blob: 9ff692e8c1aaf436ae9882acb8e9e091f9eed06e [file] [log] [blame]
// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::cmp::{max, Reverse};
use std::collections::{BTreeMap, BTreeSet};
use std::convert::TryInto;
use std::fs::{File, OpenOptions};
use std::io::prelude::*;
use std::io::stdin;
use std::iter;
use std::mem;
use std::ops::RangeInclusive;
#[cfg(feature = "gpu")]
use std::os::unix::net::UnixStream;
use std::os::unix::prelude::OpenOptionsExt;
use std::path::Path;
use std::str::FromStr;
use std::sync::{mpsc, Arc, Barrier};
use std::time::Duration;
use std::process;
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
use std::thread;
use devices::virtio::vhost::vsock::{VhostVsockConfig, VhostVsockDeviceParameter};
use libc;
use acpi_tables::sdt::SDT;
use anyhow::{anyhow, bail, Context, Result};
use base::*;
use base::{UnixSeqpacket, UnixSeqpacketListener, UnlinkUnixSeqpacketListener};
use devices::serial_device::SerialHardware;
use devices::vfio::{VfioCommonSetup, VfioCommonTrait};
use devices::virtio::memory_mapper::MemoryMapperTrait;
#[cfg(feature = "gpu")]
use devices::virtio::{self, EventDevice};
#[cfg(feature = "audio")]
use devices::Ac97Dev;
use devices::{
self, BusDeviceObj, HostHotPlugKey, HotPlugBus, IrqEventIndex, KvmKernelIrqChip, PciAddress,
PciDevice, PvPanicCode, PvPanicPciDevice, StubPciDevice, VirtioPciDevice,
};
use devices::{CoIommuDev, IommuDevType};
#[cfg(feature = "usb")]
use devices::{HostBackendDeviceProvider, XhciController};
use hypervisor::kvm::{Kvm, KvmVcpu, KvmVm};
use hypervisor::{HypervisorCap, ProtectionType, Vm, VmCap};
use minijail::{self, Minijail};
use resources::{Alloc, SystemAllocator};
use rutabaga_gfx::RutabagaGralloc;
use sync::Mutex;
use vm_control::*;
use vm_memory::{GuestAddress, GuestMemory, MemoryPolicy};
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
use crate::gdb::{gdb_thread, GdbStub};
use crate::{Config, Executable, FileBackedMappingParameters, SharedDir, SharedDirKind, VfioType};
use arch::{
self, LinuxArch, RunnableLinuxVm, VcpuAffinity, VirtioDeviceStub, VmComponents, VmImage,
};
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
use {
crate::HostPcieRootPortParameters,
devices::{
IrqChipX86_64 as IrqChipArch, KvmSplitIrqChip, PciBridge, PcieHostRootPort, PcieRootPort,
},
hypervisor::{VcpuX86_64 as VcpuArch, VmX86_64 as VmArch},
x86_64::X8664arch as Arch,
};
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
use {
aarch64::AArch64 as Arch,
devices::IrqChipAArch64 as IrqChipArch,
hypervisor::{VcpuAArch64 as VcpuArch, VmAArch64 as VmArch},
};
mod device_helpers;
use device_helpers::*;
pub(crate) mod jail_helpers;
use jail_helpers::*;
mod vcpu;
#[cfg(feature = "gpu")]
pub(crate) mod gpu;
#[cfg(feature = "gpu")]
pub use gpu::GpuRenderServerParameters;
#[cfg(feature = "gpu")]
use gpu::*;
#[cfg(target_os = "android")]
mod android;
// gpu_device_tube is not used when GPU support is disabled.
#[cfg_attr(not(feature = "gpu"), allow(unused_variables))]
fn create_virtio_devices(
cfg: &Config,
vm: &mut impl Vm,
resources: &mut SystemAllocator,
_exit_evt: &Event,
wayland_device_tube: Tube,
gpu_device_tube: Tube,
vhost_user_gpu_tubes: Vec<(Tube, Tube, Tube)>,
balloon_device_tube: Option<Tube>,
balloon_inflate_tube: Option<Tube>,
init_balloon_size: u64,
disk_device_tubes: &mut Vec<Tube>,
pmem_device_tubes: &mut Vec<Tube>,
map_request: Arc<Mutex<Option<ExternalMapping>>>,
fs_device_tubes: &mut Vec<Tube>,
#[cfg(feature = "gpu")] render_server_fd: Option<SafeDescriptor>,
vvu_proxy_device_tubes: &mut Vec<Tube>,
vvu_proxy_max_sibling_mem_size: u64,
) -> DeviceResult<Vec<VirtioDeviceStub>> {
let mut devs = Vec::new();
#[cfg(feature = "gpu")]
for (opt, (host_gpu_tube, device_gpu_tube, device_control_tube)) in
cfg.vhost_user_gpu.iter().zip(vhost_user_gpu_tubes)
{
devs.push(create_vhost_user_gpu_device(
cfg,
opt,
(host_gpu_tube, device_gpu_tube),
device_control_tube,
)?);
}
for opt in &cfg.vvu_proxy {
devs.push(create_vvu_proxy_device(
cfg,
opt,
vvu_proxy_device_tubes.remove(0),
vvu_proxy_max_sibling_mem_size,
)?);
}
#[cfg_attr(not(feature = "gpu"), allow(unused_mut))]
let mut resource_bridges = Vec::<Tube>::new();
if !cfg.wayland_socket_paths.is_empty() {
#[cfg_attr(not(feature = "gpu"), allow(unused_mut))]
let mut wl_resource_bridge = None::<Tube>;
#[cfg(feature = "gpu")]
{
if cfg.gpu_parameters.is_some() {
let (wl_socket, gpu_socket) = Tube::pair().context("failed to create tube")?;
resource_bridges.push(gpu_socket);
wl_resource_bridge = Some(wl_socket);
}
}
devs.push(create_wayland_device(
cfg,
wayland_device_tube,
wl_resource_bridge,
)?);
}
#[cfg(feature = "video-decoder")]
let video_dec_cfg = if let Some(backend) = cfg.video_dec {
let (video_tube, gpu_tube) = Tube::pair().context("failed to create tube")?;
resource_bridges.push(gpu_tube);
Some((video_tube, backend))
} else {
None
};
#[cfg(feature = "video-encoder")]
let video_enc_cfg = if let Some(backend) = cfg.video_enc {
let (video_tube, gpu_tube) = Tube::pair().context("failed to create tube")?;
resource_bridges.push(gpu_tube);
Some((video_tube, backend))
} else {
None
};
#[cfg(feature = "gpu")]
{
if let Some(gpu_parameters) = &cfg.gpu_parameters {
let mut gpu_display_w = virtio::DEFAULT_DISPLAY_WIDTH;
let mut gpu_display_h = virtio::DEFAULT_DISPLAY_HEIGHT;
if !gpu_parameters.displays.is_empty() {
gpu_display_w = gpu_parameters.displays[0].width;
gpu_display_h = gpu_parameters.displays[0].height;
}
let mut event_devices = Vec::new();
if cfg.display_window_mouse {
let (event_device_socket, virtio_dev_socket) =
UnixStream::pair().context("failed to create socket")?;
let (multi_touch_width, multi_touch_height) = cfg
.virtio_multi_touch
.first()
.as_ref()
.map(|multi_touch_spec| multi_touch_spec.get_size())
.unwrap_or((gpu_display_w, gpu_display_h));
let dev = virtio::new_multi_touch(
// u32::MAX is the least likely to collide with the indices generated above for
// the multi_touch options, which begin at 0.
u32::MAX,
virtio_dev_socket,
multi_touch_width,
multi_touch_height,
virtio::base_features(cfg.protected_vm),
)
.context("failed to set up mouse device")?;
devs.push(VirtioDeviceStub {
dev: Box::new(dev),
jail: simple_jail(&cfg.jail_config, "input_device")?,
});
event_devices.push(EventDevice::touchscreen(event_device_socket));
}
if cfg.display_window_keyboard {
let (event_device_socket, virtio_dev_socket) =
UnixStream::pair().context("failed to create socket")?;
let dev = virtio::new_keyboard(
// u32::MAX is the least likely to collide with the indices generated above for
// the multi_touch options, which begin at 0.
u32::MAX,
virtio_dev_socket,
virtio::base_features(cfg.protected_vm),
)
.context("failed to set up keyboard device")?;
devs.push(VirtioDeviceStub {
dev: Box::new(dev),
jail: simple_jail(&cfg.jail_config, "input_device")?,
});
event_devices.push(EventDevice::keyboard(event_device_socket));
}
devs.push(create_gpu_device(
cfg,
_exit_evt,
gpu_device_tube,
resource_bridges,
// Use the unnamed socket for GPU display screens.
cfg.wayland_socket_paths.get(""),
cfg.x_display.clone(),
render_server_fd,
event_devices,
map_request,
)?);
}
}
for (_, param) in cfg
.serial_parameters
.iter()
.filter(|(_k, v)| v.hardware == SerialHardware::VirtioConsole)
{
let dev = create_console_device(cfg, param)?;
devs.push(dev);
}
for disk in &cfg.disks {
let disk_device_tube = disk_device_tubes.remove(0);
devs.push(create_block_device(cfg, disk, disk_device_tube)?);
}
for blk in &cfg.vhost_user_blk {
devs.push(create_vhost_user_block_device(cfg, blk)?);
}
for console in &cfg.vhost_user_console {
devs.push(create_vhost_user_console_device(cfg, console)?);
}
for (index, pmem_disk) in cfg.pmem_devices.iter().enumerate() {
let pmem_device_tube = pmem_device_tubes.remove(0);
devs.push(create_pmem_device(
cfg,
vm,
resources,
pmem_disk,
index,
pmem_device_tube,
)?);
}
if cfg.rng {
devs.push(create_rng_device(cfg)?);
}
#[cfg(feature = "tpm")]
{
if cfg.software_tpm {
devs.push(create_software_tpm_device(cfg)?);
}
}
for (idx, single_touch_spec) in cfg.virtio_single_touch.iter().enumerate() {
devs.push(create_single_touch_device(
cfg,
single_touch_spec,
idx as u32,
)?);
}
for (idx, multi_touch_spec) in cfg.virtio_multi_touch.iter().enumerate() {
devs.push(create_multi_touch_device(
cfg,
multi_touch_spec,
idx as u32,
)?);
}
for (idx, trackpad_spec) in cfg.virtio_trackpad.iter().enumerate() {
devs.push(create_trackpad_device(cfg, trackpad_spec, idx as u32)?);
}
for (idx, mouse_socket) in cfg.virtio_mice.iter().enumerate() {
devs.push(create_mouse_device(cfg, mouse_socket, idx as u32)?);
}
for (idx, keyboard_socket) in cfg.virtio_keyboard.iter().enumerate() {
devs.push(create_keyboard_device(cfg, keyboard_socket, idx as u32)?);
}
for (idx, switches_socket) in cfg.virtio_switches.iter().enumerate() {
devs.push(create_switches_device(cfg, switches_socket, idx as u32)?);
}
for dev_path in &cfg.virtio_input_evdevs {
devs.push(create_vinput_device(cfg, dev_path)?);
}
if let Some(balloon_device_tube) = balloon_device_tube {
devs.push(create_balloon_device(
cfg,
balloon_device_tube,
balloon_inflate_tube,
init_balloon_size,
)?);
}
// We checked above that if the IP is defined, then the netmask is, too.
for tap_fd in &cfg.tap_fd {
devs.push(create_tap_net_device_from_fd(cfg, *tap_fd)?);
}
if let (Some(host_ip), Some(netmask), Some(mac_address)) =
(cfg.host_ip, cfg.netmask, cfg.mac_address)
{
if !cfg.vhost_user_net.is_empty() {
bail!("vhost-user-net cannot be used with any of --host_ip, --netmask or --mac");
}
devs.push(create_net_device_from_config(
cfg,
host_ip,
netmask,
mac_address,
)?);
}
for tap_name in &cfg.tap_name {
devs.push(create_tap_net_device_from_name(cfg, tap_name.as_bytes())?);
}
for net in &cfg.vhost_user_net {
devs.push(create_vhost_user_net_device(cfg, net)?);
}
for vsock in &cfg.vhost_user_vsock {
devs.push(create_vhost_user_vsock_device(cfg, vsock)?);
}
for opt in &cfg.vhost_user_wl {
devs.push(create_vhost_user_wl_device(cfg, opt)?);
}
#[cfg(feature = "audio_cras")]
{
for cras_snd in &cfg.cras_snds {
devs.push(create_cras_snd_device(cfg, cras_snd.clone())?);
}
}
#[cfg(feature = "video-decoder")]
{
if let Some((video_dec_tube, video_dec_backend)) = video_dec_cfg {
register_video_device(
video_dec_backend,
&mut devs,
video_dec_tube,
cfg,
devices::virtio::VideoDeviceType::Decoder,
)?;
}
}
#[cfg(feature = "video-encoder")]
{
if let Some((video_enc_tube, video_enc_backend)) = video_enc_cfg {
register_video_device(
video_enc_backend,
&mut devs,
video_enc_tube,
cfg,
devices::virtio::VideoDeviceType::Encoder,
)?;
}
}
if let Some(cid) = cfg.cid {
let vhost_config = VhostVsockConfig {
device: cfg
.vhost_vsock_device
.clone()
.unwrap_or(VhostVsockDeviceParameter::default()),
cid,
};
devs.push(create_vhost_vsock_device(cfg, &vhost_config)?);
}
for vhost_user_fs in &cfg.vhost_user_fs {
devs.push(create_vhost_user_fs_device(cfg, vhost_user_fs)?);
}
#[cfg(feature = "audio")]
for vhost_user_snd in &cfg.vhost_user_snd {
devs.push(create_vhost_user_snd_device(cfg, vhost_user_snd)?);
}
for shared_dir in &cfg.shared_dirs {
let SharedDir {
src,
tag,
kind,
uid_map,
gid_map,
fs_cfg,
p9_cfg,
} = shared_dir;
let dev = match kind {
SharedDirKind::FS => {
let device_tube = fs_device_tubes.remove(0);
create_fs_device(cfg, uid_map, gid_map, src, tag, fs_cfg.clone(), device_tube)?
}
SharedDirKind::P9 => create_9p_device(cfg, uid_map, gid_map, src, tag, p9_cfg.clone())?,
};
devs.push(dev);
}
if let Some(vhost_user_mac80211_hwsim) = &cfg.vhost_user_mac80211_hwsim {
devs.push(create_vhost_user_mac80211_hwsim_device(
cfg,
vhost_user_mac80211_hwsim,
)?);
}
#[cfg(feature = "audio")]
if let Some(path) = &cfg.sound {
devs.push(create_sound_device(path, cfg)?);
}
Ok(devs)
}
fn create_devices(
cfg: &Config,
vm: &mut impl Vm,
resources: &mut SystemAllocator,
exit_evt: &Event,
panic_wrtube: Tube,
iommu_attached_endpoints: &mut BTreeMap<u32, Arc<Mutex<Box<dyn MemoryMapperTrait>>>>,
control_tubes: &mut Vec<TaggedControlTube>,
wayland_device_tube: Tube,
gpu_device_tube: Tube,
// Tuple content: (host-side GPU tube, device-side GPU tube, device-side control tube).
vhost_user_gpu_tubes: Vec<(Tube, Tube, Tube)>,
balloon_device_tube: Option<Tube>,
init_balloon_size: u64,
disk_device_tubes: &mut Vec<Tube>,
pmem_device_tubes: &mut Vec<Tube>,
fs_device_tubes: &mut Vec<Tube>,
#[cfg(feature = "usb")] usb_provider: HostBackendDeviceProvider,
map_request: Arc<Mutex<Option<ExternalMapping>>>,
#[cfg(feature = "gpu")] render_server_fd: Option<SafeDescriptor>,
vvu_proxy_device_tubes: &mut Vec<Tube>,
vvu_proxy_max_sibling_mem_size: u64,
) -> DeviceResult<Vec<(Box<dyn BusDeviceObj>, Option<Minijail>)>> {
let mut devices: Vec<(Box<dyn BusDeviceObj>, Option<Minijail>)> = Vec::new();
let mut balloon_inflate_tube: Option<Tube> = None;
if !cfg.vfio.is_empty() {
let mut coiommu_attached_endpoints = Vec::new();
for vfio_dev in cfg
.vfio
.iter()
.filter(|dev| dev.get_type() == VfioType::Pci)
{
let vfio_path = &vfio_dev.vfio_path;
let (vfio_pci_device, jail) = create_vfio_device(
cfg,
vm,
resources,
control_tubes,
vfio_path.as_path(),
None,
vfio_dev.guest_address(),
iommu_attached_endpoints,
Some(&mut coiommu_attached_endpoints),
vfio_dev.iommu_dev_type(),
)?;
devices.push((vfio_pci_device, jail));
}
for vfio_dev in cfg
.vfio
.iter()
.filter(|dev| dev.get_type() == VfioType::Platform)
{
let vfio_path = &vfio_dev.vfio_path;
let (vfio_plat_dev, jail) = create_vfio_platform_device(
cfg,
vm,
resources,
control_tubes,
vfio_path.as_path(),
iommu_attached_endpoints,
IommuDevType::NoIommu, // Virtio IOMMU is not supported yet
)?;
devices.push((Box::new(vfio_plat_dev), jail));
}
if !coiommu_attached_endpoints.is_empty() || !iommu_attached_endpoints.is_empty() {
let mut buf = mem::MaybeUninit::<libc::rlimit>::zeroed();
let res = unsafe { libc::getrlimit(libc::RLIMIT_MEMLOCK, buf.as_mut_ptr()) };
if res == 0 {
let limit = unsafe { buf.assume_init() };
let rlim_new = limit
.rlim_cur
.saturating_add(vm.get_memory().memory_size() as libc::rlim_t);
let rlim_max = max(limit.rlim_max, rlim_new);
if limit.rlim_cur < rlim_new {
let limit_arg = libc::rlimit {
rlim_cur: rlim_new as libc::rlim_t,
rlim_max: rlim_max as libc::rlim_t,
};
let res = unsafe { libc::setrlimit(libc::RLIMIT_MEMLOCK, &limit_arg) };
if res != 0 {
bail!("Set rlimit failed");
}
}
} else {
bail!("Get rlimit failed");
}
}
if !coiommu_attached_endpoints.is_empty() {
let vfio_container =
VfioCommonSetup::vfio_get_container(IommuDevType::CoIommu, None as Option<&Path>)
.context("failed to get vfio container")?;
let (coiommu_host_tube, coiommu_device_tube) =
Tube::pair().context("failed to create coiommu tube")?;
control_tubes.push(TaggedControlTube::VmMemory(coiommu_host_tube));
let vcpu_count = cfg.vcpu_count.unwrap_or(1) as u64;
let (coiommu_tube, balloon_tube) =
Tube::pair().context("failed to create coiommu tube")?;
balloon_inflate_tube = Some(balloon_tube);
let dev = CoIommuDev::new(
vm.get_memory().clone(),
vfio_container,
coiommu_device_tube,
coiommu_tube,
coiommu_attached_endpoints,
vcpu_count,
cfg.coiommu_param.unwrap_or_default(),
)
.context("failed to create coiommu device")?;
devices.push((Box::new(dev), simple_jail(&cfg.jail_config, "coiommu")?));
}
}
let stubs = create_virtio_devices(
cfg,
vm,
resources,
exit_evt,
wayland_device_tube,
gpu_device_tube,
vhost_user_gpu_tubes,
balloon_device_tube,
balloon_inflate_tube,
init_balloon_size,
disk_device_tubes,
pmem_device_tubes,
map_request,
fs_device_tubes,
#[cfg(feature = "gpu")]
render_server_fd,
vvu_proxy_device_tubes,
vvu_proxy_max_sibling_mem_size,
)?;
for stub in stubs {
let (msi_host_tube, msi_device_tube) = Tube::pair().context("failed to create tube")?;
control_tubes.push(TaggedControlTube::VmIrq(msi_host_tube));
let dev = VirtioPciDevice::new(vm.get_memory().clone(), stub.dev, msi_device_tube)
.context("failed to create virtio pci dev")?;
let dev = Box::new(dev) as Box<dyn BusDeviceObj>;
devices.push((dev, stub.jail));
}
#[cfg(feature = "audio")]
for ac97_param in &cfg.ac97_parameters {
let dev = Ac97Dev::try_new(vm.get_memory().clone(), ac97_param.clone())
.context("failed to create ac97 device")?;
let jail = simple_jail(&cfg.jail_config, dev.minijail_policy())?;
devices.push((Box::new(dev), jail));
}
#[cfg(feature = "usb")]
if cfg.usb {
// Create xhci controller.
let usb_controller = Box::new(XhciController::new(vm.get_memory().clone(), usb_provider));
devices.push((usb_controller, simple_jail(&cfg.jail_config, "xhci")?));
}
for params in &cfg.stub_pci_devices {
// Stub devices don't need jailing since they don't do anything.
devices.push((Box::new(StubPciDevice::new(params)), None));
}
devices.push((Box::new(PvPanicPciDevice::new(panic_wrtube)), None));
Ok(devices)
}
fn create_file_backed_mappings(
cfg: &Config,
vm: &mut impl Vm,
resources: &mut SystemAllocator,
) -> Result<()> {
for mapping in &cfg.file_backed_mappings {
let file = OpenOptions::new()
.read(true)
.write(mapping.writable)
.custom_flags(if mapping.sync { libc::O_SYNC } else { 0 })
.open(&mapping.path)
.context("failed to open file for file-backed mapping")?;
let prot = if mapping.writable {
Protection::read_write()
} else {
Protection::read()
};
let size = mapping
.size
.try_into()
.context("Invalid size for file-backed mapping")?;
let memory_mapping = MemoryMappingBuilder::new(size)
.from_file(&file)
.offset(mapping.offset)
.protection(prot)
.build()
.context("failed to map backing file for file-backed mapping")?;
match resources.mmio_allocator_any().allocate_at(
mapping.address,
mapping.size,
Alloc::FileBacked(mapping.address),
"file-backed mapping".to_owned(),
) {
// OutOfSpace just means that this mapping is not in the MMIO regions at all, so don't
// consider it an error.
// TODO(b/222769529): Reserve this region in a global memory address space allocator once
// we have that so nothing else can accidentally overlap with it.
Ok(()) | Err(resources::Error::OutOfSpace) => {}
e => e.context("failed to allocate guest address for file-backed mapping")?,
}
vm.add_memory_region(
GuestAddress(mapping.address),
Box::new(memory_mapping),
!mapping.writable,
/* log_dirty_pages = */ false,
)
.context("failed to configure file-backed mapping")?;
}
Ok(())
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn create_pcie_root_port(
host_pcie_rp: Vec<HostPcieRootPortParameters>,
sys_allocator: &mut SystemAllocator,
control_tubes: &mut Vec<TaggedControlTube>,
devices: &mut Vec<(Box<dyn BusDeviceObj>, Option<Minijail>)>,
hp_vec: &mut Vec<Arc<Mutex<dyn HotPlugBus>>>,
hp_endpoints_ranges: &mut Vec<RangeInclusive<u32>>,
// TODO(b/228627457): clippy is incorrectly warning about this Vec, which needs to be a Vec so
// we can push into it
#[allow(clippy::ptr_arg)] gpe_notify_devs: &mut Vec<(u32, Arc<Mutex<dyn GpeNotify>>)>,
) -> Result<()> {
if host_pcie_rp.is_empty() {
// user doesn't specify host pcie root port which link to this virtual pcie rp,
// find the empty bus and create a total virtual pcie rp
let mut hp_sec_bus = 0u8;
// Create Pcie Root Port for non-root buses, each non-root bus device will be
// connected behind a virtual pcie root port.
for i in 1..255 {
if sys_allocator.pci_bus_empty(i) {
if hp_sec_bus == 0 {
hp_sec_bus = i;
}
continue;
}
let pcie_root_port = Arc::new(Mutex::new(PcieRootPort::new(i, false)));
let (msi_host_tube, msi_device_tube) = Tube::pair().context("failed to create tube")?;
control_tubes.push(TaggedControlTube::VmIrq(msi_host_tube));
let pci_bridge = Box::new(PciBridge::new(pcie_root_port.clone(), msi_device_tube));
// no ipc is used if the root port disables hotplug
devices.push((pci_bridge, None));
}
// Create Pcie Root Port for hot-plug
if hp_sec_bus == 0 {
return Err(anyhow!("no more addresses are available"));
}
let pcie_root_port = Arc::new(Mutex::new(PcieRootPort::new(hp_sec_bus, true)));
let (msi_host_tube, msi_device_tube) = Tube::pair().context("failed to create tube")?;
control_tubes.push(TaggedControlTube::VmIrq(msi_host_tube));
let pci_bridge = Box::new(PciBridge::new(pcie_root_port.clone(), msi_device_tube));
hp_endpoints_ranges.push(RangeInclusive::new(
PciAddress {
bus: pci_bridge.get_secondary_num(),
dev: 0,
func: 0,
}
.to_u32(),
PciAddress {
bus: pci_bridge.get_subordinate_num(),
dev: 32,
func: 8,
}
.to_u32(),
));
devices.push((pci_bridge, None));
hp_vec.push(pcie_root_port as Arc<Mutex<dyn HotPlugBus>>);
} else {
// user specify host pcie root port which link to this virtual pcie rp,
// reserve the host pci BDF and create a virtual pcie RP with some attrs same as host
for host_pcie in host_pcie_rp.iter() {
let (vm_host_tube, vm_device_tube) = Tube::pair().context("failed to create tube")?;
let pcie_host = PcieHostRootPort::new(host_pcie.host_path.as_path(), vm_device_tube)?;
let bus_range = pcie_host.get_bus_range();
let mut slot_implemented = true;
for i in bus_range.secondary..=bus_range.subordinate {
// if this bus is occupied by one vfio-pci device, this vfio-pci device is
// connected to a pci bridge on host statically, then it should be connected
// to a virtual pci bridge in guest statically, this bridge won't have
// hotplug capability and won't use slot.
if !sys_allocator.pci_bus_empty(i) {
slot_implemented = false;
break;
}
}
let pcie_root_port = Arc::new(Mutex::new(PcieRootPort::new_from_host(
pcie_host,
slot_implemented,
)?));
control_tubes.push(TaggedControlTube::Vm(vm_host_tube));
let (msi_host_tube, msi_device_tube) = Tube::pair().context("failed to create tube")?;
control_tubes.push(TaggedControlTube::VmIrq(msi_host_tube));
let mut pci_bridge = Box::new(PciBridge::new(pcie_root_port.clone(), msi_device_tube));
// early reservation for host pcie root port devices.
let rootport_addr = pci_bridge.allocate_address(sys_allocator);
if rootport_addr.is_err() {
warn!(
"address reservation failed for hot pcie root port {}",
pci_bridge.debug_label()
);
}
// Only append the sub pci range of a hot-pluggable root port to virtio-iommu
if slot_implemented {
hp_endpoints_ranges.push(RangeInclusive::new(
PciAddress {
bus: pci_bridge.get_secondary_num(),
dev: 0,
func: 0,
}
.to_u32(),
PciAddress {
bus: pci_bridge.get_subordinate_num(),
dev: 32,
func: 8,
}
.to_u32(),
));
}
devices.push((pci_bridge, None));
if slot_implemented {
if let Some(gpe) = host_pcie.hp_gpe {
gpe_notify_devs
.push((gpe, pcie_root_port.clone() as Arc<Mutex<dyn GpeNotify>>));
}
hp_vec.push(pcie_root_port as Arc<Mutex<dyn HotPlugBus>>);
}
}
}
Ok(())
}
fn setup_vm_components(cfg: &Config) -> Result<VmComponents> {
let initrd_image = if let Some(initrd_path) = &cfg.initrd_path {
Some(
open_file(initrd_path, OpenOptions::new().read(true))
.with_context(|| format!("failed to open initrd {}", initrd_path.display()))?,
)
} else {
None
};
let vm_image = match cfg.executable_path {
Some(Executable::Kernel(ref kernel_path)) => VmImage::Kernel(
open_file(kernel_path, OpenOptions::new().read(true)).with_context(|| {
format!("failed to open kernel image {}", kernel_path.display())
})?,
),
Some(Executable::Bios(ref bios_path)) => VmImage::Bios(
open_file(bios_path, OpenOptions::new().read(true))
.with_context(|| format!("failed to open bios {}", bios_path.display()))?,
),
_ => panic!("Did not receive a bios or kernel, should be impossible."),
};
let swiotlb = if let Some(size) = cfg.swiotlb {
Some(
size.checked_mul(1024 * 1024)
.ok_or_else(|| anyhow!("requested swiotlb size too large"))?,
)
} else {
match cfg.protected_vm {
ProtectionType::Protected | ProtectionType::ProtectedWithoutFirmware => {
Some(64 * 1024 * 1024)
}
ProtectionType::Unprotected => None,
}
};
Ok(VmComponents {
memory_size: cfg
.memory
.unwrap_or(256)
.checked_mul(1024 * 1024)
.ok_or_else(|| anyhow!("requested memory size too large"))?,
swiotlb,
vcpu_count: cfg.vcpu_count.unwrap_or(1),
vcpu_affinity: cfg.vcpu_affinity.clone(),
cpu_clusters: cfg.cpu_clusters.clone(),
cpu_capacity: cfg.cpu_capacity.clone(),
#[cfg(feature = "direct")]
direct_gpe: cfg.direct_gpe.clone(),
no_smt: cfg.no_smt,
hugepages: cfg.hugepages,
vm_image,
android_fstab: cfg
.android_fstab
.as_ref()
.map(|x| {
File::open(x)
.with_context(|| format!("failed to open android fstab file {}", x.display()))
})
.map_or(Ok(None), |v| v.map(Some))?,
pstore: cfg.pstore.clone(),
initrd_image,
extra_kernel_params: cfg.params.clone(),
acpi_sdts: cfg
.acpi_tables
.iter()
.map(|path| {
SDT::from_file(path)
.with_context(|| format!("failed to open ACPI file {}", path.display()))
})
.collect::<Result<Vec<SDT>>>()?,
rt_cpus: cfg.rt_cpus.clone(),
delay_rt: cfg.delay_rt,
protected_vm: cfg.protected_vm,
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
gdb: None,
dmi_path: cfg.dmi_path.clone(),
no_legacy: cfg.no_legacy,
host_cpu_topology: cfg.host_cpu_topology,
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
force_s2idle: cfg.force_s2idle,
})
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum ExitState {
Reset,
Stop,
Crash,
GuestPanic,
}
// Remove ranges in `guest_mem_layout` that overlap with ranges in `file_backed_mappings`.
// Returns the updated guest memory layout.
fn punch_holes_in_guest_mem_layout_for_mappings(
guest_mem_layout: Vec<(GuestAddress, u64)>,
file_backed_mappings: &[FileBackedMappingParameters],
) -> Vec<(GuestAddress, u64)> {
// Create a set containing (start, end) pairs with exclusive end (end = start + size; the byte
// at end is not included in the range).
let mut layout_set = BTreeSet::new();
for (addr, size) in &guest_mem_layout {
layout_set.insert((addr.offset(), addr.offset() + size));
}
for mapping in file_backed_mappings {
let mapping_start = mapping.address;
let mapping_end = mapping_start + mapping.size;
// Repeatedly split overlapping guest memory regions until no overlaps remain.
while let Some((range_start, range_end)) = layout_set
.iter()
.find(|&&(range_start, range_end)| {
mapping_start < range_end && mapping_end > range_start
})
.cloned()
{
layout_set.remove(&(range_start, range_end));
if range_start < mapping_start {
layout_set.insert((range_start, mapping_start));
}
if range_end > mapping_end {
layout_set.insert((mapping_end, range_end));
}
}
}
// Build the final guest memory layout from the modified layout_set.
layout_set
.iter()
.map(|(start, end)| (GuestAddress(*start), end - start))
.collect()
}
pub fn run_config(cfg: Config) -> Result<ExitState> {
let components = setup_vm_components(&cfg)?;
let guest_mem_layout =
Arch::guest_memory_layout(&components).context("failed to create guest memory layout")?;
let guest_mem_layout =
punch_holes_in_guest_mem_layout_for_mappings(guest_mem_layout, &cfg.file_backed_mappings);
let guest_mem = GuestMemory::new(&guest_mem_layout).context("failed to create guest memory")?;
let mut mem_policy = MemoryPolicy::empty();
if components.hugepages {
mem_policy |= MemoryPolicy::USE_HUGEPAGES;
}
guest_mem.set_memory_policy(mem_policy);
let kvm = Kvm::new_with_path(&cfg.kvm_device_path).context("failed to create kvm")?;
let vm = KvmVm::new(&kvm, guest_mem, components.protected_vm).context("failed to create vm")?;
if !cfg.userspace_msr.is_empty() {
vm.enable_userspace_msr()
.context("failed to enable userspace MSR handling, do you have kernel 5.10 or later")?;
}
// Check that the VM was actually created in protected mode as expected.
if cfg.protected_vm != ProtectionType::Unprotected && !vm.check_capability(VmCap::Protected) {
bail!("Failed to create protected VM");
}
let vm_clone = vm.try_clone().context("failed to clone vm")?;
enum KvmIrqChip {
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
Split(KvmSplitIrqChip),
Kernel(KvmKernelIrqChip),
}
impl KvmIrqChip {
fn as_mut(&mut self) -> &mut dyn IrqChipArch {
match self {
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
KvmIrqChip::Split(i) => i,
KvmIrqChip::Kernel(i) => i,
}
}
}
let ioapic_host_tube;
let mut irq_chip = if cfg.split_irqchip {
#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
unimplemented!("KVM split irqchip mode only supported on x86 processors");
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
{
let (host_tube, ioapic_device_tube) = Tube::pair().context("failed to create tube")?;
ioapic_host_tube = Some(host_tube);
KvmIrqChip::Split(
KvmSplitIrqChip::new(
vm_clone,
components.vcpu_count,
ioapic_device_tube,
Some(120),
)
.context("failed to create IRQ chip")?,
)
}
} else {
ioapic_host_tube = None;
KvmIrqChip::Kernel(
KvmKernelIrqChip::new(vm_clone, components.vcpu_count)
.context("failed to create IRQ chip")?,
)
};
run_vm::<KvmVcpu, KvmVm>(cfg, components, vm, irq_chip.as_mut(), ioapic_host_tube)
}
fn run_vm<Vcpu, V>(
cfg: Config,
#[allow(unused_mut)] mut components: VmComponents,
mut vm: V,
irq_chip: &mut dyn IrqChipArch,
ioapic_host_tube: Option<Tube>,
) -> Result<ExitState>
where
Vcpu: VcpuArch + 'static,
V: VmArch + 'static,
{
if cfg.jail_config.is_some() {
// Printing something to the syslog before entering minijail so that libc's syslogger has a
// chance to open files necessary for its operation, like `/etc/localtime`. After jailing,
// access to those files will not be possible.
info!("crosvm entering multiprocess mode");
}
#[cfg(feature = "usb")]
let (usb_control_tube, usb_provider) =
HostBackendDeviceProvider::new().context("failed to create usb provider")?;
// Masking signals is inherently dangerous, since this can persist across clones/execs. Do this
// before any jailed devices have been spawned, so that we can catch any of them that fail very
// quickly.
let sigchld_fd = SignalFd::new(libc::SIGCHLD).context("failed to create signalfd")?;
let control_server_socket = match &cfg.socket_path {
Some(path) => Some(UnlinkUnixSeqpacketListener(
UnixSeqpacketListener::bind(path).context("failed to create control server")?,
)),
None => None,
};
let mut control_tubes = Vec::new();
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
if let Some(port) = cfg.gdb {
// GDB needs a control socket to interrupt vcpus.
let (gdb_host_tube, gdb_control_tube) = Tube::pair().context("failed to create tube")?;
control_tubes.push(TaggedControlTube::Vm(gdb_host_tube));
components.gdb = Some((port, gdb_control_tube));
}
for wl_cfg in &cfg.vhost_user_wl {
let wayland_host_tube = UnixSeqpacket::connect(&wl_cfg.vm_tube)
.map(Tube::new)
.context("failed to connect to wayland tube")?;
control_tubes.push(TaggedControlTube::VmMemory(wayland_host_tube));
}
let mut vhost_user_gpu_tubes = Vec::with_capacity(cfg.vhost_user_gpu.len());
for _ in 0..cfg.vhost_user_gpu.len() {
let (host_control_tube, device_control_tube) =
Tube::pair().context("failed to create tube")?;
let (host_gpu_tube, device_gpu_tube) = Tube::pair().context("failed to create tube")?;
vhost_user_gpu_tubes.push((host_gpu_tube, device_gpu_tube, device_control_tube));
control_tubes.push(TaggedControlTube::VmMemory(host_control_tube));
}
let (wayland_host_tube, wayland_device_tube) = Tube::pair().context("failed to create tube")?;
control_tubes.push(TaggedControlTube::VmMemory(wayland_host_tube));
let (balloon_host_tube, balloon_device_tube) = if cfg.balloon {
if let Some(ref path) = cfg.balloon_control {
(
None,
Some(Tube::new(
UnixSeqpacket::connect(path).context("failed to create balloon control")?,
)),
)
} else {
// Balloon gets a special socket so balloon requests can be forwarded
// from the main process.
let (host, device) = Tube::pair().context("failed to create tube")?;
// Set recv timeout to avoid deadlock on sending BalloonControlCommand
// before the guest is ready.
host.set_recv_timeout(Some(Duration::from_millis(100)))
.context("failed to set timeout")?;
(Some(host), Some(device))
}
} else {
(None, None)
};
// Create one control socket per disk.
let mut disk_device_tubes = Vec::new();
let mut disk_host_tubes = Vec::new();
let disk_count = cfg.disks.len();
for _ in 0..disk_count {
let (disk_host_tub, disk_device_tube) = Tube::pair().context("failed to create tube")?;
disk_host_tubes.push(disk_host_tub);
disk_device_tubes.push(disk_device_tube);
}
let mut pmem_device_tubes = Vec::new();
let pmem_count = cfg.pmem_devices.len();
for _ in 0..pmem_count {
let (pmem_host_tube, pmem_device_tube) = Tube::pair().context("failed to create tube")?;
pmem_device_tubes.push(pmem_device_tube);
control_tubes.push(TaggedControlTube::VmMsync(pmem_host_tube));
}
let (gpu_host_tube, gpu_device_tube) = Tube::pair().context("failed to create tube")?;
control_tubes.push(TaggedControlTube::VmMemory(gpu_host_tube));
if let Some(ioapic_host_tube) = ioapic_host_tube {
control_tubes.push(TaggedControlTube::VmIrq(ioapic_host_tube));
}
let battery = if cfg.battery_type.is_some() {
#[cfg_attr(not(feature = "power-monitor-powerd"), allow(clippy::manual_map))]
let jail = match simple_jail(&cfg.jail_config, "battery")? {
#[cfg_attr(not(feature = "power-monitor-powerd"), allow(unused_mut))]
Some(mut jail) => {
// Setup a bind mount to the system D-Bus socket if the powerd monitor is used.
#[cfg(feature = "power-monitor-powerd")]
{
add_current_user_to_jail(&mut jail)?;
// Create a tmpfs in the device's root directory so that we can bind mount files.
jail.mount_with_data(
Path::new("none"),
Path::new("/"),
"tmpfs",
(libc::MS_NOSUID | libc::MS_NODEV | libc::MS_NOEXEC) as usize,
"size=67108864",
)?;
let system_bus_socket_path = Path::new("/run/dbus/system_bus_socket");
jail.mount_bind(system_bus_socket_path, system_bus_socket_path, true)?;
}
Some(jail)
}
None => None,
};
(&cfg.battery_type, jail)
} else {
(&cfg.battery_type, None)
};
let map_request: Arc<Mutex<Option<ExternalMapping>>> = Arc::new(Mutex::new(None));
let fs_count = cfg
.shared_dirs
.iter()
.filter(|sd| sd.kind == SharedDirKind::FS)
.count();
let mut fs_device_tubes = Vec::with_capacity(fs_count);
for _ in 0..fs_count {
let (fs_host_tube, fs_device_tube) = Tube::pair().context("failed to create tube")?;
control_tubes.push(TaggedControlTube::Fs(fs_host_tube));
fs_device_tubes.push(fs_device_tube);
}
let mut vvu_proxy_device_tubes = Vec::new();
for _ in 0..cfg.vvu_proxy.len() {
let (vvu_proxy_host_tube, vvu_proxy_device_tube) =
Tube::pair().context("failed to create VVU proxy tube")?;
control_tubes.push(TaggedControlTube::VmMemory(vvu_proxy_host_tube));
vvu_proxy_device_tubes.push(vvu_proxy_device_tube);
}
let exit_evt = Event::new().context("failed to create event")?;
let reset_evt = Event::new().context("failed to create event")?;
let crash_evt = Event::new().context("failed to create event")?;
let (panic_rdtube, panic_wrtube) = Tube::pair().context("failed to create tube")?;
let pstore_size = components.pstore.as_ref().map(|pstore| pstore.size as u64);
let mut sys_allocator = SystemAllocator::new(
Arch::get_system_allocator_config(&vm),
pstore_size,
&cfg.mmio_address_ranges,
)
.context("failed to create system allocator")?;
let ramoops_region = match &components.pstore {
Some(pstore) => Some(
arch::pstore::create_memory_region(
&mut vm,
sys_allocator.reserved_region().unwrap(),
pstore,
)
.context("failed to allocate pstore region")?,
),
None => None,
};
create_file_backed_mappings(&cfg, &mut vm, &mut sys_allocator)?;
#[cfg(feature = "gpu")]
// Hold on to the render server jail so it keeps running until we exit run_vm()
let (_render_server_jail, render_server_fd) =
if let Some(parameters) = &cfg.gpu_render_server_parameters {
let (jail, fd) = start_gpu_render_server(&cfg, parameters)?;
(Some(ScopedMinijail(jail)), Some(fd))
} else {
(None, None)
};
let init_balloon_size = components
.memory_size
.checked_sub(cfg.init_memory.map_or(components.memory_size, |m| {
m.checked_mul(1024 * 1024).unwrap_or(u64::MAX)
}))
.context("failed to calculate init balloon size")?;
#[cfg(feature = "direct")]
let mut irqs = Vec::new();
#[cfg(feature = "direct")]
for irq in &cfg.direct_level_irq {
if !sys_allocator.reserve_irq(*irq) {
warn!("irq {} already reserved.", irq);
}
let irq_evt = devices::IrqLevelEvent::new().context("failed to create event")?;
irq_chip.register_level_irq_event(*irq, &irq_evt).unwrap();
let direct_irq = devices::DirectIrq::new_level(&irq_evt)
.context("failed to enable interrupt forwarding")?;
direct_irq
.irq_enable(*irq)
.context("failed to enable interrupt forwarding")?;
if cfg.direct_wake_irq.contains(&irq) {
direct_irq
.irq_wake_enable(*irq)
.context("failed to enable interrupt wake")?;
}
irqs.push(direct_irq);
}
#[cfg(feature = "direct")]
for irq in &cfg.direct_edge_irq {
if !sys_allocator.reserve_irq(*irq) {
warn!("irq {} already reserved.", irq);
}
let irq_evt = devices::IrqEdgeEvent::new().context("failed to create event")?;
irq_chip.register_edge_irq_event(*irq, &irq_evt).unwrap();
let direct_irq = devices::DirectIrq::new_edge(&irq_evt)
.context("failed to enable interrupt forwarding")?;
direct_irq
.irq_enable(*irq)
.context("failed to enable interrupt forwarding")?;
if cfg.direct_wake_irq.contains(&irq) {
direct_irq
.irq_wake_enable(*irq)
.context("failed to enable interrupt wake")?;
}
irqs.push(direct_irq);
}
let mut iommu_attached_endpoints: BTreeMap<u32, Arc<Mutex<Box<dyn MemoryMapperTrait>>>> =
BTreeMap::new();
let mut devices = create_devices(
&cfg,
&mut vm,
&mut sys_allocator,
&exit_evt,
panic_wrtube,
&mut iommu_attached_endpoints,
&mut control_tubes,
wayland_device_tube,
gpu_device_tube,
vhost_user_gpu_tubes,
balloon_device_tube,
init_balloon_size,
&mut disk_device_tubes,
&mut pmem_device_tubes,
&mut fs_device_tubes,
#[cfg(feature = "usb")]
usb_provider,
Arc::clone(&map_request),
#[cfg(feature = "gpu")]
render_server_fd,
&mut vvu_proxy_device_tubes,
components.memory_size,
)?;
let mut hp_endpoints_ranges: Vec<RangeInclusive<u32>> = Vec::new();
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
let mut hotplug_buses: Vec<Arc<Mutex<dyn HotPlugBus>>> = Vec::new();
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
let mut gpe_notify_devs: Vec<(u32, Arc<Mutex<dyn GpeNotify>>)> = Vec::new();
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
{
#[cfg(feature = "direct")]
let rp_host = cfg.pcie_rp.clone();
#[cfg(not(feature = "direct"))]
let rp_host: Vec<HostPcieRootPortParameters> = Vec::new();
// Create Pcie Root Port
create_pcie_root_port(
rp_host,
&mut sys_allocator,
&mut control_tubes,
&mut devices,
&mut hotplug_buses,
&mut hp_endpoints_ranges,
&mut gpe_notify_devs,
)?;
}
let (translate_response_senders, request_rx) = setup_virtio_access_platform(
&mut sys_allocator,
&mut iommu_attached_endpoints,
&mut devices,
)?;
let iommu_host_tube = if !iommu_attached_endpoints.is_empty() || cfg.virtio_iommu {
let (iommu_host_tube, iommu_device_tube) = Tube::pair().context("failed to create tube")?;
let iommu_dev = create_iommu_device(
&cfg,
(1u64 << vm.get_guest_phys_addr_bits()) - 1,
iommu_attached_endpoints,
hp_endpoints_ranges,
translate_response_senders,
request_rx,
iommu_device_tube,
)?;
let (msi_host_tube, msi_device_tube) = Tube::pair().context("failed to create tube")?;
control_tubes.push(TaggedControlTube::VmIrq(msi_host_tube));
let mut dev = VirtioPciDevice::new(vm.get_memory().clone(), iommu_dev.dev, msi_device_tube)
.context("failed to create virtio pci dev")?;
// early reservation for viommu.
dev.allocate_address(&mut sys_allocator)
.context("failed to allocate resources early for virtio pci dev")?;
let dev = Box::new(dev);
devices.push((dev, iommu_dev.jail));
Some(iommu_host_tube)
} else {
None
};
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
for device in devices
.iter_mut()
.filter_map(|(dev, _)| dev.as_pci_device_mut())
{
let sdts = device
.generate_acpi(components.acpi_sdts)
.or_else(|| {
error!("ACPI table generation error");
None
})
.ok_or_else(|| anyhow!("failed to generate ACPI table"))?;
components.acpi_sdts = sdts;
}
// KVM_CREATE_VCPU uses apic id for x86 and uses cpu id for others.
let mut kvm_vcpu_ids = Vec::new();
#[cfg_attr(not(feature = "direct"), allow(unused_mut))]
let mut linux = Arch::build_vm::<V, Vcpu>(
components,
&exit_evt,
&reset_evt,
&mut sys_allocator,
&cfg.serial_parameters,
simple_jail(&cfg.jail_config, "serial")?,
battery,
vm,
ramoops_region,
devices,
irq_chip,
&mut kvm_vcpu_ids,
)
.context("the architecture failed to build the vm")?;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
{
for hotplug_bus in hotplug_buses.iter() {
linux.hotplug_bus.push(hotplug_bus.clone());
}
if let Some(pm) = &linux.pm {
while let Some((gpe, notify_dev)) = gpe_notify_devs.pop() {
pm.lock().register_gpe_notify_dev(gpe, notify_dev);
}
}
}
#[cfg(feature = "direct")]
if let Some(pmio) = &cfg.direct_pmio {
let direct_io = Arc::new(
devices::DirectIo::new(&pmio.path, false).context("failed to open direct io device")?,
);
for range in pmio.ranges.iter() {
linux
.io_bus
.insert_sync(direct_io.clone(), range.base, range.len)
.unwrap();
}
};
#[cfg(feature = "direct")]
if let Some(mmio) = &cfg.direct_mmio {
let direct_mmio = Arc::new(
devices::DirectMmio::new(&mmio.path, false, &mmio.ranges)
.context("failed to open direct mmio device")?,
);
for range in mmio.ranges.iter() {
linux
.mmio_bus
.insert_sync(direct_mmio.clone(), range.base, range.len)
.unwrap();
}
};
let gralloc = RutabagaGralloc::new().context("failed to create gralloc")?;
run_control(
linux,
sys_allocator,
cfg,
control_server_socket,
control_tubes,
balloon_host_tube,
&disk_host_tubes,
#[cfg(feature = "usb")]
usb_control_tube,
exit_evt,
reset_evt,
crash_evt,
panic_rdtube,
sigchld_fd,
Arc::clone(&map_request),
gralloc,
kvm_vcpu_ids,
iommu_host_tube,
)
}
fn get_hp_bus<V: VmArch, Vcpu: VcpuArch>(
linux: &RunnableLinuxVm<V, Vcpu>,
host_addr: PciAddress,
) -> Result<(Arc<Mutex<dyn HotPlugBus>>, u8)> {
for hp_bus in linux.hotplug_bus.iter() {
if let Some(number) = hp_bus.lock().is_match(host_addr) {
return Ok((hp_bus.clone(), number));
}
}
Err(anyhow!("Failed to find a suitable hotplug bus"))
}
fn add_vfio_device<V: VmArch, Vcpu: VcpuArch>(
linux: &mut RunnableLinuxVm<V, Vcpu>,
sys_allocator: &mut SystemAllocator,
cfg: &Config,
control_tubes: &mut Vec<TaggedControlTube>,
iommu_host_tube: &Option<Tube>,
vfio_path: &Path,
) -> Result<()> {
let host_os_str = vfio_path
.file_name()
.ok_or_else(|| anyhow!("failed to parse or find vfio path"))?;
let host_str = host_os_str
.to_str()
.ok_or_else(|| anyhow!("failed to parse or find vfio path"))?;
let host_addr = PciAddress::from_str(host_str).context("failed to parse vfio pci address")?;
let (hp_bus, bus_num) = get_hp_bus(linux, host_addr)?;
let mut endpoints: BTreeMap<u32, Arc<Mutex<Box<dyn MemoryMapperTrait>>>> = BTreeMap::new();
let (vfio_pci_device, jail) = create_vfio_device(
cfg,
&linux.vm,
sys_allocator,
control_tubes,
vfio_path,
Some(bus_num),
None,
&mut endpoints,
None,
if iommu_host_tube.is_some() {
IommuDevType::VirtioIommu
} else {
IommuDevType::NoIommu
},
)?;
let pci_address = Arch::register_pci_device(linux, vfio_pci_device, jail, sys_allocator)
.context("Failed to configure pci hotplug device")?;
if let Some(iommu_host_tube) = iommu_host_tube {
let &endpoint_addr = endpoints.iter().next().unwrap().0;
let mapper = endpoints.remove(&endpoint_addr).unwrap();
if let Some(vfio_wrapper) = mapper.lock().as_vfio_wrapper() {
let vfio_container = vfio_wrapper.as_vfio_container();
let descriptor = vfio_container.lock().into_raw_descriptor()?;
let request = VirtioIOMMURequest::VfioCommand(VirtioIOMMUVfioCommand::VfioDeviceAdd {
endpoint_addr,
container: {
// Safe because the descriptor is uniquely owned by `descriptor`.
unsafe { File::from_raw_descriptor(descriptor) }
},
});
match virtio_iommu_request(iommu_host_tube, &request)
.map_err(|_| VirtioIOMMUVfioError::SocketFailed)?
{
VirtioIOMMUResponse::VfioResponse(VirtioIOMMUVfioResult::Ok) => (),
resp => bail!("Unexpected message response: {:?}", resp),
}
};
}
let host_key = HostHotPlugKey::Vfio { host_addr };
let mut hp_bus = hp_bus.lock();
hp_bus.add_hotplug_device(host_key, pci_address);
hp_bus.hot_plug(pci_address);
Ok(())
}
fn remove_vfio_device<V: VmArch, Vcpu: VcpuArch>(
linux: &RunnableLinuxVm<V, Vcpu>,
sys_allocator: &mut SystemAllocator,
iommu_host_tube: &Option<Tube>,
vfio_path: &Path,
) -> Result<()> {
let host_os_str = vfio_path
.file_name()
.ok_or_else(|| anyhow!("failed to parse or find vfio path"))?;
let host_str = host_os_str
.to_str()
.ok_or_else(|| anyhow!("failed to parse or find vfio path"))?;
let host_addr = PciAddress::from_str(host_str).context("failed to parse vfio pci address")?;
let host_key = HostHotPlugKey::Vfio { host_addr };
for hp_bus in linux.hotplug_bus.iter() {
let mut hp_bus_lock = hp_bus.lock();
if let Some(pci_addr) = hp_bus_lock.get_hotplug_device(host_key) {
if let Some(iommu_host_tube) = iommu_host_tube {
let request =
VirtioIOMMURequest::VfioCommand(VirtioIOMMUVfioCommand::VfioDeviceDel {
endpoint_addr: pci_addr.to_u32(),
});
match virtio_iommu_request(iommu_host_tube, &request)
.map_err(|_| VirtioIOMMUVfioError::SocketFailed)?
{
VirtioIOMMUResponse::VfioResponse(VirtioIOMMUVfioResult::Ok) => (),
resp => bail!("Unexpected message response: {:?}", resp),
}
}
hp_bus_lock.hot_unplug(pci_addr);
sys_allocator.release_pci(pci_addr.bus, pci_addr.dev, pci_addr.func);
return Ok(());
}
}
Err(anyhow!("HotPlugBus hasn't been implemented"))
}
fn handle_vfio_command<V: VmArch, Vcpu: VcpuArch>(
linux: &mut RunnableLinuxVm<V, Vcpu>,
sys_allocator: &mut SystemAllocator,
cfg: &Config,
add_tubes: &mut Vec<TaggedControlTube>,
iommu_host_tube: &Option<Tube>,
vfio_path: &Path,
add: bool,
) -> VmResponse {
let ret = if add {
add_vfio_device(
linux,
sys_allocator,
cfg,
add_tubes,
iommu_host_tube,
vfio_path,
)
} else {
remove_vfio_device(linux, sys_allocator, iommu_host_tube, vfio_path)
};
match ret {
Ok(()) => VmResponse::Ok,
Err(e) => {
error!("hanlde_vfio_command failure: {}", e);
add_tubes.clear();
VmResponse::Err(base::Error::new(libc::EINVAL))
}
}
}
fn run_control<V: VmArch + 'static, Vcpu: VcpuArch + 'static>(
mut linux: RunnableLinuxVm<V, Vcpu>,
mut sys_allocator: SystemAllocator,
cfg: Config,
control_server_socket: Option<UnlinkUnixSeqpacketListener>,
mut control_tubes: Vec<TaggedControlTube>,
balloon_host_tube: Option<Tube>,
disk_host_tubes: &[Tube],
#[cfg(feature = "usb")] usb_control_tube: Tube,
exit_evt: Event,
reset_evt: Event,
crash_evt: Event,
panic_rdtube: Tube,
sigchld_fd: SignalFd,
map_request: Arc<Mutex<Option<ExternalMapping>>>,
mut gralloc: RutabagaGralloc,
kvm_vcpu_ids: Vec<usize>,
iommu_host_tube: Option<Tube>,
) -> Result<ExitState> {
#[derive(PollToken)]
enum Token {
Exit,
Reset,
Crash,
Panic,
Suspend,
ChildSignal,
IrqFd { index: IrqEventIndex },
VmControlServer,
VmControl { index: usize },
DelayedIrqFd,
}
stdin()
.set_raw_mode()
.expect("failed to set terminal raw mode");
let wait_ctx = WaitContext::build_with(&[
(&exit_evt, Token::Exit),
(&reset_evt, Token::Reset),
(&crash_evt, Token::Crash),
(&panic_rdtube, Token::Panic),
(&linux.suspend_evt, Token::Suspend),
(&sigchld_fd, Token::ChildSignal),
])
.context("failed to add descriptor to wait context")?;
if let Some(socket_server) = &control_server_socket {
wait_ctx
.add(socket_server, Token::VmControlServer)
.context("failed to add descriptor to wait context")?;
}
for (index, socket) in control_tubes.iter().enumerate() {
wait_ctx
.add(socket.as_ref(), Token::VmControl { index })
.context("failed to add descriptor to wait context")?;
}
let events = linux
.irq_chip
.irq_event_tokens()
.context("failed to add descriptor to wait context")?;
for (index, _gsi, evt) in events {
wait_ctx
.add(&evt, Token::IrqFd { index })
.context("failed to add descriptor to wait context")?;
}
if let Some(delayed_ioapic_irq_trigger) = linux.irq_chip.irq_delayed_event_token()? {
wait_ctx
.add(&delayed_ioapic_irq_trigger, Token::DelayedIrqFd)
.context("failed to add descriptor to wait context")?;
}
if cfg.jail_config.is_some() {
// Before starting VCPUs, in case we started with some capabilities, drop them all.
drop_capabilities().context("failed to drop process capabilities")?;
}
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
// Create a channel for GDB thread.
let (to_gdb_channel, from_vcpu_channel) = if linux.gdb.is_some() {
let (s, r) = mpsc::channel();
(Some(s), Some(r))
} else {
(None, None)
};
let mut vcpu_handles = Vec::with_capacity(linux.vcpu_count);
let vcpu_thread_barrier = Arc::new(Barrier::new(linux.vcpu_count + 1));
let use_hypervisor_signals = !linux
.vm
.get_hypervisor()
.check_capability(HypervisorCap::ImmediateExit);
vcpu::setup_vcpu_signal_handler::<Vcpu>(use_hypervisor_signals)?;
let vcpus: Vec<Option<_>> = match linux.vcpus.take() {
Some(vec) => vec.into_iter().map(Some).collect(),
None => iter::repeat_with(|| None).take(linux.vcpu_count).collect(),
};
// Enable core scheduling before creating vCPUs so that the cookie will be
// shared by all vCPU threads.
// TODO(b/199312402): Avoid enabling core scheduling for the crosvm process
// itself for even better performance. Only vCPUs need the feature.
if cfg.core_scheduling && cfg.per_vm_core_scheduling {
if let Err(e) = enable_core_scheduling() {
error!("Failed to enable core scheduling: {}", e);
}
}
let vcpu_cgroup_tasks_file = match &cfg.vcpu_cgroup_path {
None => None,
Some(cgroup_path) => {
// Move main process to cgroup_path
let mut f = File::create(&cgroup_path.join("tasks"))?;
f.write_all(process::id().to_string().as_bytes())?;
Some(f)
}
};
#[cfg(target_os = "android")]
android::set_process_profiles(&cfg.task_profiles)?;
for (cpu_id, vcpu) in vcpus.into_iter().enumerate() {
let (to_vcpu_channel, from_main_channel) = mpsc::channel();
let vcpu_affinity = match linux.vcpu_affinity.clone() {
Some(VcpuAffinity::Global(v)) => v,
Some(VcpuAffinity::PerVcpu(mut m)) => m.remove(&cpu_id).unwrap_or_default(),
None => Default::default(),
};
let handle = vcpu::run_vcpu(
cpu_id,
kvm_vcpu_ids[cpu_id],
vcpu,
linux.vm.try_clone().context("failed to clone vm")?,
linux
.irq_chip
.try_box_clone()
.context("failed to clone irqchip")?,
linux.vcpu_count,
linux.rt_cpus.contains(&cpu_id),
vcpu_affinity,
linux.delay_rt,
linux.no_smt,
vcpu_thread_barrier.clone(),
linux.has_bios,
(*linux.io_bus).clone(),
(*linux.mmio_bus).clone(),
exit_evt.try_clone().context("failed to clone event")?,
reset_evt.try_clone().context("failed to clone event")?,
crash_evt.try_clone().context("failed to clone event")?,
linux.vm.check_capability(VmCap::PvClockSuspend),
from_main_channel,
use_hypervisor_signals,
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
to_gdb_channel.clone(),
cfg.core_scheduling,
cfg.per_vm_core_scheduling,
cfg.host_cpu_topology,
cfg.privileged_vm,
match vcpu_cgroup_tasks_file {
None => None,
Some(ref f) => Some(
f.try_clone()
.context("failed to clone vcpu cgroup tasks file")?,
),
},
cfg.userspace_msr.clone(),
)?;
vcpu_handles.push((handle, to_vcpu_channel));
}
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
// Spawn GDB thread.
if let Some((gdb_port_num, gdb_control_tube)) = linux.gdb.take() {
let to_vcpu_channels = vcpu_handles
.iter()
.map(|(_handle, channel)| channel.clone())
.collect();
let target = GdbStub::new(
gdb_control_tube,
to_vcpu_channels,
from_vcpu_channel.unwrap(), // Must succeed to unwrap()
);
thread::Builder::new()
.name("gdb".to_owned())
.spawn(move || gdb_thread(target, gdb_port_num))
.context("failed to spawn GDB thread")?;
};
vcpu_thread_barrier.wait();
let mut exit_state = ExitState::Stop;
let mut balloon_stats_id: u64 = 0;
'wait: loop {
let events = {
match wait_ctx.wait() {
Ok(v) => v,
Err(e) => {
error!("failed to poll: {}", e);
break;
}
}
};
let mut vm_control_indices_to_remove = Vec::new();
for event in events.iter().filter(|e| e.is_readable) {
match event.token {
Token::Exit => {
info!("vcpu requested shutdown");
break 'wait;
}
Token::Reset => {
info!("vcpu requested reset");
exit_state = ExitState::Reset;
break 'wait;
}
Token::Crash => {
info!("vcpu crashed");
exit_state = ExitState::Crash;
break 'wait;
}
Token::Panic => {
let mut break_to_wait: bool = true;
match panic_rdtube.recv::<u8>() {
Ok(panic_code) => {
let panic_code = PvPanicCode::from_u8(panic_code);
info!("Guest reported panic [Code: {}]", panic_code);
if panic_code == PvPanicCode::CrashLoaded {
// VM is booting to crash kernel.
break_to_wait = false;
}
}
Err(e) => {
warn!("failed to recv panic event: {} ", e);
}
}
if break_to_wait {
exit_state = ExitState::GuestPanic;
break 'wait;
}
}
Token::Suspend => {
info!("VM requested suspend");
linux.suspend_evt.read().unwrap();
vcpu::kick_all_vcpus(
&vcpu_handles,
linux.irq_chip.as_irq_chip(),
VcpuControl::RunState(VmRunMode::Suspending),
);
}
Token::ChildSignal => {
// Print all available siginfo structs, then exit the loop.
while let Some(siginfo) =
sigchld_fd.read().context("failed to create signalfd")?
{
let pid = siginfo.ssi_pid;
let pid_label = match linux.pid_debug_label_map.get(&pid) {
Some(label) => format!("{} (pid {})", label, pid),
None => format!("pid {}", pid),
};
error!(
"child {} died: signo {}, status {}, code {}",
pid_label, siginfo.ssi_signo, siginfo.ssi_status, siginfo.ssi_code
);
}
break 'wait;
}
Token::IrqFd { index } => {
if let Err(e) = linux.irq_chip.service_irq_event(index) {
error!("failed to signal irq {}: {}", index, e);
}
}
Token::DelayedIrqFd => {
if let Err(e) = linux.irq_chip.process_delayed_irq_events() {
warn!("can't deliver delayed irqs: {}", e);
}
}
Token::VmControlServer => {
if let Some(socket_server) = &control_server_socket {
match socket_server.accept() {
Ok(socket) => {
wait_ctx
.add(
&socket,
Token::VmControl {
index: control_tubes.len(),
},
)
.context("failed to add descriptor to wait context")?;
control_tubes.push(TaggedControlTube::Vm(Tube::new(socket)));
}
Err(e) => error!("failed to accept socket: {}", e),
}
}
}
Token::VmControl { index } => {
let mut add_tubes = Vec::new();
if let Some(socket) = control_tubes.get(index) {
match socket {
TaggedControlTube::Vm(tube) => match tube.recv::<VmRequest>() {
Ok(request) => {
let mut run_mode_opt = None;
let response = match request {
VmRequest::VfioCommand { vfio_path, add } => {
handle_vfio_command(
&mut linux,
&mut sys_allocator,
&cfg,
&mut add_tubes,
&iommu_host_tube,
&vfio_path,
add,
)
}
_ => request.execute(
&mut run_mode_opt,
balloon_host_tube.as_ref(),
&mut balloon_stats_id,
disk_host_tubes,
&mut linux.pm,
#[cfg(feature = "usb")]
Some(&usb_control_tube),
#[cfg(not(feature = "usb"))]
None,
&mut linux.bat_control,
&vcpu_handles,
),
};
if let Err(e) = tube.send(&response) {
error!("failed to send VmResponse: {}", e);
}
if let Some(run_mode) = run_mode_opt {
info!("control socket changed run mode to {}", run_mode);
match run_mode {
VmRunMode::Exiting => {
break 'wait;
}
other => {
if other == VmRunMode::Running {
for dev in &linux.resume_notify_devices {
dev.lock().resume_imminent();
}
}
vcpu::kick_all_vcpus(
&vcpu_handles,
linux.irq_chip.as_irq_chip(),
VcpuControl::RunState(other),
);
}
}
}
}
Err(e) => {
if let TubeError::Disconnected = e {
vm_control_indices_to_remove.push(index);
} else {
error!("failed to recv VmRequest: {}", e);
}
}
},
TaggedControlTube::VmMemory(tube) => {
match tube.recv::<VmMemoryRequest>() {
Ok(request) => {
let response = request.execute(
&mut linux.vm,
&mut sys_allocator,
Arc::clone(&map_request),
&mut gralloc,
);
if let Err(e) = tube.send(&response) {
error!("failed to send VmMemoryControlResponse: {}", e);
}
}
Err(e) => {
if let TubeError::Disconnected = e {
vm_control_indices_to_remove.push(index);
} else {
error!("failed to recv VmMemoryControlRequest: {}", e);
}
}
}
}
TaggedControlTube::VmIrq(tube) => match tube.recv::<VmIrqRequest>() {
Ok(request) => {
let response = {
let irq_chip = &mut linux.irq_chip;
request.execute(
|setup| match setup {
IrqSetup::Event(irq, ev, _, _, _) => {
let irq_evt = devices::IrqEdgeEvent::from_event(ev.try_clone()?);
if let Some(event_index) = irq_chip
.register_edge_irq_event(irq, &irq_evt)?
{
match wait_ctx.add(
ev,
Token::IrqFd {
index: event_index
},
) {
Err(e) => {
warn!("failed to add IrqFd to poll context: {}", e);
Err(e)
},
Ok(_) => {
Ok(())
}
}
} else {
Ok(())
}
}
IrqSetup::Route(route) => irq_chip.route_irq(route),
IrqSetup::UnRegister(irq, ev) => {
let irq_evt = devices::IrqEdgeEvent::from_event(ev.try_clone()?);
irq_chip.unregister_edge_irq_event(irq, &irq_evt)
}
},
&mut sys_allocator,
)
};
if let Err(e) = tube.send(&response) {
error!("failed to send VmIrqResponse: {}", e);
}
}
Err(e) => {
if let TubeError::Disconnected = e {
vm_control_indices_to_remove.push(index);
} else {
error!("failed to recv VmIrqRequest: {}", e);
}
}
},
TaggedControlTube::VmMsync(tube) => {
match tube.recv::<VmMsyncRequest>() {
Ok(request) => {
let response = request.execute(&mut linux.vm);
if let Err(e) = tube.send(&response) {
error!("failed to send VmMsyncResponse: {}", e);
}
}
Err(e) => {
if let TubeError::Disconnected = e {
vm_control_indices_to_remove.push(index);
} else {
error!("failed to recv VmMsyncRequest: {}", e);
}
}
}
}
TaggedControlTube::Fs(tube) => match tube.recv::<FsMappingRequest>() {
Ok(request) => {
let response =
request.execute(&mut linux.vm, &mut sys_allocator);
if let Err(e) = tube.send(&response) {
error!("failed to send VmResponse: {}", e);
}
}
Err(e) => {
if let TubeError::Disconnected = e {
vm_control_indices_to_remove.push(index);
} else {
error!("failed to recv VmResponse: {}", e);
}
}
},
}
}
if !add_tubes.is_empty() {
for (idx, socket) in add_tubes.iter().enumerate() {
wait_ctx
.add(
socket.as_ref(),
Token::VmControl {
index: idx + control_tubes.len(),
},
)
.context(
"failed to add hotplug vfio-pci descriptor ot wait context",
)?;
}
control_tubes.append(&mut add_tubes);
}
}
}
}
// It's possible more data is readable and buffered while the socket is hungup,
// so don't delete the tube from the poll context until we're sure all the
// data is read.
// Below case covers a condition where we have received a hungup event and the tube is not
// readable.
// In case of readable tube, once all data is read, any attempt to read more data on hungup
// tube should fail. On such failure, we get Disconnected error and index gets added to
// vm_control_indices_to_remove by the time we reach here.
for event in events.iter().filter(|e| e.is_hungup && !e.is_readable) {
if let Token::VmControl { index } = event.token {
vm_control_indices_to_remove.push(index);
}
}
// Sort in reverse so the highest indexes are removed first. This removal algorithm
// preserves correct indexes as each element is removed.
vm_control_indices_to_remove.sort_unstable_by_key(|&k| Reverse(k));
vm_control_indices_to_remove.dedup();
for index in vm_control_indices_to_remove {
// Delete the socket from the `wait_ctx` synchronously. Otherwise, the kernel will do
// this automatically when the FD inserted into the `wait_ctx` is closed after this
// if-block, but this removal can be deferred unpredictably. In some instances where the
// system is under heavy load, we can even get events returned by `wait_ctx` for an FD
// that has already been closed. Because the token associated with that spurious event
// now belongs to a different socket, the control loop will start to interact with
// sockets that might not be ready to use. This can cause incorrect hangup detection or
// blocking on a socket that will never be ready. See also: crbug.com/1019986
if let Some(socket) = control_tubes.get(index) {
wait_ctx
.delete(socket)
.context("failed to remove descriptor from wait context")?;
}
// This line implicitly drops the socket at `index` when it gets returned by
// `swap_remove`. After this line, the socket at `index` is not the one from
// `vm_control_indices_to_remove`. Because of this socket's change in index, we need to
// use `wait_ctx.modify` to change the associated index in its `Token::VmControl`.
control_tubes.swap_remove(index);
if let Some(tube) = control_tubes.get(index) {
wait_ctx
.modify(tube, EventType::Read, Token::VmControl { index })
.context("failed to add descriptor to wait context")?;
}
}
}
vcpu::kick_all_vcpus(
&vcpu_handles,
linux.irq_chip.as_irq_chip(),
VcpuControl::RunState(VmRunMode::Exiting),
);
for (handle, _) in vcpu_handles {
if let Err(e) = handle.join() {
error!("failed to join vcpu thread: {:?}", e);
}
}
// Explicitly drop the VM structure here to allow the devices to clean up before the
// control sockets are closed when this function exits.
mem::drop(linux);
stdin()
.set_canon_mode()
.expect("failed to restore canonical mode for terminal");
Ok(exit_state)
}
#[cfg(test)]
mod tests {
use super::*;
use std::path::PathBuf;
// Create a file-backed mapping parameters struct with the given `address` and `size` and other
// parameters set to default values.
fn test_file_backed_mapping(address: u64, size: u64) -> FileBackedMappingParameters {
FileBackedMappingParameters {
address,
size,
path: PathBuf::new(),
offset: 0,
writable: false,
sync: false,
}
}
#[test]
fn guest_mem_file_backed_mappings_overlap() {
// Base case: no file mappings; output layout should be identical.
assert_eq!(
punch_holes_in_guest_mem_layout_for_mappings(
vec![
(GuestAddress(0), 0xD000_0000),
(GuestAddress(0x1_0000_0000), 0x8_0000),
],
&[]
),
vec![
(GuestAddress(0), 0xD000_0000),
(GuestAddress(0x1_0000_0000), 0x8_0000),
]
);
// File mapping that does not overlap guest memory.
assert_eq!(
punch_holes_in_guest_mem_layout_for_mappings(
vec![
(GuestAddress(0), 0xD000_0000),
(GuestAddress(0x1_0000_0000), 0x8_0000),
],
&[test_file_backed_mapping(0xD000_0000, 0x1000)]
),
vec![
(GuestAddress(0), 0xD000_0000),
(GuestAddress(0x1_0000_0000), 0x8_0000),
]
);
// File mapping at the start of the low address space region.
assert_eq!(
punch_holes_in_guest_mem_layout_for_mappings(
vec![
(GuestAddress(0), 0xD000_0000),
(GuestAddress(0x1_0000_0000), 0x8_0000),
],
&[test_file_backed_mapping(0, 0x2000)]
),
vec![
(GuestAddress(0x2000), 0xD000_0000 - 0x2000),
(GuestAddress(0x1_0000_0000), 0x8_0000),
]
);
// File mapping at the end of the low address space region.
assert_eq!(
punch_holes_in_guest_mem_layout_for_mappings(
vec![
(GuestAddress(0), 0xD000_0000),
(GuestAddress(0x1_0000_0000), 0x8_0000),
],
&[test_file_backed_mapping(0xD000_0000 - 0x2000, 0x2000)]
),
vec![
(GuestAddress(0), 0xD000_0000 - 0x2000),
(GuestAddress(0x1_0000_0000), 0x8_0000),
]
);
// File mapping fully contained within the middle of the low address space region.
assert_eq!(
punch_holes_in_guest_mem_layout_for_mappings(
vec![
(GuestAddress(0), 0xD000_0000),
(GuestAddress(0x1_0000_0000), 0x8_0000),
],
&[test_file_backed_mapping(0x1000, 0x2000)]
),
vec![
(GuestAddress(0), 0x1000),
(GuestAddress(0x3000), 0xD000_0000 - 0x3000),
(GuestAddress(0x1_0000_0000), 0x8_0000),
]
);
// File mapping at the start of the high address space region.
assert_eq!(
punch_holes_in_guest_mem_layout_for_mappings(
vec![
(GuestAddress(0), 0xD000_0000),
(GuestAddress(0x1_0000_0000), 0x8_0000),
],
&[test_file_backed_mapping(0x1_0000_0000, 0x2000)]
),
vec![
(GuestAddress(0), 0xD000_0000),
(GuestAddress(0x1_0000_2000), 0x8_0000 - 0x2000),
]
);
// File mapping at the end of the high address space region.
assert_eq!(
punch_holes_in_guest_mem_layout_for_mappings(
vec![
(GuestAddress(0), 0xD000_0000),
(GuestAddress(0x1_0000_0000), 0x8_0000),
],
&[test_file_backed_mapping(0x1_0008_0000 - 0x2000, 0x2000)]
),
vec![
(GuestAddress(0), 0xD000_0000),
(GuestAddress(0x1_0000_0000), 0x8_0000 - 0x2000),
]
);
// File mapping fully contained within the middle of the high address space region.
assert_eq!(
punch_holes_in_guest_mem_layout_for_mappings(
vec![
(GuestAddress(0), 0xD000_0000),
(GuestAddress(0x1_0000_0000), 0x8_0000),
],
&[test_file_backed_mapping(0x1_0000_1000, 0x2000)]
),
vec![
(GuestAddress(0), 0xD000_0000),
(GuestAddress(0x1_0000_0000), 0x1000),
(GuestAddress(0x1_0000_3000), 0x8_0000 - 0x3000),
]
);
// File mapping overlapping two guest memory regions.
assert_eq!(
punch_holes_in_guest_mem_layout_for_mappings(
vec![
(GuestAddress(0), 0xD000_0000),
(GuestAddress(0x1_0000_0000), 0x8_0000),
],
&[test_file_backed_mapping(0xA000_0000, 0x60002000)]
),
vec![
(GuestAddress(0), 0xA000_0000),
(GuestAddress(0x1_0000_2000), 0x8_0000 - 0x2000),
]
);
}
}