blob: cc6ed0f1323610d662aef540bf5a84abf9d49764 [file] [log] [blame]
// Copyright 2020 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file makes several casts from u8 pointers into more-aligned pointer types.
// We assume that the kernel will give us suitably aligned memory.
#![allow(clippy::cast_ptr_alignment)]
use std::collections::BTreeMap;
use std::fmt;
use std::fs::File;
use std::os::unix::io::{AsRawFd, FromRawFd, RawFd};
use std::pin::Pin;
use std::ptr::null_mut;
use std::sync::atomic::{AtomicU32, Ordering};
use base::{MappedRegion, MemoryMapping, MemoryMappingBuilder, WatchingEvents};
use crate::bindings::*;
use crate::syscalls::*;
/// Holds per-operation, user specified data. The usage is up to the caller. The most common use is
/// for callers to identify each request.
pub type UserData = u64;
#[derive(Debug)]
pub enum Error {
/// The call to `io_uring_enter` failed with the given errno.
RingEnter(libc::c_int),
/// The call to `io_uring_setup` failed with the given errno.
Setup(libc::c_int),
/// Failed to map the completion ring.
MappingCompleteRing(base::MmapError),
/// Failed to map the submit ring.
MappingSubmitRing(base::MmapError),
/// Failed to map submit entries.
MappingSubmitEntries(base::MmapError),
/// Too many ops are already queued.
NoSpace,
}
pub type Result<T> = std::result::Result<T, Error>;
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::Error::*;
match self {
RingEnter(e) => write!(f, "Failed to enter io uring {}", e),
Setup(e) => write!(f, "Failed to setup io uring {}", e),
MappingCompleteRing(e) => write!(f, "Failed to mmap completion ring {}", e),
MappingSubmitRing(e) => write!(f, "Failed to mmap submit ring {}", e),
MappingSubmitEntries(e) => write!(f, "Failed to mmap submit entries {}", e),
NoSpace => write!(
f,
"No space for more ring entries, try increasing the size passed to `new`",
),
}
}
}
/// Basic statistics about the operations that have been submitted to the uring.
#[derive(Default)]
pub struct URingStats {
total_enter_calls: u64, // Number of times the uring has been entered.
total_ops: u64, // Total ops submitted to io_uring.
total_complete: u64, // Total ops completed by io_uring.
}
/// Unsafe wrapper for the kernel's io_uring interface. Allows for queueing multiple I/O operations
/// to the kernel and asynchronously handling the completion of these operations.
/// Use the various `add_*` functions to configure operations, then call `wait` to start
/// the operations and get any completed results. Each op is given a u64 user_data argument that is
/// used to identify the result when returned in the iterator provided by `wait`.
///
/// # Example polling an FD for readable status.
///
/// ```
/// # use std::fs::File;
/// # use std::os::unix::io::AsRawFd;
/// # use std::path::Path;
/// # use base::WatchingEvents;
/// # use io_uring::URingContext;
/// let f = File::open(Path::new("/dev/zero")).unwrap();
/// let mut uring = URingContext::new(16).unwrap();
/// uring
/// .add_poll_fd(f.as_raw_fd(), &WatchingEvents::empty().set_read(), 454)
/// .unwrap();
/// let (user_data, res) = uring.wait().unwrap().next().unwrap();
/// assert_eq!(user_data, 454 as io_uring::UserData);
/// assert_eq!(res.unwrap(), 1 as u32);
///
/// ```
pub struct URingContext {
ring_file: File, // Holds the io_uring context FD returned from io_uring_setup.
submit_ring: SubmitQueueState,
submit_queue_entries: SubmitQueueEntries,
complete_ring: CompleteQueueState,
io_vecs: Pin<Box<[libc::iovec]>>,
in_flight: usize, // The number of pending operations.
added: usize, // The number of ops added since the last call to `io_uring_enter`.
num_sqes: usize, // The total number of sqes allocated in shared memory.
stats: URingStats,
}
impl URingContext {
/// Creates a `URingContext` where the underlying uring has a space for `num_entries`
/// simultaneous operations.
pub fn new(num_entries: usize) -> Result<URingContext> {
let ring_params = io_uring_params::default();
// The below unsafe block isolates the creation of the URingContext. Each step on it's own
// is unsafe. Using the uring FD for the mapping and the offsets returned by the kernel for
// base addresses maintains safety guarantees assuming the kernel API guarantees are
// trusted.
unsafe {
// Safe because the kernel is trusted to only modify params and `File` is created with
// an FD that it takes complete ownership of.
let fd = io_uring_setup(num_entries, &ring_params).map_err(Error::Setup)?;
let ring_file = File::from_raw_fd(fd);
// Mmap the submit and completion queues.
// Safe because we trust the kernel to set valid sizes in `io_uring_setup` and any error
// is checked.
let submit_ring = SubmitQueueState::new(
MemoryMappingBuilder::new(
ring_params.sq_off.array as usize
+ ring_params.sq_entries as usize * std::mem::size_of::<u32>(),
)
.from_descriptor(&ring_file)
.offset(u64::from(IORING_OFF_SQ_RING))
.populate()
.build()
.map_err(Error::MappingSubmitRing)?,
&ring_params,
);
let num_sqe = ring_params.sq_entries as usize;
let submit_queue_entries = SubmitQueueEntries {
mmap: MemoryMappingBuilder::new(
ring_params.sq_entries as usize * std::mem::size_of::<io_uring_sqe>(),
)
.from_descriptor(&ring_file)
.offset(u64::from(IORING_OFF_SQES))
.populate()
.build()
.map_err(Error::MappingSubmitEntries)?,
len: num_sqe,
};
let complete_ring = CompleteQueueState::new(
MemoryMappingBuilder::new(
ring_params.cq_off.cqes as usize
+ ring_params.cq_entries as usize * std::mem::size_of::<io_uring_cqe>(),
)
.from_descriptor(&ring_file)
.offset(u64::from(IORING_OFF_CQ_RING))
.populate()
.build()
.map_err(Error::MappingCompleteRing)?,
&ring_params,
);
Ok(URingContext {
ring_file,
submit_ring,
submit_queue_entries,
complete_ring,
io_vecs: Pin::from(
vec![
libc::iovec {
iov_base: null_mut(),
iov_len: 0
};
num_sqe
]
.into_boxed_slice(),
),
added: 0,
num_sqes: ring_params.sq_entries as usize,
in_flight: 0,
stats: Default::default(),
})
}
}
// Call `f` with the next available sqe or return an error if none are available.
// After `f` returns, the sqe is appended to the kernel's queue.
fn prep_next_sqe<F>(&mut self, mut f: F) -> Result<()>
where
F: FnMut(&mut io_uring_sqe, &mut libc::iovec),
{
if self.added == self.num_sqes {
return Err(Error::NoSpace);
}
// Find the next free submission entry in the submit ring and fill it with an iovec.
// The below raw pointer derefs are safe because the memory the pointers use lives as long
// as the mmap in self.
let tail = self.submit_ring.pointers.tail(Ordering::Relaxed);
let next_tail = tail.wrapping_add(1);
if next_tail == self.submit_ring.pointers.head(Ordering::Acquire) {
return Err(Error::NoSpace);
}
// `tail` is the next sqe to use.
let index = (tail & self.submit_ring.ring_mask) as usize;
let sqe = self.submit_queue_entries.get_mut(index).unwrap();
f(sqe, &mut self.io_vecs[index]);
// Tells the kernel to use the new index when processing the entry at that index.
self.submit_ring.set_array_entry(index, index as u32);
// Ensure the above writes to sqe are seen before the tail is updated.
// set_tail uses Release ordering when storing to the ring.
self.submit_ring.pointers.set_tail(next_tail);
self.added += 1;
Ok(())
}
unsafe fn add_rw_op(
&mut self,
ptr: *const u8,
len: usize,
fd: RawFd,
offset: u64,
user_data: UserData,
op: u8,
) -> Result<()> {
self.prep_next_sqe(|sqe, iovec| {
iovec.iov_base = ptr as *const libc::c_void as *mut _;
iovec.iov_len = len;
sqe.opcode = op;
sqe.addr = iovec as *const _ as *const libc::c_void as u64;
sqe.len = 1;
sqe.__bindgen_anon_1.off = offset;
sqe.__bindgen_anon_3.__bindgen_anon_1.buf_index = 0;
sqe.ioprio = 0;
sqe.user_data = user_data;
sqe.flags = 0;
sqe.fd = fd;
})?;
Ok(())
}
/// Asynchronously writes to `fd` from the address given in `ptr`.
/// # Safety
/// `add_write` will write up to `len` bytes of data from the address given by `ptr`. This is
/// only safe if the caller guarantees that the memory lives until the transaction is complete
/// and that completion has been returned from the `wait` function. In addition there must not
/// be other references to the data pointed to by `ptr` until the operation completes. Ensure
/// that the fd remains open until the op completes as well.
pub unsafe fn add_write(
&mut self,
ptr: *const u8,
len: usize,
fd: RawFd,
offset: u64,
user_data: UserData,
) -> Result<()> {
self.add_rw_op(ptr, len, fd, offset, user_data, IORING_OP_WRITEV as u8)
}
/// Asynchronously reads from `fd` to the address given in `ptr`.
/// # Safety
/// `add_read` will write up to `len` bytes of data to the address given by `ptr`. This is only
/// safe if the caller guarantees there are no other references to that memory and that the
/// memory lives until the transaction is complete and that completion has been returned from
/// the `wait` function. In addition there must not be any mutable references to the data
/// pointed to by `ptr` until the operation completes. Ensure that the fd remains open until
/// the op completes as well.
pub unsafe fn add_read(
&mut self,
ptr: *mut u8,
len: usize,
fd: RawFd,
offset: u64,
user_data: UserData,
) -> Result<()> {
self.add_rw_op(ptr, len, fd, offset, user_data, IORING_OP_READV as u8)
}
/// See 'writev' but accepts an iterator instead of a vector if there isn't already a vector in
/// existence.
pub unsafe fn add_writev_iter<I>(
&mut self,
iovecs: I,
fd: RawFd,
offset: u64,
user_data: UserData,
) -> Result<()>
where
I: Iterator<Item = libc::iovec>,
{
self.add_writev(
Pin::from(iovecs.collect::<Vec<_>>().into_boxed_slice()),
fd,
offset,
user_data,
)
}
/// Asynchronously writes to `fd` from the addresses given in `iovecs`.
/// # Safety
/// `add_writev` will write to the address given by `iovecs`. This is only safe if the caller
/// guarantees there are no other references to that memory and that the memory lives until the
/// transaction is complete and that completion has been returned from the `wait` function. In
/// addition there must not be any mutable references to the data pointed to by `iovecs` until
/// the operation completes. Ensure that the fd remains open until the op completes as well.
/// The iovecs reference must be kept alive until the op returns.
pub unsafe fn add_writev(
&mut self,
iovecs: Pin<Box<[libc::iovec]>>,
fd: RawFd,
offset: u64,
user_data: UserData,
) -> Result<()> {
self.prep_next_sqe(|sqe, _iovec| {
sqe.opcode = IORING_OP_WRITEV as u8;
sqe.addr = iovecs.as_ptr() as *const _ as *const libc::c_void as u64;
sqe.len = iovecs.len() as u32;
sqe.__bindgen_anon_1.off = offset;
sqe.__bindgen_anon_3.__bindgen_anon_1.buf_index = 0;
sqe.ioprio = 0;
sqe.user_data = user_data;
sqe.flags = 0;
sqe.fd = fd;
})?;
self.complete_ring.add_op_data(user_data, iovecs);
Ok(())
}
/// See 'readv' but accepts an iterator instead of a vector if there isn't already a vector in
/// existence.
pub unsafe fn add_readv_iter<I>(
&mut self,
iovecs: I,
fd: RawFd,
offset: u64,
user_data: UserData,
) -> Result<()>
where
I: Iterator<Item = libc::iovec>,
{
self.add_readv(
Pin::from(iovecs.collect::<Vec<_>>().into_boxed_slice()),
fd,
offset,
user_data,
)
}
/// Asynchronously reads from `fd` to the addresses given in `iovecs`.
/// # Safety
/// `add_readv` will write to the address given by `iovecs`. This is only safe if the caller
/// guarantees there are no other references to that memory and that the memory lives until the
/// transaction is complete and that completion has been returned from the `wait` function. In
/// addition there must not be any references to the data pointed to by `iovecs` until the
/// operation completes. Ensure that the fd remains open until the op completes as well.
/// The iovecs reference must be kept alive until the op returns.
pub unsafe fn add_readv(
&mut self,
iovecs: Pin<Box<[libc::iovec]>>,
fd: RawFd,
offset: u64,
user_data: UserData,
) -> Result<()> {
self.prep_next_sqe(|sqe, _iovec| {
sqe.opcode = IORING_OP_READV as u8;
sqe.addr = iovecs.as_ptr() as *const _ as *const libc::c_void as u64;
sqe.len = iovecs.len() as u32;
sqe.__bindgen_anon_1.off = offset;
sqe.__bindgen_anon_3.__bindgen_anon_1.buf_index = 0;
sqe.ioprio = 0;
sqe.user_data = user_data;
sqe.flags = 0;
sqe.fd = fd;
})?;
self.complete_ring.add_op_data(user_data, iovecs);
Ok(())
}
/// Syncs all completed operations, the ordering with in-flight async ops is not
/// defined.
pub fn add_fsync(&mut self, fd: RawFd, user_data: UserData) -> Result<()> {
self.prep_next_sqe(|sqe, _iovec| {
sqe.opcode = IORING_OP_FSYNC as u8;
sqe.fd = fd;
sqe.user_data = user_data;
sqe.addr = 0;
sqe.len = 0;
sqe.__bindgen_anon_1.off = 0;
sqe.__bindgen_anon_3.__bindgen_anon_1.buf_index = 0;
sqe.__bindgen_anon_2.rw_flags = 0;
sqe.ioprio = 0;
sqe.flags = 0;
})
}
/// See the usage of `fallocate`, this asynchronously performs the same operations.
pub fn add_fallocate(
&mut self,
fd: RawFd,
offset: u64,
len: u64,
mode: u32,
user_data: UserData,
) -> Result<()> {
// Note that len for fallocate in passed in the addr field of the sqe and the mode uses the
// len field.
self.prep_next_sqe(|sqe, _iovec| {
sqe.opcode = IORING_OP_FALLOCATE as u8;
sqe.fd = fd;
sqe.addr = len;
sqe.len = mode;
sqe.__bindgen_anon_1.off = offset;
sqe.user_data = user_data;
sqe.__bindgen_anon_3.__bindgen_anon_1.buf_index = 0;
sqe.__bindgen_anon_2.rw_flags = 0;
sqe.ioprio = 0;
sqe.flags = 0;
})
}
/// Adds an FD to be polled based on the given flags.
/// The user must keep the FD open until the operation completion is returned from
/// `wait`.
/// Note that io_uring is always a one shot poll. After the fd is returned, it must be re-added
/// to get future events.
pub fn add_poll_fd(
&mut self,
fd: RawFd,
events: &WatchingEvents,
user_data: UserData,
) -> Result<()> {
self.prep_next_sqe(|sqe, _iovec| {
sqe.opcode = IORING_OP_POLL_ADD as u8;
sqe.fd = fd;
sqe.user_data = user_data;
sqe.__bindgen_anon_2.poll_events = events.get_raw() as u16;
sqe.addr = 0;
sqe.len = 0;
sqe.__bindgen_anon_1.off = 0;
sqe.__bindgen_anon_3.__bindgen_anon_1.buf_index = 0;
sqe.ioprio = 0;
sqe.flags = 0;
})
}
/// Removes an FD that was previously added with `add_poll_fd`.
pub fn remove_poll_fd(
&mut self,
fd: RawFd,
events: &WatchingEvents,
user_data: UserData,
) -> Result<()> {
self.prep_next_sqe(|sqe, _iovec| {
sqe.opcode = IORING_OP_POLL_REMOVE as u8;
sqe.fd = fd;
sqe.user_data = user_data;
sqe.__bindgen_anon_2.poll_events = events.get_raw() as u16;
sqe.addr = 0;
sqe.len = 0;
sqe.__bindgen_anon_1.off = 0;
sqe.__bindgen_anon_3.__bindgen_anon_1.buf_index = 0;
sqe.ioprio = 0;
sqe.flags = 0;
})
}
/// Sends operations added with the `add_*` functions to the kernel.
pub fn submit(&mut self) -> Result<()> {
self.in_flight += self.added;
self.stats.total_ops = self.stats.total_ops.wrapping_add(self.added as u64);
if self.added > 0 {
self.stats.total_enter_calls = self.stats.total_enter_calls.wrapping_add(1);
unsafe {
// Safe because the only memory modified is in the completion queue.
io_uring_enter(self.ring_file.as_raw_fd(), self.added as u64, 0, 0)
.map_err(Error::RingEnter)?;
}
}
self.added = 0;
Ok(())
}
/// Sends operations added with the `add_*` functions to the kernel and return an iterator to any
/// completed operations. `wait` blocks until at least one completion is ready. If called
/// without any new events added, this simply waits for any existing events to complete and
/// returns as soon an one or more is ready.
pub fn wait<'a>(
&'a mut self,
) -> Result<impl Iterator<Item = (UserData, std::io::Result<u32>)> + 'a> {
let completed = self.complete_ring.num_completed();
self.stats.total_complete = self.stats.total_complete.wrapping_add(completed as u64);
self.in_flight -= completed;
self.stats.total_ops = self.stats.total_ops.wrapping_add(self.added as u64);
if self.in_flight > 0 || self.added > 0 {
unsafe {
self.stats.total_enter_calls = self.stats.total_enter_calls.wrapping_add(1);
// Safe because the only memory modified is in the completion queue.
let ret = io_uring_enter(
self.ring_file.as_raw_fd(),
self.added as u64,
1,
IORING_ENTER_GETEVENTS,
);
match ret {
Ok(_) => {
self.in_flight += self.added;
self.added = 0;
}
Err(e) => {
if e != libc::EBUSY {
return Err(Error::RingEnter(e));
}
// An ebusy return means that some completed events must be processed before
// submitting more, wait for some to finish without pushing the new sqes in
// that case.
io_uring_enter(self.ring_file.as_raw_fd(), 0, 1, IORING_ENTER_GETEVENTS)
.map_err(Error::RingEnter)?;
}
}
}
}
// The CompletionQueue will iterate all completed ops.
Ok(&mut self.complete_ring)
}
}
impl AsRawFd for URingContext {
fn as_raw_fd(&self) -> RawFd {
self.ring_file.as_raw_fd()
}
}
struct SubmitQueueEntries {
mmap: MemoryMapping,
len: usize,
}
impl SubmitQueueEntries {
fn get_mut(&mut self, index: usize) -> Option<&mut io_uring_sqe> {
if index >= self.len {
return None;
}
let mut_ref = unsafe {
// Safe because the mut borrow of self resticts to one mutable reference at a time and
// we trust that the kernel has returned enough memory in io_uring_setup and mmap.
&mut *(self.mmap.as_ptr() as *mut io_uring_sqe).add(index)
};
// Clear any state.
*mut_ref = io_uring_sqe::default();
Some(mut_ref)
}
}
struct SubmitQueueState {
_mmap: MemoryMapping,
pointers: QueuePointers,
ring_mask: u32,
array: *mut u32,
}
impl SubmitQueueState {
// # Safety
// Safe iff `mmap` is created by mapping from a uring FD at the SQ_RING offset and params is
// the params struct passed to io_uring_setup.
unsafe fn new(mmap: MemoryMapping, params: &io_uring_params) -> SubmitQueueState {
let ptr = mmap.as_ptr();
// Transmutes are safe because a u32 is atomic on all supported architectures and the
// pointer will live until after self is dropped because the mmap is owned.
let head = ptr.add(params.sq_off.head as usize) as *const AtomicU32;
let tail = ptr.add(params.sq_off.tail as usize) as *const AtomicU32;
// This offset is guaranteed to be within the mmap so unwrap the result.
let ring_mask = mmap.read_obj(params.sq_off.ring_mask as usize).unwrap();
let array = ptr.add(params.sq_off.array as usize) as *mut u32;
SubmitQueueState {
_mmap: mmap,
pointers: QueuePointers { head, tail },
ring_mask,
array,
}
}
// Sets the kernel's array entry at the given `index` to `value`.
fn set_array_entry(&self, index: usize, value: u32) {
// Safe because self being constructed from the correct mmap guaratees that the memory is
// valid to written.
unsafe {
std::ptr::write_volatile(self.array.add(index), value as u32);
}
}
}
struct CompleteQueueState {
mmap: MemoryMapping,
pointers: QueuePointers,
ring_mask: u32,
cqes_offset: u32,
completed: usize,
//For ops that pass in arrays of iovecs, they need to be valid for the duration of the
//operation because the kernel might read them at any time.
pending_op_addrs: BTreeMap<UserData, Pin<Box<[libc::iovec]>>>,
}
impl CompleteQueueState {
/// # Safety
/// Safe iff `mmap` is created by mapping from a uring FD at the CQ_RING offset and params is
/// the params struct passed to io_uring_setup.
unsafe fn new(mmap: MemoryMapping, params: &io_uring_params) -> CompleteQueueState {
let ptr = mmap.as_ptr();
let head = ptr.add(params.cq_off.head as usize) as *const AtomicU32;
let tail = ptr.add(params.cq_off.tail as usize) as *const AtomicU32;
let ring_mask = mmap.read_obj(params.cq_off.ring_mask as usize).unwrap();
CompleteQueueState {
mmap,
pointers: QueuePointers { head, tail },
ring_mask,
cqes_offset: params.cq_off.cqes,
completed: 0,
pending_op_addrs: BTreeMap::new(),
}
}
fn add_op_data(&mut self, user_data: UserData, addrs: Pin<Box<[libc::iovec]>>) {
self.pending_op_addrs.insert(user_data, addrs);
}
fn get_cqe(&self, head: u32) -> &io_uring_cqe {
unsafe {
// Safe because we trust that the kernel has returned enough memory in io_uring_setup
// and mmap and index is checked within range by the ring_mask.
let cqes = (self.mmap.as_ptr() as *const u8).add(self.cqes_offset as usize)
as *const io_uring_cqe;
let index = head & self.ring_mask;
&*cqes.add(index as usize)
}
}
fn num_completed(&mut self) -> usize {
std::mem::replace(&mut self.completed, 0)
}
}
// Return the completed ops with their result.
impl Iterator for CompleteQueueState {
type Item = (UserData, std::io::Result<u32>);
fn next(&mut self) -> Option<Self::Item> {
// Safe because the pointers to the atomics are valid and the cqe must be in range
// because the kernel provided mask is applied to the index.
let head = self.pointers.head(Ordering::Relaxed);
// Synchronize the read of tail after the read of head.
if head == self.pointers.tail(Ordering::Acquire) {
return None;
}
self.completed += 1;
let cqe = self.get_cqe(head);
let user_data = cqe.user_data;
let res = cqe.res;
// free the addrs saved for this op.
let _ = self.pending_op_addrs.remove(&user_data);
// Store the new head and ensure the reads above complete before the kernel sees the
// update to head, `set_head` uses `Release` ordering
let new_head = head.wrapping_add(1);
self.pointers.set_head(new_head);
let io_res = match res {
r if r < 0 => Err(std::io::Error::from_raw_os_error(-r)),
r => Ok(r as u32),
};
Some((user_data, io_res))
}
}
struct QueuePointers {
head: *const AtomicU32,
tail: *const AtomicU32,
}
impl QueuePointers {
// Loads the tail pointer atomically with the given ordering.
fn tail(&self, ordering: Ordering) -> u32 {
// Safe because self being constructed from the correct mmap guaratees that the memory is
// valid to read.
unsafe { (*self.tail).load(ordering) }
}
// Stores the new value of the tail in the submit queue. This allows the kernel to start
// processing entries that have been added up until the given tail pointer.
// Always stores with release ordering as that is the only valid way to use the pointer.
fn set_tail(&self, next_tail: u32) {
// Safe because self being constructed from the correct mmap guaratees that the memory is
// valid to read and it's used as an atomic to cover mutability concerns.
unsafe { (*self.tail).store(next_tail, Ordering::Release) }
}
// Loads the head pointer atomically with the given ordering.
fn head(&self, ordering: Ordering) -> u32 {
// Safe because self being constructed from the correct mmap guaratees that the memory is
// valid to read.
unsafe { (*self.head).load(ordering) }
}
// Stores the new value of the head in the submit queue. This allows the kernel to start
// processing entries that have been added up until the given head pointer.
// Always stores with release ordering as that is the only valid way to use the pointer.
fn set_head(&self, next_head: u32) {
// Safe because self being constructed from the correct mmap guaratees that the memory is
// valid to read and it's used as an atomic to cover mutability concerns.
unsafe { (*self.head).store(next_head, Ordering::Release) }
}
}
#[cfg(test)]
mod tests {
use std::fs::OpenOptions;
use std::io::{IoSlice, IoSliceMut};
use std::io::{Read, Seek, SeekFrom, Write};
use std::path::{Path, PathBuf};
use std::time::Duration;
use base::PollContext;
use tempfile::{tempfile, TempDir};
use super::*;
fn append_file_name(path: &Path, name: &str) -> PathBuf {
let mut joined = path.to_path_buf();
joined.push(name);
joined
}
fn check_one_read(
uring: &mut URingContext,
buf: &mut [u8],
fd: RawFd,
offset: u64,
user_data: UserData,
) {
let (user_data_ret, res) = unsafe {
// Safe because the `wait` call waits until the kernel is done with `buf`.
uring
.add_read(buf.as_mut_ptr(), buf.len(), fd, offset, user_data)
.unwrap();
uring.wait().unwrap().next().unwrap()
};
assert_eq!(user_data_ret, user_data);
assert_eq!(res.unwrap(), buf.len() as u32);
}
fn check_one_readv(
uring: &mut URingContext,
buf: &mut [u8],
fd: RawFd,
offset: u64,
user_data: UserData,
) {
let io_vecs = unsafe {
//safe to transmut from IoSlice to iovec.
vec![IoSliceMut::new(buf)]
.into_iter()
.map(|slice| std::mem::transmute::<IoSliceMut, libc::iovec>(slice))
};
let (user_data_ret, res) = unsafe {
// Safe because the `wait` call waits until the kernel is done with `buf`.
uring
.add_readv_iter(io_vecs, fd, offset, user_data)
.unwrap();
uring.wait().unwrap().next().unwrap()
};
assert_eq!(user_data_ret, user_data);
assert_eq!(res.unwrap(), buf.len() as u32);
}
fn create_test_file(size: u64) -> std::fs::File {
let f = tempfile().unwrap();
f.set_len(size).unwrap();
f
}
#[test]
// Queue as many reads as possible and then collect the completions.
fn read_parallel() {
const QUEUE_SIZE: usize = 10;
const BUF_SIZE: usize = 0x1000;
let mut uring = URingContext::new(QUEUE_SIZE).unwrap();
let mut buf = [0u8; BUF_SIZE * QUEUE_SIZE];
let f = create_test_file((BUF_SIZE * QUEUE_SIZE) as u64);
// check that the whole file can be read and that the queues wrapping is handled by reading
// double the quue depth of buffers.
for i in 0..QUEUE_SIZE * 64 {
let index = i as u64;
unsafe {
let offset = (i % QUEUE_SIZE) * BUF_SIZE;
match uring.add_read(
buf[offset..].as_mut_ptr(),
BUF_SIZE,
f.as_raw_fd(),
offset as u64,
index,
) {
Ok(_) => (),
Err(Error::NoSpace) => {
let _ = uring.wait().unwrap().next().unwrap();
}
Err(_) => panic!("unexpected error from uring wait"),
}
}
}
}
#[test]
fn read_readv() {
let queue_size = 128;
let mut uring = URingContext::new(queue_size).unwrap();
let mut buf = [0u8; 0x1000];
let f = create_test_file(0x1000 * 2);
// check that the whole file can be read and that the queues wrapping is handled by reading
// double the quue depth of buffers.
for i in 0..queue_size * 2 {
let index = i as u64;
check_one_read(
&mut uring,
&mut buf,
f.as_raw_fd(),
(index % 2) * 0x1000,
index,
);
check_one_readv(
&mut uring,
&mut buf,
f.as_raw_fd(),
(index % 2) * 0x1000,
index,
);
}
}
#[test]
fn readv_vec() {
let queue_size = 128;
const BUF_SIZE: usize = 0x2000;
let mut uring = URingContext::new(queue_size).unwrap();
let mut buf = [0u8; BUF_SIZE];
let mut buf2 = [0u8; BUF_SIZE];
let mut buf3 = [0u8; BUF_SIZE];
let io_vecs = unsafe {
//safe to transmut from IoSlice to iovec.
vec![
IoSliceMut::new(&mut buf),
IoSliceMut::new(&mut buf2),
IoSliceMut::new(&mut buf3),
]
.into_iter()
.map(|slice| std::mem::transmute::<IoSliceMut, libc::iovec>(slice))
.collect::<Vec<libc::iovec>>()
};
let total_len = io_vecs.iter().fold(0, |a, iovec| a + iovec.iov_len);
let f = create_test_file(total_len as u64 * 2);
let (user_data_ret, res) = unsafe {
// Safe because the `wait` call waits until the kernel is done with `buf`.
uring
.add_readv_iter(io_vecs.into_iter(), f.as_raw_fd(), 0, 55)
.unwrap();
uring.wait().unwrap().next().unwrap()
};
assert_eq!(user_data_ret, 55);
assert_eq!(res.unwrap(), total_len as u32);
}
#[test]
fn write_one_block() {
let mut uring = URingContext::new(16).unwrap();
let mut buf = [0u8; 4096];
let mut f = create_test_file(0);
f.write(&buf).unwrap();
f.write(&buf).unwrap();
unsafe {
// Safe because the `wait` call waits until the kernel is done mutating `buf`.
uring
.add_write(buf.as_mut_ptr(), buf.len(), f.as_raw_fd(), 0, 55)
.unwrap();
let (user_data, res) = uring.wait().unwrap().next().unwrap();
assert_eq!(user_data, 55 as UserData);
assert_eq!(res.unwrap(), buf.len() as u32);
}
}
#[test]
fn write_one_submit_poll() {
let mut uring = URingContext::new(16).unwrap();
let mut buf = [0u8; 4096];
let mut f = create_test_file(0);
f.write(&buf).unwrap();
f.write(&buf).unwrap();
let ctx: PollContext<u64> = PollContext::build_with(&[(&uring, 1)]).unwrap();
{
// Test that the uring context isn't readable before any events are complete.
let events = ctx.wait_timeout(Duration::from_millis(1)).unwrap();
assert!(events.iter_readable().next().is_none());
}
unsafe {
// Safe because the `wait` call waits until the kernel is done mutating `buf`.
uring
.add_write(buf.as_mut_ptr(), buf.len(), f.as_raw_fd(), 0, 55)
.unwrap();
uring.submit().unwrap();
// Poll for completion with epoll.
let events = ctx.wait().unwrap();
let event = events.iter_readable().next().unwrap();
assert_eq!(event.token(), 1);
let (user_data, res) = uring.wait().unwrap().next().unwrap();
assert_eq!(user_data, 55 as UserData);
assert_eq!(res.unwrap(), buf.len() as u32);
}
}
#[test]
fn writev_vec() {
let queue_size = 128;
const BUF_SIZE: usize = 0x2000;
const OFFSET: u64 = 0x2000;
let mut uring = URingContext::new(queue_size).unwrap();
let buf = [0xaau8; BUF_SIZE];
let buf2 = [0xffu8; BUF_SIZE];
let buf3 = [0x55u8; BUF_SIZE];
let io_vecs = unsafe {
//safe to transmut from IoSlice to iovec.
vec![IoSlice::new(&buf), IoSlice::new(&buf2), IoSlice::new(&buf3)]
.into_iter()
.map(|slice| std::mem::transmute::<IoSlice, libc::iovec>(slice))
.collect::<Vec<libc::iovec>>()
};
let total_len = io_vecs.iter().fold(0, |a, iovec| a + iovec.iov_len);
let mut f = create_test_file(total_len as u64 * 2);
let (user_data_ret, res) = unsafe {
// Safe because the `wait` call waits until the kernel is done with `buf`.
uring
.add_writev_iter(io_vecs.into_iter(), f.as_raw_fd(), OFFSET, 55)
.unwrap();
uring.wait().unwrap().next().unwrap()
};
assert_eq!(user_data_ret, 55);
assert_eq!(res.unwrap(), total_len as u32);
let mut read_back = [0u8; BUF_SIZE];
f.seek(SeekFrom::Start(OFFSET)).unwrap();
f.read(&mut read_back).unwrap();
assert!(!read_back.iter().any(|&b| b != 0xaa));
f.read(&mut read_back).unwrap();
assert!(!read_back.iter().any(|&b| b != 0xff));
f.read(&mut read_back).unwrap();
assert!(!read_back.iter().any(|&b| b != 0x55));
}
#[test]
fn fallocate_fsync() {
let tempdir = TempDir::new().unwrap();
let file_path = append_file_name(tempdir.path(), "test");
{
let buf = [0u8; 4096];
let mut f = OpenOptions::new()
.read(true)
.write(true)
.create(true)
.truncate(true)
.open(&file_path)
.unwrap();
f.write(&buf).unwrap();
}
let init_size = std::fs::metadata(&file_path).unwrap().len() as usize;
let set_size = init_size + 1024 * 1024 * 50;
let f = OpenOptions::new()
.read(true)
.write(true)
.create(true)
.open(&file_path)
.unwrap();
let mut uring = URingContext::new(16).unwrap();
uring
.add_fallocate(f.as_raw_fd(), 0, set_size as u64, 0, 66)
.unwrap();
let (user_data, res) = uring.wait().unwrap().next().unwrap();
assert_eq!(user_data, 66 as UserData);
match res {
Err(e) => {
if e.kind() == std::io::ErrorKind::InvalidInput {
// skip on kernels that don't support fallocate.
return;
}
panic!("Unexpected fallocate error: {}", e);
}
Ok(val) => assert_eq!(val, 0 as u32),
}
// Add a few writes and then fsync
let buf = [0u8; 4096];
let mut pending = std::collections::BTreeSet::new();
unsafe {
uring
.add_write(buf.as_ptr(), buf.len(), f.as_raw_fd(), 0, 67)
.unwrap();
pending.insert(67u64);
uring
.add_write(buf.as_ptr(), buf.len(), f.as_raw_fd(), 4096, 68)
.unwrap();
pending.insert(68);
uring
.add_write(buf.as_ptr(), buf.len(), f.as_raw_fd(), 8192, 69)
.unwrap();
pending.insert(69);
}
uring.add_fsync(f.as_raw_fd(), 70).unwrap();
pending.insert(70);
let mut wait_calls = 0;
while !pending.is_empty() && wait_calls < 5 {
let events = uring.wait().unwrap();
for (user_data, res) in events {
assert!(res.is_ok());
assert!(pending.contains(&user_data));
pending.remove(&user_data);
}
wait_calls += 1;
}
assert!(pending.is_empty());
uring
.add_fallocate(
f.as_raw_fd(),
init_size as u64,
(set_size - init_size) as u64,
(libc::FALLOC_FL_PUNCH_HOLE | libc::FALLOC_FL_KEEP_SIZE) as u32,
68,
)
.unwrap();
let (user_data, res) = uring.wait().unwrap().next().unwrap();
assert_eq!(user_data, 68 as UserData);
assert_eq!(res.unwrap(), 0 as u32);
drop(f); // Close to ensure directory entires for metadata are updated.
let new_size = std::fs::metadata(&file_path).unwrap().len() as usize;
assert_eq!(new_size, set_size);
}
#[test]
fn dev_zero_readable() {
let f = File::open(Path::new("/dev/zero")).unwrap();
let mut uring = URingContext::new(16).unwrap();
uring
.add_poll_fd(f.as_raw_fd(), &WatchingEvents::empty().set_read(), 454)
.unwrap();
let (user_data, res) = uring.wait().unwrap().next().unwrap();
assert_eq!(user_data, 454 as UserData);
assert_eq!(res.unwrap(), 1 as u32);
}
#[test]
fn queue_many_ebusy_retry() {
let num_entries = 16;
let f = File::open(Path::new("/dev/zero")).unwrap();
let mut uring = URingContext::new(num_entries).unwrap();
// Fill the sumbit ring.
for sqe_batch in 0..3 {
for i in 0..num_entries {
uring
.add_poll_fd(
f.as_raw_fd(),
&WatchingEvents::empty().set_read(),
(sqe_batch * num_entries + i) as u64,
)
.unwrap();
}
uring.submit().unwrap();
}
// Adding more than the number of cqes will cause the uring to return ebusy, make sure that
// is handled cleanly and wait still returns the completed entries.
uring
.add_poll_fd(
f.as_raw_fd(),
&WatchingEvents::empty().set_read(),
(num_entries * 3) as u64,
)
.unwrap();
// The first wait call should return the cques that are already filled.
{
let mut results = uring.wait().unwrap();
for _i in 0..num_entries * 2 {
assert_eq!(results.next().unwrap().1.unwrap(), 1 as u32);
}
assert!(results.next().is_none());
}
// The second will finish submitting any more sqes and return the rest.
let mut results = uring.wait().unwrap();
for _i in 0..num_entries + 1 {
assert_eq!(results.next().unwrap().1.unwrap(), 1 as u32);
}
assert!(results.next().is_none());
}
}