(u64::from(AUDIO_THREAD_RTPRIO)).is_err()
|| set_rt_round_robin(i32::from(AUDIO_THREAD_RTPRIO)).is_err()
{
warn!("Failed to set audio thread to real time.");
}
if let Err(e) =
audio_in_thread(thread_regs, thread_mem, &thread_run, input_stream)
{
error!("Capture error: {}", e);
}
thread_run.store(false, Ordering::Relaxed);
}));
}
Ac97Function::Output => {
let num_channels = 2;
let buffer_samples =
current_buffer_size(self.regs.lock().func_regs(func), &self.mem)?;
let buffer_frames = buffer_samples / num_channels;
let (stream_control, output_stream) = self.audio_server.new_playback_stream(
num_channels,
DEVICE_SAMPLE_RATE,
buffer_frames,
)?;
self.po_stream_control = Some(stream_control);
self.update_mixer_settings(mixer);
self.audio_thread_po_run.store(true, Ordering::Relaxed);
let thread_run = self.audio_thread_po_run.clone();
let thread_mem = self.mem.clone();
let thread_regs = self.regs.clone();
self.audio_thread_po = Some(thread::spawn(move || {
if set_rt_prio_limit(u64::from(AUDIO_THREAD_RTPRIO)).is_err()
|| set_rt_round_robin(i32::from(AUDIO_THREAD_RTPRIO)).is_err()
{
warn!("Failed to set audio thread to real time.");
}
if let Err(e) =
audio_out_thread(thread_regs, thread_mem, &thread_run, output_stream)
{
error!("Playback error: {}", e);
}
thread_run.store(false, Ordering::Relaxed);
}));
}
Ac97Function::Microphone => (),
}
Ok(())
}
fn stop_audio(&mut self, func: Ac97Function) {
match func {
Ac97Function::Input => {
self.audio_thread_pi_run.store(false, Ordering::Relaxed);
if let Some(thread) = self.audio_thread_pi.take() {
if let Err(e) = thread.join() {
error!("Failed to join the capture thread: {:?}.", e);
}
}
}
Ac97Function::Output => {
self.audio_thread_po_run.store(false, Ordering::Relaxed);
if let Some(thread) = self.audio_thread_po.take() {
if let Err(e) = thread.join() {
error!("Failed to join the playback thread: {:?}.", e);
}
}
}
Ac97Function::Microphone => (),
};
}
fn stop_all_audio(&mut self) {
self.stop_audio(Ac97Function::Input);
self.stop_audio(Ac97Function::Output);
self.stop_audio(Ac97Function::Microphone);
}
fn reset_audio_regs(&mut self) {
self.stop_all_audio();
let mut regs = self.regs.lock();
regs.pi_regs.do_reset();
regs.po_regs.do_reset();
regs.mc_regs.do_reset();
}
}
// Gets the next buffer from the guest. This will return `None` if the DMA controlled stopped bit is
// set, such as after an underrun where CIV hits LVI.
fn next_guest_buffer<'a>(
func_regs: &mut Ac97FunctionRegs,
mem: &'a GuestMemory,
) -> GuestMemoryResult<Option<VolatileSlice<'a>>> {
let sample_size = 2;
if func_regs.sr & SR_DCH != 0 {
return Ok(None);
}
let next_buffer = func_regs.civ;
let descriptor_addr = func_regs.bdbar + u32::from(next_buffer) * DESCRIPTOR_LENGTH as u32;
let buffer_addr_reg: u32 = mem
.read_obj_from_addr(GuestAddress(u64::from(descriptor_addr)))
.map_err(GuestMemoryError::ReadingGuestBufferAddress)?;
let buffer_addr = buffer_addr_reg & !0x03u32; // The address must be aligned to four bytes.
let control_reg: u32 = mem
.read_obj_from_addr(GuestAddress(u64::from(descriptor_addr) + 4))
.map_err(GuestMemoryError::ReadingGuestBufferAddress)?;
let buffer_samples: usize = control_reg as usize & 0x0000_ffff;
func_regs.picb = buffer_samples as u16;
let samples_remaining = func_regs.picb as usize;
if samples_remaining == 0 {
return Ok(None);
}
let read_pos = u64::from(buffer_addr);
Ok(Some(
mem.get_slice(read_pos, samples_remaining as u64 * sample_size)
.map_err(GuestMemoryError::ReadingGuestSamples)?,
))
}
// Reads the next buffer from guest memory and writes it to `out_buffer`.
fn play_buffer(
regs: &mut Ac97BusMasterRegs,
mem: &GuestMemory,
out_buffer: &mut PlaybackBuffer,
) -> PlaybackResult<()> {
// If the current buffer had any samples in it, mark it as done.
if regs.func_regs_mut(Ac97Function::Output).picb > 0 {
buffer_completed(regs, mem, Ac97Function::Output)?
}
let func_regs = regs.func_regs_mut(Ac97Function::Output);
let buffer_len = func_regs.picb * 2;
if let Some(buffer) = next_guest_buffer(func_regs, mem)? {
out_buffer.copy_cb(buffer.size() as usize, |out| buffer.copy_to(out));
} else {
let zeros = vec![0u8; buffer_len as usize];
out_buffer
.write(&zeros)
.map_err(PlaybackError::WritingOutput)?;
}
Ok(())
}
// Moves to the next buffer for the given function and registers.
fn buffer_completed(
regs: &mut Ac97BusMasterRegs,
mem: &GuestMemory,
func: Ac97Function,
) -> GuestMemoryResult<()> {
// check if the completed descriptor wanted an interrupt on completion.
let civ = regs.func_regs(func).civ;
let descriptor_addr = regs.func_regs(func).bdbar + u32::from(civ) * DESCRIPTOR_LENGTH as u32;
let control_reg: u32 = mem
.read_obj_from_addr(GuestAddress(u64::from(descriptor_addr) + 4))
.map_err(GuestMemoryError::ReadingGuestBufferAddress)?;
let mut new_sr = regs.func_regs(func).sr;
if control_reg & BD_IOC != 0 {
new_sr |= SR_BCIS;
}
let lvi = regs.func_regs(func).lvi;
// if the current buffer was the last valid buffer, then update the status register to
// indicate that the end of audio was hit and possibly raise an interrupt.
if civ == lvi {
new_sr |= SR_DCH | SR_CELV | SR_LVBCI;
} else {
let func_regs = regs.func_regs_mut(func);
func_regs.civ = func_regs.piv;
func_regs.piv = (func_regs.piv + 1) % 32; // move piv to the next buffer.
}
if new_sr != regs.func_regs(func).sr {
update_sr(regs, func, new_sr);
}
regs.po_pointer_update_time = Instant::now();
Ok(())
}
// Runs, playing back audio from the guest to `output_stream` until stopped or an error occurs.
fn audio_out_thread(
regs: Arc<Mutex<Ac97BusMasterRegs>>,
mem: GuestMemory,
thread_run: &AtomicBool,
mut output_stream: Box<dyn PlaybackBufferStream>,
) -> PlaybackResult<()> {
while thread_run.load(Ordering::Relaxed) {
output_stream
.next_playback_buffer()
.map_err(PlaybackError::StreamError)
.and_then(|mut pb_buf| play_buffer(&mut regs.lock(), &mem, &mut pb_buf))?;
}
Ok(())
}
// Reads samples from `in_buffer` and writes it to the next buffer from guest memory.
fn capture_buffer(
regs: &mut Ac97BusMasterRegs,
mem: &GuestMemory,
in_buffer: &mut CaptureBuffer,
) -> CaptureResult<()> {
// If the current buffer had any samples in it, mark it as done.
if regs.func_regs_mut(Ac97Function::Input).picb > 0 {
buffer_completed(regs, mem, Ac97Function::Input)?
}
let func_regs = regs.func_regs_mut(Ac97Function::Input);
if let Some(buffer) = next_guest_buffer(func_regs, mem)? {
in_buffer.copy_cb(buffer.size() as usize, |inb| buffer.copy_from(inb))
}
Ok(())
}
// Runs, capturing audio from `input_stream` to the guest until stopped or an error occurs.
fn audio_in_thread(
regs: Arc<Mutex<Ac97BusMasterRegs>>,
mem: GuestMemory,
thread_run: &AtomicBool,
mut input_stream: Box<dyn CaptureBufferStream>,
) -> CaptureResult<()> {
while thread_run.load(Ordering::Relaxed) {
input_stream
.next_capture_buffer()
.map_err(CaptureError::StreamError)
.and_then(|mut cp_buf| capture_buffer(&mut regs.lock(), &mem, &mut cp_buf))?;
}
Ok(())
}
// Update the status register and if any interrupts need to fire, raise them.
fn update_sr(regs: &mut Ac97BusMasterRegs, func: Ac97Function, val: u16) {
let int_mask = match func {
Ac97Function::Input => GS_PIINT,
Ac97Function::Output => GS_POINT,
Ac97Function::Microphone => GS_MINT,
};
let mut interrupt_high = false;
{
let func_regs = regs.func_regs_mut(func);
func_regs.sr = val;
if val & SR_INT_MASK != 0 {
if (val & SR_LVBCI) != 0 && (func_regs.cr & CR_LVBIE) != 0 {
interrupt_high = true;
}
if (val & SR_BCIS) != 0 && (func_regs.cr & CR_IOCE) != 0 {
interrupt_high = true;
}
}
}
if interrupt_high {
regs.glob_sta |= int_mask;
if let Some(irq_evt) = regs.irq_evt.as_ref() {
// Ignore write failure, nothing can be done about it from here.
let _ = irq_evt.write(1);
}
} else {
regs.glob_sta &= !int_mask;
if regs.glob_sta & (GS_PIINT | GS_POINT | GS_MINT) == 0 {
if let Some(irq_evt) = regs.irq_evt.as_ref() {
// Ignore write failure, nothing can be done about it from here.
let _ = irq_evt.write(0);
}
}
}
}
// Returns the size in samples of the buffer pointed to by the CIV register.
fn current_buffer_size(
func_regs: &Ac97FunctionRegs,
mem: &GuestMemory,
) -> GuestMemoryResult<usize> {
let civ = func_regs.civ;
let descriptor_addr = func_regs.bdbar + u32::from(civ) * DESCRIPTOR_LENGTH as u32;
let control_reg: u32 = mem
.read_obj_from_addr(GuestAddress(u64::from(descriptor_addr) + 4))
.map_err(GuestMemoryError::ReadingGuestBufferAddress)?;
let buffer_len: usize = control_reg as usize & 0x0000_ffff;
Ok(buffer_len)
}
#[cfg(test)]
mod test {
use super::*;
use std::time;
use audio_streams::DummyStreamSource;
#[test]
fn bm_bdbar() {
let mut bm = Ac97BusMaster::new(
GuestMemory::new(&[]).expect("Creating guest memory failed."),
Box::new(DummyStreamSource::new()),
);
let bdbars = [0x00u64, 0x10, 0x20];
// Make sure writes have no affect during cold reset.
bm.writel(0x00, 0x5555_555f);
assert_eq!(bm.readl(0x00), 0x0000_0000);
// Relesase cold reset.
bm.writel(GLOB_CNT_2C, 0x0000_0002);
// Tests that the base address is writable and that the bottom three bits are read only.
for bdbar in &bdbars {
assert_eq!(bm.readl(*bdbar), 0x0000_0000);
bm.writel(*bdbar, 0x5555_555f);
assert_eq!(bm.readl(*bdbar), 0x5555_5558);
}
}
#[test]
fn bm_status_reg() {
let mut bm = Ac97BusMaster::new(
GuestMemory::new(&[]).expect("Creating guest memory failed."),
Box::new(DummyStreamSource::new()),
);
let sr_addrs = [0x06u64, 0x16, 0x26];
for sr in &sr_addrs {
assert_eq!(bm.readw(*sr), 0x0001);
bm.writew(*sr, 0xffff);
assert_eq!(bm.readw(*sr), 0x0001);
}
}
#[test]
fn bm_global_control() {
let mut bm = Ac97BusMaster::new(
GuestMemory::new(&[]).expect("Creating guest memory failed."),
Box::new(DummyStreamSource::new()),
);
assert_eq!(bm.readl(GLOB_CNT_2C), 0x0000_0000);
// Relesase cold reset.
bm.writel(GLOB_CNT_2C, 0x0000_0002);
// Check interrupt enable bits are writable.
bm.writel(GLOB_CNT_2C, 0x0000_0072);
assert_eq!(bm.readl(GLOB_CNT_2C), 0x0000_0072);
// A Warm reset should doesn't affect register state and is auto cleared.
bm.writel(0x00, 0x5555_5558);
bm.writel(GLOB_CNT_2C, 0x0000_0076);
assert_eq!(bm.readl(GLOB_CNT_2C), 0x0000_0072);
assert_eq!(bm.readl(0x00), 0x5555_5558);
// Check that a cold reset works, but setting bdbar and checking it is zeroed.
bm.writel(0x00, 0x5555_555f);
bm.writel(GLOB_CNT_2C, 0x000_0070);
assert_eq!(bm.readl(GLOB_CNT_2C), 0x0000_0070);
assert_eq!(bm.readl(0x00), 0x0000_0000);
}
#[test]
fn start_playback() {
const LVI_MASK: u8 = 0x1f; // Five bits for 32 total entries.
const IOC_MASK: u32 = 0x8000_0000; // Interrupt on completion.
let num_buffers = LVI_MASK as usize + 1;
const BUFFER_SIZE: usize = 32768;
const FRAGMENT_SIZE: usize = BUFFER_SIZE / 2;
const GUEST_ADDR_BASE: u32 = 0x100_0000;
let mem = GuestMemory::new(&[(GuestAddress(GUEST_ADDR_BASE as u64), 1024 * 1024 * 1024)])
.expect("Creating guest memory failed.");
let mut bm = Ac97BusMaster::new(mem.clone(), Box::new(DummyStreamSource::new()));
let mixer = Ac97Mixer::new();
// Release cold reset.
bm.writel(GLOB_CNT_2C, 0x0000_0002);
// Setup ping-pong buffers. A and B repeating for every possible index.
bm.writel(PO_BDBAR_10, GUEST_ADDR_BASE);
for i in 0..num_buffers {
let pointer_addr = GuestAddress(GUEST_ADDR_BASE as u64 + i as u64 * 8);
let control_addr = GuestAddress(GUEST_ADDR_BASE as u64 + i as u64 * 8 + 4);
if i % 2 == 0 {
mem.write_obj_at_addr(GUEST_ADDR_BASE, pointer_addr)
.expect("Writing guest memory failed.");
} else {
mem.write_obj_at_addr(GUEST_ADDR_BASE + FRAGMENT_SIZE as u32, pointer_addr)
.expect("Writing guest memory failed.");
};
mem.write_obj_at_addr(IOC_MASK | (FRAGMENT_SIZE as u32) / 2, control_addr)
.expect("Writing guest memory failed.");
}
bm.writeb(PO_LVI_15, LVI_MASK, &mixer);
// Start.
bm.writeb(PO_CR_1B, CR_RPBM, &mixer);
std::thread::sleep(time::Duration::from_millis(50));
let picb = bm.readw(PO_PICB_18);
let mut civ = bm.readb(PO_CIV_14);
assert_eq!(civ, 0);
let pos = (FRAGMENT_SIZE - (picb as usize * 2)) / 4;
// Check that frames are consumed at least at a reasonable rate.
// This wont be exact as during unit tests the thread scheduling is highly variable, so the
// test only checks that some samples are consumed.
assert!(pos > 1000);
assert!(bm.readw(PO_SR_16) & SR_DCH == 0); // DMA is running.
// civ should move eventually.
for _i in 0..30 {
if civ != 0 {
break;
}
std::thread::sleep(time::Duration::from_millis(20));
civ = bm.readb(PO_CIV_14);
}
assert_ne!(0, civ);
// Buffer complete should be set as the IOC bit was set in the descriptor.
assert!(bm.readw(PO_SR_16) & SR_BCIS != 0);
// Clear the BCIS bit
bm.writew(PO_SR_16, SR_BCIS);
assert!(bm.readw(PO_SR_16) & SR_BCIS == 0);
// Set last valid to the next and wait until it is hit.
bm.writeb(PO_LVI_15, civ + 1, &mixer);
std::thread::sleep(time::Duration::from_millis(500));
assert!(bm.readw(PO_SR_16) & SR_LVBCI != 0); // Hit last buffer
assert!(bm.readw(PO_SR_16) & SR_DCH == SR_DCH); // DMA stopped because of lack of buffers.
assert_eq!(bm.readb(PO_LVI_15), bm.readb(PO_CIV_14));
// Clear the LVB bit
bm.writeb(PO_SR_16, SR_LVBCI as u8, &mixer);
assert!(bm.readw(PO_SR_16) & SR_LVBCI == 0);
// Reset the LVI to the last buffer and check that playback resumes
bm.writeb(PO_LVI_15, LVI_MASK, &mixer);
assert!(bm.readw(PO_SR_16) & SR_DCH == 0); // DMA restarts.
let (restart_civ, restart_picb) = (bm.readb(PO_CIV_14), bm.readw(PO_PICB_18));
std::thread::sleep(time::Duration::from_millis(20));
assert!(bm.readw(PO_PICB_18) != restart_picb || bm.readb(PO_CIV_14) != restart_civ);
// Stop.
bm.writeb(PO_CR_1B, 0, &mixer);
assert!(bm.readw(PO_SR_16) & 0x01 != 0); // DMA is not running.
}
#[test]
fn start_capture() {
const LVI_MASK: u8 = 0x1f; // Five bits for 32 total entries.
const IOC_MASK: u32 = 0x8000_0000; // Interrupt on completion.
let num_buffers = LVI_MASK as usize + 1;
const BUFFER_SIZE: usize = 32768;
const FRAGMENT_SIZE: usize = BUFFER_SIZE / 2;
const GUEST_ADDR_BASE: u32 = 0x100_0000;
let mem = GuestMemory::new(&[(GuestAddress(GUEST_ADDR_BASE as u64), 1024 * 1024 * 1024)])
.expect("Creating guest memory failed.");
let mut bm = Ac97BusMaster::new(mem.clone(), Box::new(DummyStreamSource::new()));
let mixer = Ac97Mixer::new();
// Release cold reset.
bm.writel(GLOB_CNT_2C, 0x0000_0002);
// Setup ping-pong buffers.
bm.writel(PI_BDBAR_00, GUEST_ADDR_BASE);
for i in 0..num_buffers {
let pointer_addr = GuestAddress(GUEST_ADDR_BASE as u64 + i as u64 * 8);
let control_addr = GuestAddress(GUEST_ADDR_BASE as u64 + i as u64 * 8 + 4);
mem.write_obj_at_addr(GUEST_ADDR_BASE + FRAGMENT_SIZE as u32, pointer_addr)
.expect("Writing guest memory failed.");
mem.write_obj_at_addr(IOC_MASK | (FRAGMENT_SIZE as u32) / 2, control_addr)
.expect("Writing guest memory failed.");
}
bm.writeb(PI_LVI_05, LVI_MASK, &mixer);
// Start.
bm.writeb(PI_CR_0B, CR_RPBM, &mixer);
assert_eq!(bm.readw(PI_PICB_08), 0);
std::thread::sleep(time::Duration::from_millis(50));
let picb = bm.readw(PI_PICB_08);
assert!(picb > 1000);
assert!(bm.readw(PI_SR_06) & SR_DCH == 0); // DMA is running.
// civ should move eventually.
for _i in 0..10 {
let civ = bm.readb(PI_CIV_04);
if civ != 0 {
break;
}
std::thread::sleep(time::Duration::from_millis(20));
}
assert_ne!(bm.readb(PI_CIV_04), 0);
let civ = bm.readb(PI_CIV_04);
// Sets LVI to CIV + 1 to trigger last buffer hit
bm.writeb(PI_LVI_05, civ + 1, &mixer);
std::thread::sleep(time::Duration::from_millis(5000));
assert_ne!(bm.readw(PI_SR_06) & SR_LVBCI, 0); // Hit last buffer
assert_eq!(bm.readw(PI_SR_06) & SR_DCH, SR_DCH); // DMA stopped because of lack of buffers.
assert_eq!(bm.readb(PI_LVI_05), bm.readb(PI_CIV_04));
// Clear the LVB bit
bm.writeb(PI_SR_06, SR_LVBCI as u8, &mixer);
assert!(bm.readw(PI_SR_06) & SR_LVBCI == 0);
// Reset the LVI to the last buffer and check that playback resumes
bm.writeb(PI_LVI_05, LVI_MASK, &mixer);
assert!(bm.readw(PI_SR_06) & SR_DCH == 0); // DMA restarts.
let restart_civ = bm.readb(PI_CIV_04);
std::thread::sleep(time::Duration::from_millis(200));
assert_ne!(bm.readb(PI_CIV_04), restart_civ);
// Stop.
bm.writeb(PI_CR_0B, 0, &mixer);
assert!(bm.readw(PI_SR_06) & 0x01 != 0); // DMA is not running.
}
}