blob: 7d16153bd9e3b7d43ad6e448241f6ac7d0c41730 [file] [log] [blame]
// Copyright 2020 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/// The trait Aml can be implemented by the ACPI objects to translate itself
/// into the AML raw data. So that these AML raw data can be added into the
/// ACPI DSDT for guest.
pub trait Aml {
/// Translate an ACPI object into AML code and append to the vector
/// buffer.
/// * `bytes` - The vector used to append the AML code.
fn to_aml_bytes(&self, bytes: &mut Vec<u8>);
}
// AML byte stream defines
const ZEROOP: u8 = 0x00;
const ONEOP: u8 = 0x01;
const NAMEOP: u8 = 0x08;
const BYTEPREFIX: u8 = 0x0a;
const WORDPREFIX: u8 = 0x0b;
const DWORDPREFIX: u8 = 0x0c;
const STRINGOP: u8 = 0x0d;
const QWORDPREFIX: u8 = 0x0e;
const SCOPEOP: u8 = 0x10;
const BUFFEROP: u8 = 0x11;
const PACKAGEOP: u8 = 0x12;
const METHODOP: u8 = 0x14;
const DUALNAMEPREFIX: u8 = 0x2e;
const MULTINAMEPREFIX: u8 = 0x2f;
const NAMECHARBASE: u8 = 0x40;
const EXTOPPREFIX: u8 = 0x5b;
const MUTEXOP: u8 = 0x01;
const ACQUIREOP: u8 = 0x23;
const RELEASEOP: u8 = 0x27;
const OPREGIONOP: u8 = 0x80;
const FIELDOP: u8 = 0x81;
const DEVICEOP: u8 = 0x82;
const LOCAL0OP: u8 = 0x60;
const ARG0OP: u8 = 0x68;
const STOREOP: u8 = 0x70;
const ADDOP: u8 = 0x72;
const CONCATOP: u8 = 0x73;
const SUBTRACTOP: u8 = 0x74;
const MULTIPLYOP: u8 = 0x77;
const SHIFTLEFTOP: u8 = 0x79;
const SHIFTRIGHTOP: u8 = 0x7a;
const ANDOP: u8 = 0x7b;
const NANDOP: u8 = 0x7c;
const OROP: u8 = 0x7d;
const NOROP: u8 = 0x7e;
const XOROP: u8 = 0x7f;
const CONCATRESOP: u8 = 0x84;
const MODOP: u8 = 0x85;
const NOTIFYOP: u8 = 0x86;
const INDEXOP: u8 = 0x88;
const LEQUALOP: u8 = 0x93;
const LLESSOP: u8 = 0x95;
const TOSTRINGOP: u8 = 0x9c;
const IFOP: u8 = 0xa0;
const WHILEOP: u8 = 0xa2;
const RETURNOP: u8 = 0xa4;
const ONESOP: u8 = 0xff;
// AML resouce data fields
const IOPORTDESC: u8 = 0x47;
const ENDTAG: u8 = 0x79;
const MEMORY32FIXEDDESC: u8 = 0x86;
const DWORDADDRSPACEDESC: u8 = 0x87;
const WORDADDRSPACEDESC: u8 = 0x88;
const EXTIRQDESC: u8 = 0x89;
const QWORDADDRSPACEDESC: u8 = 0x8A;
/// Zero object in ASL.
pub const ZERO: Zero = Zero {};
pub struct Zero {}
impl Aml for Zero {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.append(&mut vec![ZEROOP]);
}
}
/// One object in ASL.
pub const ONE: One = One {};
pub struct One {}
impl Aml for One {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.append(&mut vec![ONEOP]);
}
}
/// Ones object represents all bits 1.
pub const ONES: Ones = Ones {};
pub struct Ones {}
impl Aml for Ones {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.append(&mut vec![ONESOP]);
}
}
/// Represents Namestring to construct ACPI objects like
/// Name/Device/Method/Scope and so on...
pub struct Path {
root: bool,
name_parts: Vec<[u8; 4]>,
}
impl Aml for Path {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
if self.root {
bytes.push(b'\\');
}
match self.name_parts.len() {
0 => panic!("Name cannot be empty"),
1 => {}
2 => {
bytes.push(DUALNAMEPREFIX);
}
n => {
bytes.push(MULTINAMEPREFIX);
bytes.push(n as u8);
}
};
for part in self.name_parts.clone().iter_mut() {
bytes.append(&mut part.to_vec());
}
}
}
impl Path {
/// Per ACPI Spec, the Namestring split by "." has 4 bytes long. So any name
/// not has 4 bytes will not be accepted.
pub fn new(name: &str) -> Self {
let root = name.starts_with('\\');
let offset = root as usize;
let mut name_parts = Vec::new();
for part in name[offset..].split('.') {
assert_eq!(part.len(), 4);
let mut name_part = [0u8; 4];
name_part.copy_from_slice(part.as_bytes());
name_parts.push(name_part);
}
Path { root, name_parts }
}
}
impl From<&str> for Path {
fn from(s: &str) -> Self {
Path::new(s)
}
}
pub type Byte = u8;
impl Aml for Byte {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(BYTEPREFIX);
bytes.push(*self);
}
}
pub type Word = u16;
impl Aml for Word {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(WORDPREFIX);
bytes.append(&mut self.to_le_bytes().to_vec());
}
}
pub type DWord = u32;
impl Aml for DWord {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(DWORDPREFIX);
bytes.append(&mut self.to_le_bytes().to_vec());
}
}
pub type QWord = u64;
impl Aml for QWord {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(QWORDPREFIX);
bytes.append(&mut self.to_le_bytes().to_vec());
}
}
/// Name object. bytes represents the raw AML data for it.
pub struct Name {
bytes: Vec<u8>,
}
impl Aml for Name {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.append(&mut self.bytes.clone());
}
}
impl Name {
/// Create Name object:
///
/// * `path` - The namestring.
/// * `inner` - AML objects contained in this namespace.
pub fn new(path: Path, inner: &dyn Aml) -> Self {
let mut bytes = Vec::new();
bytes.push(NAMEOP);
path.to_aml_bytes(&mut bytes);
inner.to_aml_bytes(&mut bytes);
Name { bytes }
}
}
/// Package object. 'children' represents the ACPI objects contained in this package.
pub struct Package<'a> {
children: Vec<&'a dyn Aml>,
}
impl<'a> Aml for Package<'a> {
fn to_aml_bytes(&self, aml: &mut Vec<u8>) {
let mut bytes = Vec::new();
bytes.push(self.children.len() as u8);
for child in &self.children {
child.to_aml_bytes(&mut bytes);
}
let mut pkg_length = create_pkg_length(&bytes, true);
pkg_length.reverse();
for byte in pkg_length {
bytes.insert(0, byte);
}
bytes.insert(0, PACKAGEOP);
aml.append(&mut bytes);
}
}
impl<'a> Package<'a> {
/// Create Package object:
pub fn new(children: Vec<&'a dyn Aml>) -> Self {
Package { children }
}
}
/*
From the ACPI spec for PkgLength:
"The high 2 bits of the first byte reveal how many follow bytes are in the PkgLength. If the
PkgLength has only one byte, bit 0 through 5 are used to encode the package length (in other
words, values 0-63). If the package length value is more than 63, more than one byte must be
used for the encoding in which case bit 4 and 5 of the PkgLeadByte are reserved and must be zero.
If the multiple bytes encoding is used, bits 0-3 of the PkgLeadByte become the least significant 4
bits of the resulting package length value. The next ByteData will become the next least
significant 8 bits of the resulting value and so on, up to 3 ByteData bytes. Thus, the maximum
package length is 2**28."
*/
/* Also used for NamedField but in that case the length is not included in itself */
fn create_pkg_length(data: &[u8], include_self: bool) -> Vec<u8> {
let mut result = Vec::new();
/* PkgLength is inclusive and includes the length bytes */
let length_length = if data.len() < (2usize.pow(6) - 1) {
1
} else if data.len() < (2usize.pow(12) - 2) {
2
} else if data.len() < (2usize.pow(20) - 3) {
3
} else {
4
};
let length = data.len() + if include_self { length_length } else { 0 };
match length_length {
1 => result.push(length as u8),
2 => {
result.push((1u8 << 6) | (length & 0xf) as u8);
result.push((length >> 4) as u8)
}
3 => {
result.push((2u8 << 6) | (length & 0xf) as u8);
result.push((length >> 4) as u8);
result.push((length >> 12) as u8);
}
_ => {
result.push((3u8 << 6) | (length & 0xf) as u8);
result.push((length >> 4) as u8);
result.push((length >> 12) as u8);
result.push((length >> 20) as u8);
}
}
result
}
/// EISAName object. 'value' means the encoded u32 EisaIdString.
pub struct EISAName {
value: DWord,
}
impl EISAName {
/// Per ACPI Spec, the EisaIdString must be a String
/// object of the form UUUNNNN, where U is an uppercase letter
/// and N is a hexadecimal digit. No asterisks or other characters
/// are allowed in the string.
pub fn new(name: &str) -> Self {
assert_eq!(name.len(), 7);
let data = name.as_bytes();
let value: u32 = (u32::from(data[0].checked_sub(NAMECHARBASE).unwrap()) << 26
| u32::from(data[1].checked_sub(NAMECHARBASE).unwrap()) << 21
| u32::from(data[2].checked_sub(NAMECHARBASE).unwrap()) << 16
| name.chars().nth(3).unwrap().to_digit(16).unwrap() << 12
| name.chars().nth(4).unwrap().to_digit(16).unwrap() << 8
| name.chars().nth(5).unwrap().to_digit(16).unwrap() << 4
| name.chars().nth(6).unwrap().to_digit(16).unwrap())
.swap_bytes();
EISAName { value }
}
}
impl Aml for EISAName {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
self.value.to_aml_bytes(bytes);
}
}
fn create_integer(v: usize, bytes: &mut Vec<u8>) {
if v <= u8::max_value().into() {
(v as u8).to_aml_bytes(bytes);
} else if v <= u16::max_value().into() {
(v as u16).to_aml_bytes(bytes);
} else if v <= u32::max_value() as usize {
(v as u32).to_aml_bytes(bytes);
} else {
(v as u64).to_aml_bytes(bytes);
}
}
pub type Usize = usize;
impl Aml for Usize {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
create_integer(*self, bytes);
}
}
fn create_aml_string(v: &str) -> Vec<u8> {
let mut data = Vec::new();
data.push(STRINGOP);
data.extend_from_slice(v.as_bytes());
data.push(0x0); /* NullChar */
data
}
/// implement Aml trait for 'str' so that 'str' can be directly append to the aml vector
pub type AmlStr = &'static str;
impl Aml for AmlStr {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.append(&mut create_aml_string(self));
}
}
/// implement Aml trait for 'String'. So purpose with str.
pub type AmlString = String;
impl Aml for AmlString {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.append(&mut create_aml_string(self));
}
}
/// ResouceTemplate object. 'children' represents the ACPI objects in it.
pub struct ResourceTemplate<'a> {
children: Vec<&'a dyn Aml>,
}
impl<'a> Aml for ResourceTemplate<'a> {
fn to_aml_bytes(&self, aml: &mut Vec<u8>) {
let mut bytes = Vec::new();
// Add buffer data
for child in &self.children {
child.to_aml_bytes(&mut bytes);
}
// Mark with end and mark checksum as as always valid
bytes.push(ENDTAG);
bytes.push(0); /* zero checksum byte */
// Buffer length is an encoded integer including buffer data
// and EndTag and checksum byte
let mut buffer_length = Vec::new();
bytes.len().to_aml_bytes(&mut buffer_length);
buffer_length.reverse();
for byte in buffer_length {
bytes.insert(0, byte);
}
// PkgLength is everything else
let mut pkg_length = create_pkg_length(&bytes, true);
pkg_length.reverse();
for byte in pkg_length {
bytes.insert(0, byte);
}
bytes.insert(0, BUFFEROP);
aml.append(&mut bytes);
}
}
impl<'a> ResourceTemplate<'a> {
/// Create ResouceTemplate object
pub fn new(children: Vec<&'a dyn Aml>) -> Self {
ResourceTemplate { children }
}
}
/// Memory32Fixed object with read_write accessing type, and the base address/length.
pub struct Memory32Fixed {
read_write: bool, /* true for read & write, false for read only */
base: u32,
length: u32,
}
impl Memory32Fixed {
/// Create Memory32Fixed object.
pub fn new(read_write: bool, base: u32, length: u32) -> Self {
Memory32Fixed {
read_write,
base,
length,
}
}
}
impl Aml for Memory32Fixed {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(MEMORY32FIXEDDESC); /* 32bit Fixed Memory Range Descriptor */
bytes.append(&mut 9u16.to_le_bytes().to_vec());
// 9 bytes of payload
bytes.push(self.read_write as u8);
bytes.append(&mut self.base.to_le_bytes().to_vec());
bytes.append(&mut self.length.to_le_bytes().to_vec());
}
}
#[derive(Copy, Clone)]
enum AddressSpaceType {
Memory,
IO,
BusNumber,
}
/// AddressSpaceCachable represent cache types for AddressSpace object
#[derive(Copy, Clone)]
pub enum AddressSpaceCachable {
NotCacheable,
Cacheable,
WriteCombining,
PreFetchable,
}
/// AddressSpace structure with type, resouce range and flags to
/// construct Memory/IO/BusNumber objects
pub struct AddressSpace<T> {
type_: AddressSpaceType,
min: T,
max: T,
type_flags: u8,
}
impl<T> AddressSpace<T> {
/// Create DWordMemory/QWordMemory object
pub fn new_memory(cacheable: AddressSpaceCachable, read_write: bool, min: T, max: T) -> Self {
AddressSpace {
type_: AddressSpaceType::Memory,
min,
max,
type_flags: (cacheable as u8) << 1 | read_write as u8,
}
}
/// Create WordIO/DWordIO/QWordIO object
pub fn new_io(min: T, max: T) -> Self {
AddressSpace {
type_: AddressSpaceType::IO,
min,
max,
type_flags: 3, /* EntireRange */
}
}
/// Create WordBusNumber object
pub fn new_bus_number(min: T, max: T) -> Self {
AddressSpace {
type_: AddressSpaceType::BusNumber,
min,
max,
type_flags: 0,
}
}
fn push_header(&self, bytes: &mut Vec<u8>, descriptor: u8, length: usize) {
bytes.push(descriptor); /* Word Address Space Descriptor */
bytes.append(&mut (length as u16).to_le_bytes().to_vec());
bytes.push(self.type_ as u8); /* type */
let generic_flags = 1 << 2 /* Min Fixed */ | 1 << 3; /* Max Fixed */
bytes.push(generic_flags);
bytes.push(self.type_flags);
}
}
impl Aml for AddressSpace<u16> {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
self.push_header(
bytes,
WORDADDRSPACEDESC, /* Word Address Space Descriptor */
3 + 5 * std::mem::size_of::<u16>(), /* 3 bytes of header + 5 u16 fields */
);
bytes.append(&mut 0u16.to_le_bytes().to_vec()); /* Granularity */
bytes.append(&mut self.min.to_le_bytes().to_vec()); /* Min */
bytes.append(&mut self.max.to_le_bytes().to_vec()); /* Max */
bytes.append(&mut 0u16.to_le_bytes().to_vec()); /* Translation */
let len = self.max - self.min + 1;
bytes.append(&mut len.to_le_bytes().to_vec()); /* Length */
}
}
impl Aml for AddressSpace<u32> {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
self.push_header(
bytes,
DWORDADDRSPACEDESC, /* DWord Address Space Descriptor */
3 + 5 * std::mem::size_of::<u32>(), /* 3 bytes of header + 5 u32 fields */
);
bytes.append(&mut 0u32.to_le_bytes().to_vec()); /* Granularity */
bytes.append(&mut self.min.to_le_bytes().to_vec()); /* Min */
bytes.append(&mut self.max.to_le_bytes().to_vec()); /* Max */
bytes.append(&mut 0u32.to_le_bytes().to_vec()); /* Translation */
let len = self.max - self.min + 1;
bytes.append(&mut len.to_le_bytes().to_vec()); /* Length */
}
}
impl Aml for AddressSpace<u64> {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
self.push_header(
bytes,
QWORDADDRSPACEDESC, /* QWord Address Space Descriptor */
3 + 5 * std::mem::size_of::<u64>(), /* 3 bytes of header + 5 u64 fields */
);
bytes.append(&mut 0u64.to_le_bytes().to_vec()); /* Granularity */
bytes.append(&mut self.min.to_le_bytes().to_vec()); /* Min */
bytes.append(&mut self.max.to_le_bytes().to_vec()); /* Max */
bytes.append(&mut 0u64.to_le_bytes().to_vec()); /* Translation */
let len = self.max - self.min + 1;
bytes.append(&mut len.to_le_bytes().to_vec()); /* Length */
}
}
/// IO resouce object with the IO range, alignment and length
pub struct IO {
min: u16,
max: u16,
alignment: u8,
length: u8,
}
impl IO {
/// Create IO object
pub fn new(min: u16, max: u16, alignment: u8, length: u8) -> Self {
IO {
min,
max,
alignment,
length,
}
}
}
impl Aml for IO {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(IOPORTDESC); /* IO Port Descriptor */
bytes.push(1); /* IODecode16 */
bytes.append(&mut self.min.to_le_bytes().to_vec());
bytes.append(&mut self.max.to_le_bytes().to_vec());
bytes.push(self.alignment);
bytes.push(self.length);
}
}
/// Interrupt resouce object with the interrupt characters.
pub struct Interrupt {
consumer: bool,
edge_triggered: bool,
active_low: bool,
shared: bool,
number: u32,
}
impl Interrupt {
/// Create Interrupt object
pub fn new(
consumer: bool,
edge_triggered: bool,
active_low: bool,
shared: bool,
number: u32,
) -> Self {
Interrupt {
consumer,
edge_triggered,
active_low,
shared,
number,
}
}
}
impl Aml for Interrupt {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(EXTIRQDESC); /* Extended IRQ Descriptor */
bytes.append(&mut 6u16.to_le_bytes().to_vec());
let flags = (self.shared as u8) << 3
| (self.active_low as u8) << 2
| (self.edge_triggered as u8) << 1
| self.consumer as u8;
bytes.push(flags);
bytes.push(1u8); /* count */
bytes.append(&mut self.number.to_le_bytes().to_vec());
}
}
/// Device object with its device name and children objects in it.
pub struct Device<'a> {
path: Path,
children: Vec<&'a dyn Aml>,
}
impl<'a> Aml for Device<'a> {
fn to_aml_bytes(&self, aml: &mut Vec<u8>) {
let mut bytes = Vec::new();
self.path.to_aml_bytes(&mut bytes);
for child in &self.children {
child.to_aml_bytes(&mut bytes);
}
let mut pkg_length = create_pkg_length(&bytes, true);
pkg_length.reverse();
for byte in pkg_length {
bytes.insert(0, byte);
}
bytes.insert(0, DEVICEOP); /* DeviceOp */
bytes.insert(0, EXTOPPREFIX); /* ExtOpPrefix */
aml.append(&mut bytes)
}
}
impl<'a> Device<'a> {
/// Create Device object
pub fn new(path: Path, children: Vec<&'a dyn Aml>) -> Self {
Device { path, children }
}
}
/// Scope object with its name and children objects in it.
pub struct Scope<'a> {
path: Path,
children: Vec<&'a dyn Aml>,
}
impl<'a> Aml for Scope<'a> {
fn to_aml_bytes(&self, aml: &mut Vec<u8>) {
let mut bytes = Vec::new();
self.path.to_aml_bytes(&mut bytes);
for child in &self.children {
child.to_aml_bytes(&mut bytes);
}
let mut pkg_length = create_pkg_length(&bytes, true);
pkg_length.reverse();
for byte in pkg_length {
bytes.insert(0, byte);
}
bytes.insert(0, SCOPEOP);
aml.append(&mut bytes)
}
}
impl<'a> Scope<'a> {
/// Create Scope object
pub fn new(path: Path, children: Vec<&'a dyn Aml>) -> Self {
Scope { path, children }
}
}
/// Method object with its name, children objects, arguments and serialized character.
pub struct Method<'a> {
path: Path,
children: Vec<&'a dyn Aml>,
args: u8,
serialized: bool,
}
impl<'a> Method<'a> {
/// Create Method object.
pub fn new(path: Path, args: u8, serialized: bool, children: Vec<&'a dyn Aml>) -> Self {
Method {
path,
children,
args,
serialized,
}
}
}
impl<'a> Aml for Method<'a> {
fn to_aml_bytes(&self, aml: &mut Vec<u8>) {
let mut bytes = Vec::new();
self.path.to_aml_bytes(&mut bytes);
let flags: u8 = (self.args & 0x7) | (self.serialized as u8) << 3;
bytes.push(flags);
for child in &self.children {
child.to_aml_bytes(&mut bytes);
}
let mut pkg_length = create_pkg_length(&bytes, true);
pkg_length.reverse();
for byte in pkg_length {
bytes.insert(0, byte);
}
bytes.insert(0, METHODOP);
aml.append(&mut bytes)
}
}
/// Return object with its return value.
pub struct Return<'a> {
value: &'a dyn Aml,
}
impl<'a> Return<'a> {
/// Create Return object
pub fn new(value: &'a dyn Aml) -> Self {
Return { value }
}
}
impl<'a> Aml for Return<'a> {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(RETURNOP);
self.value.to_aml_bytes(bytes);
}
}
/// FiledAccessType defines the filed accessing types.
#[derive(Clone, Copy)]
pub enum FieldAccessType {
Any,
Byte,
Word,
DWord,
QWord,
Buffer,
}
/// FiledUpdateRule defines the rules to update the filed.
#[derive(Clone, Copy)]
pub enum FieldUpdateRule {
Preserve = 0,
WriteAsOnes = 1,
WriteAsZeroes = 2,
}
/// FiledEntry defines the filed entry.
pub enum FieldEntry {
Named([u8; 4], usize),
Reserved(usize),
}
/// Field object with the region name, filed entries, access type and update rules.
pub struct Field {
path: Path,
fields: Vec<FieldEntry>,
access_type: FieldAccessType,
update_rule: FieldUpdateRule,
}
impl Field {
/// Create Field object
pub fn new(
path: Path,
access_type: FieldAccessType,
update_rule: FieldUpdateRule,
fields: Vec<FieldEntry>,
) -> Self {
Field {
path,
access_type,
update_rule,
fields,
}
}
}
impl Aml for Field {
fn to_aml_bytes(&self, aml: &mut Vec<u8>) {
let mut bytes = Vec::new();
self.path.to_aml_bytes(&mut bytes);
let flags: u8 = self.access_type as u8 | (self.update_rule as u8) << 5;
bytes.push(flags);
for field in self.fields.iter() {
match field {
FieldEntry::Named(name, length) => {
bytes.extend_from_slice(name);
bytes.append(&mut create_pkg_length(&vec![0; *length], false));
}
FieldEntry::Reserved(length) => {
bytes.push(0x0);
bytes.append(&mut create_pkg_length(&vec![0; *length], false));
}
}
}
let mut pkg_length = create_pkg_length(&bytes, true);
pkg_length.reverse();
for byte in pkg_length {
bytes.insert(0, byte);
}
bytes.insert(0, FIELDOP);
bytes.insert(0, EXTOPPREFIX);
aml.append(&mut bytes)
}
}
/// The space type for OperationRegion object
#[derive(Clone, Copy)]
pub enum OpRegionSpace {
SystemMemory,
SystemIO,
PCIConfig,
EmbeddedControl,
SMBus,
SystemCMOS,
PciBarTarget,
IPMI,
GeneralPurposeIO,
GenericSerialBus,
}
/// OperationRegion object with region name, region space type, its offset and length.
pub struct OpRegion {
path: Path,
space: OpRegionSpace,
offset: usize,
length: usize,
}
impl OpRegion {
/// Create OperationRegion object.
pub fn new(path: Path, space: OpRegionSpace, offset: usize, length: usize) -> Self {
OpRegion {
path,
space,
offset,
length,
}
}
}
impl Aml for OpRegion {
fn to_aml_bytes(&self, aml: &mut Vec<u8>) {
let mut bytes = Vec::new();
self.path.to_aml_bytes(&mut bytes);
bytes.push(self.space as u8);
self.offset.to_aml_bytes(&mut bytes); /* RegionOffset */
self.length.to_aml_bytes(&mut bytes); /* RegionLen */
bytes.insert(0, OPREGIONOP);
bytes.insert(0, EXTOPPREFIX);
aml.append(&mut bytes)
}
}
/// If object with the if condition(predicate) and the body presented by the if_children objects.
pub struct If<'a> {
predicate: &'a dyn Aml,
if_children: Vec<&'a dyn Aml>,
}
impl<'a> If<'a> {
/// Create If object.
pub fn new(predicate: &'a dyn Aml, if_children: Vec<&'a dyn Aml>) -> Self {
If {
predicate,
if_children,
}
}
}
impl<'a> Aml for If<'a> {
fn to_aml_bytes(&self, aml: &mut Vec<u8>) {
let mut bytes = Vec::new();
self.predicate.to_aml_bytes(&mut bytes);
for child in self.if_children.iter() {
child.to_aml_bytes(&mut bytes);
}
let mut pkg_length = create_pkg_length(&bytes, true);
pkg_length.reverse();
for byte in pkg_length {
bytes.insert(0, byte);
}
bytes.insert(0, IFOP);
aml.append(&mut bytes)
}
}
/// Equal object with its right part and left part, which are both ACPI objects.
pub struct Equal<'a> {
right: &'a dyn Aml,
left: &'a dyn Aml,
}
impl<'a> Equal<'a> {
/// Create Equal object.
pub fn new(left: &'a dyn Aml, right: &'a dyn Aml) -> Self {
Equal { left, right }
}
}
impl<'a> Aml for Equal<'a> {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(LEQUALOP);
self.left.to_aml_bytes(bytes);
self.right.to_aml_bytes(bytes);
}
}
/// LessThan object with its right part and left part, which are both ACPI objects.
pub struct LessThan<'a> {
right: &'a dyn Aml,
left: &'a dyn Aml,
}
impl<'a> LessThan<'a> {
/// Create LessThan object.
pub fn new(left: &'a dyn Aml, right: &'a dyn Aml) -> Self {
LessThan { left, right }
}
}
impl<'a> Aml for LessThan<'a> {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(LLESSOP);
self.left.to_aml_bytes(bytes);
self.right.to_aml_bytes(bytes);
}
}
/// Argx object.
pub struct Arg(pub u8);
impl Aml for Arg {
/// Per ACPI spec, there is maximum 7 Argx objects from
/// Arg0 ~ Arg6. Any other Arg object will not be accepted.
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
assert!(self.0 <= 6);
bytes.push(ARG0OP + self.0);
}
}
/// Localx object.
pub struct Local(pub u8);
impl Aml for Local {
/// Per ACPI spec, there is maximum 8 Localx objects from
/// Local0 ~ Local7. Any other Local object will not be accepted.
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
assert!(self.0 <= 7);
bytes.push(LOCAL0OP + self.0);
}
}
/// Store object with the ACPI object name which can be stored to and
/// the ACPI object value which is to store.
pub struct Store<'a> {
name: &'a dyn Aml,
value: &'a dyn Aml,
}
impl<'a> Store<'a> {
/// Create Store object.
pub fn new(name: &'a dyn Aml, value: &'a dyn Aml) -> Self {
Store { name, value }
}
}
impl<'a> Aml for Store<'a> {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(STOREOP);
self.value.to_aml_bytes(bytes);
self.name.to_aml_bytes(bytes);
}
}
/// Mutex object with a mutex name and a synchronization level.
pub struct Mutex {
path: Path,
sync_level: u8,
}
impl Mutex {
/// Create Mutex object.
pub fn new(path: Path, sync_level: u8) -> Self {
Self { path, sync_level }
}
}
impl Aml for Mutex {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(EXTOPPREFIX);
bytes.push(MUTEXOP);
self.path.to_aml_bytes(bytes);
bytes.push(self.sync_level);
}
}
/// Acquire object with a Mutex object and timeout value.
pub struct Acquire {
mutex: Path,
timeout: u16,
}
impl Acquire {
/// Create Acquire object.
pub fn new(mutex: Path, timeout: u16) -> Self {
Acquire { mutex, timeout }
}
}
impl Aml for Acquire {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(EXTOPPREFIX);
bytes.push(ACQUIREOP);
self.mutex.to_aml_bytes(bytes);
bytes.extend_from_slice(&self.timeout.to_le_bytes());
}
}
/// Release object with a Mutex object to release.
pub struct Release {
mutex: Path,
}
impl Release {
/// Create Release object.
pub fn new(mutex: Path) -> Self {
Release { mutex }
}
}
impl Aml for Release {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(EXTOPPREFIX);
bytes.push(RELEASEOP);
self.mutex.to_aml_bytes(bytes);
}
}
/// Notify object with an object which is to be notified with the value.
pub struct Notify<'a> {
object: &'a dyn Aml,
value: &'a dyn Aml,
}
impl<'a> Notify<'a> {
/// Create Notify object.
pub fn new(object: &'a dyn Aml, value: &'a dyn Aml) -> Self {
Notify { object, value }
}
}
impl<'a> Aml for Notify<'a> {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push(NOTIFYOP);
self.object.to_aml_bytes(bytes);
self.value.to_aml_bytes(bytes);
}
}
/// While object with the while condition objects(predicate) and
/// the while body objects(while_children).
pub struct While<'a> {
predicate: &'a dyn Aml,
while_children: Vec<&'a dyn Aml>,
}
impl<'a> While<'a> {
/// Create While object.
pub fn new(predicate: &'a dyn Aml, while_children: Vec<&'a dyn Aml>) -> Self {
While {
predicate,
while_children,
}
}
}
impl<'a> Aml for While<'a> {
fn to_aml_bytes(&self, aml: &mut Vec<u8>) {
let mut bytes = Vec::new();
self.predicate.to_aml_bytes(&mut bytes);
for child in self.while_children.iter() {
child.to_aml_bytes(&mut bytes);
}
let mut pkg_length = create_pkg_length(&bytes, true);
pkg_length.reverse();
for byte in pkg_length {
bytes.insert(0, byte);
}
bytes.insert(0, WHILEOP);
aml.append(&mut bytes)
}
}
macro_rules! binary_op {
($name:ident, $opcode:expr) => {
/// General operation object with the operator a/b and a target.
pub struct $name<'a> {
a: &'a dyn Aml,
b: &'a dyn Aml,
target: &'a dyn Aml,
}
impl<'a> $name<'a> {
/// Create the object.
pub fn new(target: &'a dyn Aml, a: &'a dyn Aml, b: &'a dyn Aml) -> Self {
$name { target, a, b }
}
}
impl<'a> Aml for $name<'a> {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
bytes.push($opcode); /* Op for the binary operator */
self.a.to_aml_bytes(bytes);
self.b.to_aml_bytes(bytes);
self.target.to_aml_bytes(bytes);
}
}
};
}
binary_op!(Add, ADDOP);
binary_op!(Concat, CONCATOP);
binary_op!(Subtract, SUBTRACTOP);
binary_op!(Multiply, MULTIPLYOP);
binary_op!(ShiftLeft, SHIFTLEFTOP);
binary_op!(ShiftRight, SHIFTRIGHTOP);
binary_op!(And, ANDOP);
binary_op!(Nand, NANDOP);
binary_op!(Or, OROP);
binary_op!(Nor, NOROP);
binary_op!(Xor, XOROP);
binary_op!(ConcatRes, CONCATRESOP);
binary_op!(Mod, MODOP);
binary_op!(Index, INDEXOP);
binary_op!(ToString, TOSTRINGOP);
/// MethodCall object with the method name and parameter objects.
pub struct MethodCall<'a> {
name: Path,
args: Vec<&'a dyn Aml>,
}
impl<'a> MethodCall<'a> {
/// Create MethodCall object.
pub fn new(name: Path, args: Vec<&'a dyn Aml>) -> Self {
MethodCall { name, args }
}
}
impl<'a> Aml for MethodCall<'a> {
fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
self.name.to_aml_bytes(bytes);
for arg in self.args.iter() {
arg.to_aml_bytes(bytes);
}
}
}
/// Buffer object with the data in it.
pub struct Buffer {
data: Vec<u8>,
}
impl Buffer {
/// Create Buffer object.
pub fn new(data: Vec<u8>) -> Self {
Buffer { data }
}
}
impl Aml for Buffer {
fn to_aml_bytes(&self, aml: &mut Vec<u8>) {
let mut bytes = Vec::new();
self.data.len().to_aml_bytes(&mut bytes);
bytes.extend_from_slice(&self.data);
let mut pkg_length = create_pkg_length(&bytes, true);
pkg_length.reverse();
for byte in pkg_length {
bytes.insert(0, byte);
}
bytes.insert(0, BUFFEROP);
aml.append(&mut bytes)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_device() {
/*
Device (_SB.COM1)
{
Name (_HID, EisaId ("PNP0501") /* 16550A-compatible COM Serial Port */) // _HID: Hardware ID
Name (_CRS, ResourceTemplate () // _CRS: Current Resource Settings
{
Interrupt (ResourceConsumer, Edge, ActiveHigh, Exclusive, ,, )
{
0x00000004,
}
IO (Decode16,
0x03F8, // Range Minimum
0x03F8, // Range Maximum
0x00, // Alignment
0x08, // Length
)
}
}
*/
let com1_device = [
0x5B, 0x82, 0x30, 0x2E, 0x5F, 0x53, 0x42, 0x5F, 0x43, 0x4F, 0x4D, 0x31, 0x08, 0x5F,
0x48, 0x49, 0x44, 0x0C, 0x41, 0xD0, 0x05, 0x01, 0x08, 0x5F, 0x43, 0x52, 0x53, 0x11,
0x16, 0x0A, 0x13, 0x89, 0x06, 0x00, 0x03, 0x01, 0x04, 0x00, 0x00, 0x00, 0x47, 0x01,
0xF8, 0x03, 0xF8, 0x03, 0x00, 0x08, 0x79, 0x00,
];
let mut aml = Vec::new();
Device::new(
"_SB_.COM1".into(),
vec![
&Name::new("_HID".into(), &EISAName::new("PNP0501")),
&Name::new(
"_CRS".into(),
&ResourceTemplate::new(vec![
&Interrupt::new(true, true, false, false, 4),
&IO::new(0x3f8, 0x3f8, 0, 0x8),
]),
),
],
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &com1_device[..]);
}
#[test]
fn test_scope() {
/*
Scope (_SB.MBRD)
{
Name (_CRS, ResourceTemplate () // _CRS: Current Resource Settings
{
Memory32Fixed (ReadWrite,
0xE8000000, // Address Base
0x10000000, // Address Length
)
})
}
*/
let mbrd_scope = [
0x10, 0x21, 0x2E, 0x5F, 0x53, 0x42, 0x5F, 0x4D, 0x42, 0x52, 0x44, 0x08, 0x5F, 0x43,
0x52, 0x53, 0x11, 0x11, 0x0A, 0x0E, 0x86, 0x09, 0x00, 0x01, 0x00, 0x00, 0x00, 0xE8,
0x00, 0x00, 0x00, 0x10, 0x79, 0x00,
];
let mut aml = Vec::new();
Scope::new(
"_SB_.MBRD".into(),
vec![&Name::new(
"_CRS".into(),
&ResourceTemplate::new(vec![&Memory32Fixed::new(true, 0xE800_0000, 0x1000_0000)]),
)],
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &mbrd_scope[..]);
}
#[test]
fn test_resource_template() {
/*
Name (_CRS, ResourceTemplate () // _CRS: Current Resource Settings
{
Memory32Fixed (ReadWrite,
0xE8000000, // Address Base
0x10000000, // Address Length
)
})
*/
let crs_memory_32_fixed = [
0x08, 0x5F, 0x43, 0x52, 0x53, 0x11, 0x11, 0x0A, 0x0E, 0x86, 0x09, 0x00, 0x01, 0x00,
0x00, 0x00, 0xE8, 0x00, 0x00, 0x00, 0x10, 0x79, 0x00,
];
let mut aml = Vec::new();
Name::new(
"_CRS".into(),
&ResourceTemplate::new(vec![&Memory32Fixed::new(true, 0xE800_0000, 0x1000_0000)]),
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, crs_memory_32_fixed);
/*
Name (_CRS, ResourceTemplate () // _CRS: Current Resource Settings
{
WordBusNumber (ResourceProducer, MinFixed, MaxFixed, PosDecode,
0x0000, // Granularity
0x0000, // Range Minimum
0x00FF, // Range Maximum
0x0000, // Translation Offset
0x0100, // Length
,, )
WordIO (ResourceProducer, MinFixed, MaxFixed, PosDecode, EntireRange,
0x0000, // Granularity
0x0000, // Range Minimum
0x0CF7, // Range Maximum
0x0000, // Translation Offset
0x0CF8, // Length
,, , TypeStatic, DenseTranslation)
WordIO (ResourceProducer, MinFixed, MaxFixed, PosDecode, EntireRange,
0x0000, // Granularity
0x0D00, // Range Minimum
0xFFFF, // Range Maximum
0x0000, // Translation Offset
0xF300, // Length
,, , TypeStatic, DenseTranslation)
DWordMemory (ResourceProducer, PosDecode, MinFixed, MaxFixed, Cacheable, ReadWrite,
0x00000000, // Granularity
0x000A0000, // Range Minimum
0x000BFFFF, // Range Maximum
0x00000000, // Translation Offset
0x00020000, // Length
,, , AddressRangeMemory, TypeStatic)
DWordMemory (ResourceProducer, PosDecode, MinFixed, MaxFixed, NonCacheable, ReadWrite,
0x00000000, // Granularity
0xC0000000, // Range Minimum
0xFEBFFFFF, // Range Maximum
0x00000000, // Translation Offset
0x3EC00000, // Length
,, , AddressRangeMemory, TypeStatic)
QWordMemory (ResourceProducer, PosDecode, MinFixed, MaxFixed, Cacheable, ReadWrite,
0x0000000000000000, // Granularity
0x0000000800000000, // Range Minimum
0x0000000FFFFFFFFF, // Range Maximum
0x0000000000000000, // Translation Offset
0x0000000800000000, // Length
,, , AddressRangeMemory, TypeStatic)
})
*/
// WordBusNumber from above
let crs_word_bus_number = [
0x08, 0x5F, 0x43, 0x52, 0x53, 0x11, 0x15, 0x0A, 0x12, 0x88, 0x0D, 0x00, 0x02, 0x0C,
0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x01, 0x79, 0x00,
];
aml.clear();
Name::new(
"_CRS".into(),
&ResourceTemplate::new(vec![&AddressSpace::new_bus_number(0x0u16, 0xffu16)]),
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &crs_word_bus_number);
// WordIO blocks (x 2) from above
let crs_word_io = [
0x08, 0x5F, 0x43, 0x52, 0x53, 0x11, 0x25, 0x0A, 0x22, 0x88, 0x0D, 0x00, 0x01, 0x0C,
0x03, 0x00, 0x00, 0x00, 0x00, 0xF7, 0x0C, 0x00, 0x00, 0xF8, 0x0C, 0x88, 0x0D, 0x00,
0x01, 0x0C, 0x03, 0x00, 0x00, 0x00, 0x0D, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0xF3, 0x79,
0x00,
];
aml.clear();
Name::new(
"_CRS".into(),
&ResourceTemplate::new(vec![
&AddressSpace::new_io(0x0u16, 0xcf7u16),
&AddressSpace::new_io(0xd00u16, 0xffffu16),
]),
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &crs_word_io[..]);
// DWordMemory blocks (x 2) from above
let crs_dword_memory = [
0x08, 0x5F, 0x43, 0x52, 0x53, 0x11, 0x39, 0x0A, 0x36, 0x87, 0x17, 0x00, 0x00, 0x0C,
0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0A, 0x00, 0xFF, 0xFF, 0x0B, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x87, 0x17, 0x00, 0x00, 0x0C, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0xFF, 0xFF, 0xBF, 0xFE, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xC0, 0x3E, 0x79, 0x00,
];
aml.clear();
Name::new(
"_CRS".into(),
&ResourceTemplate::new(vec![
&AddressSpace::new_memory(
AddressSpaceCachable::Cacheable,
true,
0xa_0000u32,
0xb_ffffu32,
),
&AddressSpace::new_memory(
AddressSpaceCachable::NotCacheable,
true,
0xc000_0000u32,
0xfebf_ffffu32,
),
]),
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &crs_dword_memory[..]);
// QWordMemory from above
let crs_qword_memory = [
0x08, 0x5F, 0x43, 0x52, 0x53, 0x11, 0x33, 0x0A, 0x30, 0x8A, 0x2B, 0x00, 0x00, 0x0C,
0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08,
0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x79,
0x00,
];
aml.clear();
Name::new(
"_CRS".into(),
&ResourceTemplate::new(vec![&AddressSpace::new_memory(
AddressSpaceCachable::Cacheable,
true,
0x8_0000_0000u64,
0xf_ffff_ffffu64,
)]),
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &crs_qword_memory[..]);
/*
Name (_CRS, ResourceTemplate () // _CRS: Current Resource Settings
{
Interrupt (ResourceConsumer, Edge, ActiveHigh, Exclusive, ,, )
{
0x00000004,
}
IO (Decode16,
0x03F8, // Range Minimum
0x03F8, // Range Maximum
0x00, // Alignment
0x08, // Length
)
})
*/
let interrupt_io_data = [
0x08, 0x5F, 0x43, 0x52, 0x53, 0x11, 0x16, 0x0A, 0x13, 0x89, 0x06, 0x00, 0x03, 0x01,
0x04, 0x00, 0x00, 0x00, 0x47, 0x01, 0xF8, 0x03, 0xF8, 0x03, 0x00, 0x08, 0x79, 0x00,
];
aml.clear();
Name::new(
"_CRS".into(),
&ResourceTemplate::new(vec![
&Interrupt::new(true, true, false, false, 4),
&IO::new(0x3f8, 0x3f8, 0, 0x8),
]),
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &interrupt_io_data[..]);
}
#[test]
fn test_pkg_length() {
assert_eq!(create_pkg_length(&[0u8; 62].to_vec(), true), vec![63]);
assert_eq!(
create_pkg_length(&[0u8; 64].to_vec(), true),
vec![1 << 6 | (66 & 0xf), 66 >> 4]
);
assert_eq!(
create_pkg_length(&[0u8; 4096].to_vec(), true),
vec![
2 << 6 | (4099 & 0xf) as u8,
(4099 >> 4) as u8,
(4099 >> 12) as u8
]
);
}
#[test]
fn test_package() {
/*
Name (_S5, Package (0x01) // _S5_: S5 System State
{
0x05
})
*/
let s5_sleep_data = [0x08, 0x5F, 0x53, 0x35, 0x5F, 0x12, 0x04, 0x01, 0x0A, 0x05];
let mut aml = Vec::new();
Name::new("_S5_".into(), &Package::new(vec![&5u8])).to_aml_bytes(&mut aml);
assert_eq!(s5_sleep_data.to_vec(), aml);
}
#[test]
fn test_eisa_name() {
let mut aml = Vec::new();
Name::new("_HID".into(), &EISAName::new("PNP0501")).to_aml_bytes(&mut aml);
assert_eq!(
aml,
[0x08, 0x5F, 0x48, 0x49, 0x44, 0x0C, 0x41, 0xD0, 0x05, 0x01],
)
}
#[test]
fn test_name_path() {
let mut aml = Vec::new();
(&"_SB_".into() as &Path).to_aml_bytes(&mut aml);
assert_eq!(aml, [0x5Fu8, 0x53, 0x42, 0x5F]);
aml.clear();
(&"\\_SB_".into() as &Path).to_aml_bytes(&mut aml);
assert_eq!(aml, [0x5C, 0x5F, 0x53, 0x42, 0x5F]);
aml.clear();
(&"_SB_.COM1".into() as &Path).to_aml_bytes(&mut aml);
assert_eq!(aml, [0x2E, 0x5F, 0x53, 0x42, 0x5F, 0x43, 0x4F, 0x4D, 0x31]);
aml.clear();
(&"_SB_.PCI0._HID".into() as &Path).to_aml_bytes(&mut aml);
assert_eq!(
aml,
[0x2F, 0x03, 0x5F, 0x53, 0x42, 0x5F, 0x50, 0x43, 0x49, 0x30, 0x5F, 0x48, 0x49, 0x44]
);
}
#[test]
fn test_numbers() {
let mut aml = Vec::new();
128u8.to_aml_bytes(&mut aml);
assert_eq!(aml, [0x0a, 0x80]);
aml.clear();
1024u16.to_aml_bytes(&mut aml);
assert_eq!(aml, [0x0b, 0x0, 0x04]);
aml.clear();
(16u32 << 20).to_aml_bytes(&mut aml);
assert_eq!(aml, [0x0c, 0x00, 0x00, 0x0, 0x01]);
aml.clear();
0xdeca_fbad_deca_fbadu64.to_aml_bytes(&mut aml);
assert_eq!(aml, [0x0e, 0xad, 0xfb, 0xca, 0xde, 0xad, 0xfb, 0xca, 0xde]);
}
#[test]
fn test_name() {
let mut aml = Vec::new();
Name::new("_SB_.PCI0._UID".into(), &0x1234u16).to_aml_bytes(&mut aml);
assert_eq!(
aml,
[
0x08, /* NameOp */
0x2F, /* MultiNamePrefix */
0x03, /* 3 name parts */
0x5F, 0x53, 0x42, 0x5F, /* _SB_ */
0x50, 0x43, 0x49, 0x30, /* PCI0 */
0x5F, 0x55, 0x49, 0x44, /* _UID */
0x0b, /* WordPrefix */
0x34, 0x12
]
);
}
#[test]
fn test_string() {
let mut aml = Vec::new();
(&"ACPI" as &dyn Aml).to_aml_bytes(&mut aml);
assert_eq!(aml, [0x0d, b'A', b'C', b'P', b'I', 0]);
aml.clear();
"ACPI".to_owned().to_aml_bytes(&mut aml);
assert_eq!(aml, [0x0d, b'A', b'C', b'P', b'I', 0]);
}
#[test]
fn test_method() {
let mut aml = Vec::new();
Method::new("_STA".into(), 0, false, vec![&Return::new(&0xfu8)]).to_aml_bytes(&mut aml);
assert_eq!(
aml,
[0x14, 0x09, 0x5F, 0x53, 0x54, 0x41, 0x00, 0xA4, 0x0A, 0x0F]
);
}
#[test]
fn test_field() {
/*
Field (PRST, ByteAcc, NoLock, WriteAsZeros)
{
Offset (0x04),
CPEN, 1,
CINS, 1,
CRMV, 1,
CEJ0, 1,
Offset (0x05),
CCMD, 8
}
*/
let field_data = [
0x5Bu8, 0x81, 0x23, 0x50, 0x52, 0x53, 0x54, 0x41, 0x00, 0x20, 0x43, 0x50, 0x45, 0x4E,
0x01, 0x43, 0x49, 0x4E, 0x53, 0x01, 0x43, 0x52, 0x4D, 0x56, 0x01, 0x43, 0x45, 0x4A,
0x30, 0x01, 0x00, 0x04, 0x43, 0x43, 0x4D, 0x44, 0x08,
];
let mut aml = Vec::new();
Field::new(
"PRST".into(),
FieldAccessType::Byte,
FieldUpdateRule::WriteAsZeroes,
vec![
FieldEntry::Reserved(32),
FieldEntry::Named(*b"CPEN", 1),
FieldEntry::Named(*b"CINS", 1),
FieldEntry::Named(*b"CRMV", 1),
FieldEntry::Named(*b"CEJ0", 1),
FieldEntry::Reserved(4),
FieldEntry::Named(*b"CCMD", 8),
],
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &field_data[..]);
/*
Field (PRST, DWordAcc, NoLock, Preserve)
{
CSEL, 32,
Offset (0x08),
CDAT, 32
}
*/
let field_data = [
0x5Bu8, 0x81, 0x12, 0x50, 0x52, 0x53, 0x54, 0x03, 0x43, 0x53, 0x45, 0x4C, 0x20, 0x00,
0x20, 0x43, 0x44, 0x41, 0x54, 0x20,
];
aml.clear();
Field::new(
"PRST".into(),
FieldAccessType::DWord,
FieldUpdateRule::Preserve,
vec![
FieldEntry::Named(*b"CSEL", 32),
FieldEntry::Reserved(32),
FieldEntry::Named(*b"CDAT", 32),
],
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &field_data[..]);
}
#[test]
fn test_op_region() {
/*
OperationRegion (PRST, SystemIO, 0x0CD8, 0x0C)
*/
let op_region_data = [
0x5Bu8, 0x80, 0x50, 0x52, 0x53, 0x54, 0x01, 0x0B, 0xD8, 0x0C, 0x0A, 0x0C,
];
let mut aml = Vec::new();
OpRegion::new("PRST".into(), OpRegionSpace::SystemIO, 0xcd8, 0xc).to_aml_bytes(&mut aml);
assert_eq!(aml, &op_region_data[..]);
}
#[test]
fn test_arg_if() {
/*
Method(TEST, 1, NotSerialized) {
If (Arg0 == Zero) {
Return(One)
}
Return(Zero)
}
*/
let arg_if_data = [
0x14, 0x0F, 0x54, 0x45, 0x53, 0x54, 0x01, 0xA0, 0x06, 0x93, 0x68, 0x00, 0xA4, 0x01,
0xA4, 0x00,
];
let mut aml = Vec::new();
Method::new(
"TEST".into(),
1,
false,
vec![
&If::new(&Equal::new(&Arg(0), &ZERO), vec![&Return::new(&ONE)]),
&Return::new(&ZERO),
],
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &arg_if_data);
}
#[test]
fn test_local_if() {
/*
Method(TEST, 0, NotSerialized) {
Local0 = One
If (Local0 == Zero) {
Return(One)
}
Return(Zero)
}
*/
let local_if_data = [
0x14, 0x12, 0x54, 0x45, 0x53, 0x54, 0x00, 0x70, 0x01, 0x60, 0xA0, 0x06, 0x93, 0x60,
0x00, 0xA4, 0x01, 0xA4, 0x00,
];
let mut aml = Vec::new();
Method::new(
"TEST".into(),
0,
false,
vec![
&Store::new(&Local(0), &ONE),
&If::new(&Equal::new(&Local(0), &ZERO), vec![&Return::new(&ONE)]),
&Return::new(&ZERO),
],
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &local_if_data);
}
#[test]
fn test_mutex() {
/*
Device (_SB_.MHPC)
{
Name (_HID, EisaId("PNP0A06") /* Generic Container Device */) // _HID: Hardware ID
Mutex (MLCK, 0x00)
Method (TEST, 0, NotSerialized)
{
Acquire (MLCK, 0xFFFF)
Local0 = One
Release (MLCK)
}
}
*/
let mutex_data = [
0x5B, 0x82, 0x33, 0x2E, 0x5F, 0x53, 0x42, 0x5F, 0x4D, 0x48, 0x50, 0x43, 0x08, 0x5F,
0x48, 0x49, 0x44, 0x0C, 0x41, 0xD0, 0x0A, 0x06, 0x5B, 0x01, 0x4D, 0x4C, 0x43, 0x4B,
0x00, 0x14, 0x17, 0x54, 0x45, 0x53, 0x54, 0x00, 0x5B, 0x23, 0x4D, 0x4C, 0x43, 0x4B,
0xFF, 0xFF, 0x70, 0x01, 0x60, 0x5B, 0x27, 0x4D, 0x4C, 0x43, 0x4B,
];
let mut aml = Vec::new();
let mutex = Mutex::new("MLCK".into(), 0);
Device::new(
"_SB_.MHPC".into(),
vec![
&Name::new("_HID".into(), &EISAName::new("PNP0A06")),
&mutex,
&Method::new(
"TEST".into(),
0,
false,
vec![
&Acquire::new("MLCK".into(), 0xffff),
&Store::new(&Local(0), &ONE),
&Release::new("MLCK".into()),
],
),
],
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &mutex_data[..]);
}
#[test]
fn test_notify() {
/*
Device (_SB.MHPC)
{
Name (_HID, EisaId ("PNP0A06") /* Generic Container Device */) // _HID: Hardware ID
Method (TEST, 0, NotSerialized)
{
Notify (MHPC, One) // Device Check
}
}
*/
let notify_data = [
0x5B, 0x82, 0x21, 0x2E, 0x5F, 0x53, 0x42, 0x5F, 0x4D, 0x48, 0x50, 0x43, 0x08, 0x5F,
0x48, 0x49, 0x44, 0x0C, 0x41, 0xD0, 0x0A, 0x06, 0x14, 0x0C, 0x54, 0x45, 0x53, 0x54,
0x00, 0x86, 0x4D, 0x48, 0x50, 0x43, 0x01,
];
let mut aml = Vec::new();
Device::new(
"_SB_.MHPC".into(),
vec![
&Name::new("_HID".into(), &EISAName::new("PNP0A06")),
&Method::new(
"TEST".into(),
0,
false,
vec![&Notify::new(&Path::new("MHPC"), &ONE)],
),
],
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &notify_data[..]);
}
#[test]
fn test_while() {
/*
Device (_SB.MHPC)
{
Name (_HID, EisaId ("PNP0A06") /* Generic Container Device */) // _HID: Hardware ID
Method (TEST, 0, NotSerialized)
{
Local0 = Zero
While ((Local0 < 0x04))
{
Local0 += One
}
}
}
*/
let while_data = [
0x5B, 0x82, 0x28, 0x2E, 0x5F, 0x53, 0x42, 0x5F, 0x4D, 0x48, 0x50, 0x43, 0x08, 0x5F,
0x48, 0x49, 0x44, 0x0C, 0x41, 0xD0, 0x0A, 0x06, 0x14, 0x13, 0x54, 0x45, 0x53, 0x54,
0x00, 0x70, 0x00, 0x60, 0xA2, 0x09, 0x95, 0x60, 0x0A, 0x04, 0x72, 0x60, 0x01, 0x60,
];
let mut aml = Vec::new();
Device::new(
"_SB_.MHPC".into(),
vec![
&Name::new("_HID".into(), &EISAName::new("PNP0A06")),
&Method::new(
"TEST".into(),
0,
false,
vec![
&Store::new(&Local(0), &ZERO),
&While::new(
&LessThan::new(&Local(0), &4usize),
vec![&Add::new(&Local(0), &Local(0), &ONE)],
),
],
),
],
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &while_data[..])
}
#[test]
fn test_method_call() {
/*
Method (TST1, 1, NotSerialized)
{
TST2 (One, One)
}
Method (TST2, 2, NotSerialized)
{
TST1 (One)
}
*/
let test_data = [
0x14, 0x0C, 0x54, 0x53, 0x54, 0x31, 0x01, 0x54, 0x53, 0x54, 0x32, 0x01, 0x01, 0x14,
0x0B, 0x54, 0x53, 0x54, 0x32, 0x02, 0x54, 0x53, 0x54, 0x31, 0x01,
];
let mut methods = Vec::new();
Method::new(
"TST1".into(),
1,
false,
vec![&MethodCall::new("TST2".into(), vec![&ONE, &ONE])],
)
.to_aml_bytes(&mut methods);
Method::new(
"TST2".into(),
2,
false,
vec![&MethodCall::new("TST1".into(), vec![&ONE])],
)
.to_aml_bytes(&mut methods);
assert_eq!(&methods[..], &test_data[..])
}
#[test]
fn test_buffer() {
/*
Name (_MAT, Buffer (0x08) // _MAT: Multiple APIC Table Entry
{
0x00, 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 /* ........ */
})
*/
let buffer_data = [
0x08, 0x5F, 0x4D, 0x41, 0x54, 0x11, 0x0B, 0x0A, 0x08, 0x00, 0x08, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00,
];
let mut aml = Vec::new();
Name::new(
"_MAT".into(),
&Buffer::new(vec![0x00, 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00]),
)
.to_aml_bytes(&mut aml);
assert_eq!(aml, &buffer_data[..])
}
}