blob: 9e338bf329a689ad9c2947b9dd7e7e74139a15f4 [file] [log] [blame]
// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Types for volatile access to memory.
//!
//! Two of the core rules for safe rust is no data races and no aliased mutable references.
//! `VolatileRef` and `VolatileSlice`, along with types that produce those which implement
//! `VolatileMemory`, allow us to sidestep that rule by wrapping pointers that absolutely have to be
//! accessed volatile. Some systems really do need to operate on shared memory and can't have the
//! compiler reordering or eliding access because it has no visibility into what other systems are
//! doing with that hunk of memory.
//!
//! For the purposes of maintaining safety, volatile memory has some rules of its own:
//! 1. No references or slices to volatile memory (`&` or `&mut`).
//! 2. Access should always been done with a volatile read or write.
//! The First rule is because having references of any kind to memory considered volatile would
//! violate pointer aliasing. The second is because unvolatile accesses are inherently undefined if
//! done concurrently without synchronization. With volatile access we know that the compiler has
//! not reordered or elided the access.
use std::cmp::min;
use std::marker::PhantomData;
use std::mem::size_of;
use std::ptr::{copy, read_volatile, write_bytes, write_volatile};
use std::result;
use std::slice;
use std::usize;
use libc::iovec;
use remain::sorted;
use thiserror::Error;
use crate::{sys::IoBufMut, DataInit};
#[sorted]
#[derive(Error, Eq, PartialEq, Debug)]
pub enum VolatileMemoryError {
/// `addr` is out of bounds of the volatile memory slice.
#[error("address 0x{addr:x} is out of bounds")]
OutOfBounds { addr: usize },
/// Taking a slice at `base` with `offset` would overflow `usize`.
#[error("address 0x{base:x} offset by 0x{offset:x} would overflow")]
Overflow { base: usize, offset: usize },
}
pub type VolatileMemoryResult<T> = result::Result<T, VolatileMemoryError>;
use crate::VolatileMemoryError as Error;
type Result<T> = VolatileMemoryResult<T>;
/// Convenience function for computing `base + offset` which returns
/// `Err(VolatileMemoryError::Overflow)` instead of panicking in the case `base + offset` exceeds
/// `u64::MAX`.
///
/// # Examples
///
/// ```
/// # use data_model::*;
/// # fn get_slice(offset: usize, count: usize) -> VolatileMemoryResult<()> {
/// let mem_end = calc_offset(offset, count)?;
/// if mem_end > 100 {
/// return Err(VolatileMemoryError::OutOfBounds{addr: mem_end});
/// }
/// # Ok(())
/// # }
/// ```
pub fn calc_offset(base: usize, offset: usize) -> Result<usize> {
match base.checked_add(offset) {
None => Err(Error::Overflow { base, offset }),
Some(m) => Ok(m),
}
}
/// Trait for types that support raw volatile access to their data.
pub trait VolatileMemory {
/// Gets a slice of memory at `offset` that is `count` bytes in length and supports volatile
/// access.
fn get_slice(&self, offset: usize, count: usize) -> Result<VolatileSlice>;
/// Gets a `VolatileRef` at `offset`.
fn get_ref<T: DataInit>(&self, offset: usize) -> Result<VolatileRef<T>> {
let slice = self.get_slice(offset, size_of::<T>())?;
Ok(VolatileRef {
addr: slice.as_mut_ptr() as *mut T,
phantom: PhantomData,
})
}
}
/// A slice of raw memory that supports volatile access. Like `std::io::IoBufMut`, this type is
/// guaranteed to be ABI-compatible with `libc::iovec` but unlike `IoBufMut`, it doesn't
/// automatically deref to `&mut [u8]`.
#[derive(Copy, Clone, Debug)]
#[repr(transparent)]
pub struct VolatileSlice<'a>(IoBufMut<'a>);
impl<'a> VolatileSlice<'a> {
/// Creates a slice of raw memory that must support volatile access.
pub fn new(buf: &mut [u8]) -> VolatileSlice {
VolatileSlice(IoBufMut::new(buf))
}
/// Creates a `VolatileSlice` from a pointer and a length.
///
/// # Safety
///
/// In order to use this method safely, `addr` must be valid for reads and writes of `len` bytes
/// and should live for the entire duration of lifetime `'a`.
pub unsafe fn from_raw_parts(addr: *mut u8, len: usize) -> VolatileSlice<'a> {
VolatileSlice(IoBufMut::from_raw_parts(addr, len))
}
/// Gets a const pointer to this slice's memory.
pub fn as_ptr(&self) -> *const u8 {
self.0.as_ptr()
}
/// Gets a mutable pointer to this slice's memory.
pub fn as_mut_ptr(&self) -> *mut u8 {
self.0.as_mut_ptr()
}
/// Gets the size of this slice.
pub fn size(&self) -> usize {
self.0.len()
}
/// Returns this `VolatileSlice` as an `iovec`.
pub fn as_iobuf(&self) -> &iovec {
self.0.as_ref()
}
/// Converts a slice of `VolatileSlice`s into a slice of `iovec`s
#[allow(clippy::wrong_self_convention)]
pub fn as_iobufs<'slice>(iovs: &'slice [VolatileSlice<'_>]) -> &'slice [iovec] {
// Safe because `VolatileSlice` is ABI-compatible with `IoBufMut`.
IoBufMut::as_iobufs(unsafe {
slice::from_raw_parts(iovs.as_ptr() as *const IoBufMut, iovs.len())
})
}
/// Creates a copy of this slice with the address increased by `count` bytes, and the size
/// reduced by `count` bytes.
pub fn offset(self, count: usize) -> Result<VolatileSlice<'a>> {
let new_addr = (self.as_mut_ptr() as usize).checked_add(count).ok_or(
VolatileMemoryError::Overflow {
base: self.as_mut_ptr() as usize,
offset: count,
},
)?;
let new_size = self
.size()
.checked_sub(count)
.ok_or(VolatileMemoryError::OutOfBounds { addr: new_addr })?;
// Safe because the memory has the same lifetime and points to a subset of the memory of the
// original slice.
unsafe { Ok(VolatileSlice::from_raw_parts(new_addr as *mut u8, new_size)) }
}
/// Similar to `get_slice` but the returned slice outlives this slice.
///
/// The returned slice's lifetime is still limited by the underlying data's lifetime.
pub fn sub_slice(self, offset: usize, count: usize) -> Result<VolatileSlice<'a>> {
let mem_end = calc_offset(offset, count)?;
if mem_end > self.size() {
return Err(Error::OutOfBounds { addr: mem_end });
}
let new_addr = (self.as_mut_ptr() as usize).checked_add(offset).ok_or(
VolatileMemoryError::Overflow {
base: self.as_mut_ptr() as usize,
offset,
},
)?;
// Safe because we have verified that the new memory is a subset of the original slice.
Ok(unsafe { VolatileSlice::from_raw_parts(new_addr as *mut u8, count) })
}
/// Sets each byte of this slice with the given byte, similar to `memset`.
///
/// The bytes of this slice are accessed in an arbitray order.
///
/// # Examples
///
/// ```
/// # use data_model::VolatileSlice;
/// # fn test_write_45() -> Result<(), ()> {
/// let mut mem = [0u8; 32];
/// let vslice = VolatileSlice::new(&mut mem[..]);
/// vslice.write_bytes(45);
/// for &v in &mem[..] {
/// assert_eq!(v, 45);
/// }
/// # Ok(())
/// # }
pub fn write_bytes(&self, value: u8) {
// Safe because the memory is valid and needs only byte alignment.
unsafe {
write_bytes(self.as_mut_ptr(), value, self.size());
}
}
/// Copies `self.size()` or `buf.len()` times the size of `T` bytes, whichever is smaller, to
/// `buf`.
///
/// The copy happens from smallest to largest address in `T` sized chunks using volatile reads.
///
/// # Examples
///
/// ```
/// # use std::fs::File;
/// # use std::path::Path;
/// # use data_model::VolatileSlice;
/// # fn test_write_null() -> Result<(), ()> {
/// let mut mem = [0u8; 32];
/// let vslice = VolatileSlice::new(&mut mem[..]);
/// let mut buf = [5u8; 16];
/// vslice.copy_to(&mut buf[..]);
/// for v in &buf[..] {
/// assert_eq!(buf[0], 0);
/// }
/// # Ok(())
/// # }
/// ```
pub fn copy_to<T>(&self, buf: &mut [T])
where
T: DataInit,
{
let mut addr = self.as_mut_ptr() as *const u8;
for v in buf.iter_mut().take(self.size() / size_of::<T>()) {
unsafe {
*v = read_volatile(addr as *const T);
addr = addr.add(size_of::<T>());
}
}
}
/// Copies `self.size()` or `slice.size()` bytes, whichever is smaller, to `slice`.
///
/// The copies happen in an undefined order.
/// # Examples
///
/// ```
/// # use data_model::{VolatileMemory, VolatileSlice};
/// # fn test_write_null() -> Result<(), ()> {
/// let mut mem = [0u8; 32];
/// let vslice = VolatileSlice::new(&mut mem[..]);
/// vslice.copy_to_volatile_slice(vslice.get_slice(16, 16).map_err(|_| ())?);
/// # Ok(())
/// # }
/// ```
pub fn copy_to_volatile_slice(&self, slice: VolatileSlice) {
unsafe {
copy(
self.as_mut_ptr() as *const u8,
slice.as_mut_ptr(),
min(self.size(), slice.size()),
);
}
}
/// Copies `self.size()` or `buf.len()` times the size of `T` bytes, whichever is smaller, to
/// this slice's memory.
///
/// The copy happens from smallest to largest address in `T` sized chunks using volatile writes.
///
/// # Examples
///
/// ```
/// # use std::fs::File;
/// # use std::path::Path;
/// # use data_model::{VolatileMemory, VolatileSlice};
/// # fn test_write_null() -> Result<(), ()> {
/// let mut mem = [0u8; 32];
/// let vslice = VolatileSlice::new(&mut mem[..]);
/// let buf = [5u8; 64];
/// vslice.copy_from(&buf[..]);
/// for i in 0..4 {
/// assert_eq!(vslice.get_ref::<u32>(i * 4).map_err(|_| ())?.load(), 0x05050505);
/// }
/// # Ok(())
/// # }
/// ```
pub fn copy_from<T>(&self, buf: &[T])
where
T: DataInit,
{
let mut addr = self.as_mut_ptr();
for &v in buf.iter().take(self.size() / size_of::<T>()) {
unsafe {
write_volatile(addr as *mut T, v);
addr = addr.add(size_of::<T>());
}
}
}
}
impl<'a> VolatileMemory for VolatileSlice<'a> {
fn get_slice(&self, offset: usize, count: usize) -> Result<VolatileSlice> {
self.sub_slice(offset, count)
}
}
/// A memory location that supports volatile access of a `T`.
///
/// # Examples
///
/// ```
/// # use data_model::VolatileRef;
/// let mut v = 5u32;
/// assert_eq!(v, 5);
/// let v_ref = unsafe { VolatileRef::new(&mut v as *mut u32) };
/// assert_eq!(v_ref.load(), 5);
/// v_ref.store(500);
/// assert_eq!(v, 500);
#[derive(Debug)]
pub struct VolatileRef<'a, T: DataInit>
where
T: 'a,
{
addr: *mut T,
phantom: PhantomData<&'a T>,
}
impl<'a, T: DataInit> VolatileRef<'a, T> {
/// Creates a reference to raw memory that must support volatile access of `T` sized chunks.
///
/// # Safety
/// To use this safely, the caller must guarantee that the memory at `addr` is big enough for a
/// `T` and is available for the duration of the lifetime of the new `VolatileRef`. The caller
/// must also guarantee that all other users of the given chunk of memory are using volatile
/// accesses.
pub unsafe fn new(addr: *mut T) -> VolatileRef<'a, T> {
VolatileRef {
addr,
phantom: PhantomData,
}
}
/// Gets the address of this slice's memory.
pub fn as_mut_ptr(&self) -> *mut T {
self.addr
}
/// Gets the size of this slice.
///
/// # Examples
///
/// ```
/// # use std::mem::size_of;
/// # use data_model::VolatileRef;
/// let v_ref = unsafe { VolatileRef::new(0 as *mut u32) };
/// assert_eq!(v_ref.size(), size_of::<u32>());
/// ```
pub fn size(&self) -> usize {
size_of::<T>()
}
/// Does a volatile write of the value `v` to the address of this ref.
#[inline(always)]
pub fn store(&self, v: T) {
unsafe { write_volatile(self.addr, v) };
}
/// Does a volatile read of the value at the address of this ref.
#[inline(always)]
pub fn load(&self) -> T {
// For the purposes of demonstrating why read_volatile is necessary, try replacing the code
// in this function with the commented code below and running `cargo test --release`.
// unsafe { *(self.addr as *const T) }
unsafe { read_volatile(self.addr) }
}
/// Converts this `T` reference to a raw slice with the same size and address.
pub fn to_slice(&self) -> VolatileSlice<'a> {
unsafe { VolatileSlice::from_raw_parts(self.as_mut_ptr() as *mut u8, self.size()) }
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::sync::{Arc, Barrier};
use std::thread::spawn;
#[derive(Clone)]
struct VecMem {
mem: Arc<Vec<u8>>,
}
impl VecMem {
fn new(size: usize) -> VecMem {
let mut mem = Vec::new();
mem.resize(size, 0);
VecMem { mem: Arc::new(mem) }
}
}
impl VolatileMemory for VecMem {
fn get_slice(&self, offset: usize, count: usize) -> Result<VolatileSlice> {
let mem_end = calc_offset(offset, count)?;
if mem_end > self.mem.len() {
return Err(Error::OutOfBounds { addr: mem_end });
}
let new_addr = (self.mem.as_ptr() as usize).checked_add(offset).ok_or(
VolatileMemoryError::Overflow {
base: self.mem.as_ptr() as usize,
offset,
},
)?;
Ok(unsafe { VolatileSlice::from_raw_parts(new_addr as *mut u8, count) })
}
}
#[test]
fn ref_store() {
let mut a = [0u8; 1];
let a_ref = VolatileSlice::new(&mut a[..]);
let v_ref = a_ref.get_ref(0).unwrap();
v_ref.store(2u8);
assert_eq!(a[0], 2);
}
#[test]
fn ref_load() {
let mut a = [5u8; 1];
{
let a_ref = VolatileSlice::new(&mut a[..]);
let c = {
let v_ref = a_ref.get_ref::<u8>(0).unwrap();
assert_eq!(v_ref.load(), 5u8);
v_ref
};
// To make sure we can take a v_ref out of the scope we made it in:
c.load();
// but not too far:
// c
} //.load()
;
}
#[test]
fn ref_to_slice() {
let mut a = [1u8; 5];
let a_ref = VolatileSlice::new(&mut a[..]);
let v_ref = a_ref.get_ref(1).unwrap();
v_ref.store(0x12345678u32);
let ref_slice = v_ref.to_slice();
assert_eq!(v_ref.as_mut_ptr() as usize, ref_slice.as_mut_ptr() as usize);
assert_eq!(v_ref.size(), ref_slice.size());
}
#[test]
fn observe_mutate() {
let a = VecMem::new(1);
let a_clone = a.clone();
let v_ref = a.get_ref::<u8>(0).unwrap();
v_ref.store(99);
let start_barrier = Arc::new(Barrier::new(2));
let thread_start_barrier = start_barrier.clone();
let end_barrier = Arc::new(Barrier::new(2));
let thread_end_barrier = end_barrier.clone();
spawn(move || {
thread_start_barrier.wait();
let clone_v_ref = a_clone.get_ref::<u8>(0).unwrap();
clone_v_ref.store(0);
thread_end_barrier.wait();
});
assert_eq!(v_ref.load(), 99);
start_barrier.wait();
end_barrier.wait();
assert_eq!(v_ref.load(), 0);
}
#[test]
fn slice_size() {
let a = VecMem::new(100);
let s = a.get_slice(0, 27).unwrap();
assert_eq!(s.size(), 27);
let s = a.get_slice(34, 27).unwrap();
assert_eq!(s.size(), 27);
let s = s.get_slice(20, 5).unwrap();
assert_eq!(s.size(), 5);
}
#[test]
fn slice_overflow_error() {
use std::usize::MAX;
let a = VecMem::new(1);
let res = a.get_slice(MAX, 1).unwrap_err();
assert_eq!(
res,
Error::Overflow {
base: MAX,
offset: 1,
}
);
}
#[test]
fn slice_oob_error() {
let a = VecMem::new(100);
a.get_slice(50, 50).unwrap();
let res = a.get_slice(55, 50).unwrap_err();
assert_eq!(res, Error::OutOfBounds { addr: 105 });
}
#[test]
fn ref_overflow_error() {
use std::usize::MAX;
let a = VecMem::new(1);
let res = a.get_ref::<u8>(MAX).unwrap_err();
assert_eq!(
res,
Error::Overflow {
base: MAX,
offset: 1,
}
);
}
#[test]
fn ref_oob_error() {
let a = VecMem::new(100);
a.get_ref::<u8>(99).unwrap();
let res = a.get_ref::<u16>(99).unwrap_err();
assert_eq!(res, Error::OutOfBounds { addr: 101 });
}
#[test]
fn ref_oob_too_large() {
let a = VecMem::new(3);
let res = a.get_ref::<u32>(0).unwrap_err();
assert_eq!(res, Error::OutOfBounds { addr: 4 });
}
}