blob: c0963360a1a6ddee316e56d2780e7f16ceac962f [file] [log] [blame]
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <cpuinfo.h>
#include <x86/api.h>
#include <x86/linux/api.h>
#include <linux/api.h>
#include <cpuinfo/internal-api.h>
#include <cpuinfo/log.h>
static inline uint32_t bit_mask(uint32_t bits) {
return (UINT32_C(1) << bits) - UINT32_C(1);
}
static inline bool bitmask_all(uint32_t bitfield, uint32_t mask) {
return (bitfield & mask) == mask;
}
static inline uint32_t min(uint32_t a, uint32_t b) {
return a < b ? a : b;
}
static inline int cmp(uint32_t a, uint32_t b) {
return (a > b) - (a < b);
}
static int cmp_x86_linux_processor(const void* ptr_a, const void* ptr_b) {
const struct cpuinfo_x86_linux_processor* processor_a = (const struct cpuinfo_x86_linux_processor*) ptr_a;
const struct cpuinfo_x86_linux_processor* processor_b = (const struct cpuinfo_x86_linux_processor*) ptr_b;
/* Move usable processors towards the start of the array */
const bool usable_a = bitmask_all(processor_a->flags, CPUINFO_LINUX_FLAG_VALID);
const bool usable_b = bitmask_all(processor_b->flags, CPUINFO_LINUX_FLAG_VALID);
if (usable_a != usable_b) {
return (int) usable_b - (int) usable_a;
}
/* Compare based on APIC ID (i.e. processor 0 < processor 1) */
const uint32_t id_a = processor_a->apic_id;
const uint32_t id_b = processor_b->apic_id;
return cmp(id_a, id_b);
}
static void cpuinfo_x86_count_objects(
uint32_t linux_processors_count,
const struct cpuinfo_x86_linux_processor linux_processors[restrict static linux_processors_count],
const struct cpuinfo_x86_processor processor[restrict static 1],
uint32_t valid_processor_mask,
uint32_t llc_apic_bits,
uint32_t cores_count_ptr[restrict static 1],
uint32_t clusters_count_ptr[restrict static 1],
uint32_t packages_count_ptr[restrict static 1],
uint32_t l1i_count_ptr[restrict static 1],
uint32_t l1d_count_ptr[restrict static 1],
uint32_t l2_count_ptr[restrict static 1],
uint32_t l3_count_ptr[restrict static 1],
uint32_t l4_count_ptr[restrict static 1])
{
const uint32_t core_apic_mask =
~(bit_mask(processor->topology.thread_bits_length) << processor->topology.thread_bits_offset);
const uint32_t package_apic_mask =
core_apic_mask & ~(bit_mask(processor->topology.core_bits_length) << processor->topology.core_bits_offset);
const uint32_t llc_apic_mask = ~bit_mask(llc_apic_bits);
const uint32_t cluster_apic_mask = package_apic_mask | llc_apic_mask;
uint32_t cores_count = 0, clusters_count = 0, packages_count = 0;
uint32_t l1i_count = 0, l1d_count = 0, l2_count = 0, l3_count = 0, l4_count = 0;
uint32_t last_core_id = UINT32_MAX, last_cluster_id = UINT32_MAX, last_package_id = UINT32_MAX;
uint32_t last_l1i_id = UINT32_MAX, last_l1d_id = UINT32_MAX;
uint32_t last_l2_id = UINT32_MAX, last_l3_id = UINT32_MAX, last_l4_id = UINT32_MAX;
for (uint32_t i = 0; i < linux_processors_count; i++) {
if (bitmask_all(linux_processors[i].flags, valid_processor_mask)) {
const uint32_t apic_id = linux_processors[i].apic_id;
cpuinfo_log_debug("APID ID %"PRIu32": system processor %"PRIu32, apic_id, linux_processors[i].linux_id);
/* All bits of APIC ID except thread ID mask */
const uint32_t core_id = apic_id & core_apic_mask;
if (core_id != last_core_id) {
last_core_id = core_id;
cores_count++;
}
/* All bits of APIC ID except thread ID and core ID masks */
const uint32_t package_id = apic_id & package_apic_mask;
if (package_id != last_package_id) {
last_package_id = package_id;
packages_count++;
}
/* Bits of APIC ID which are part of either LLC or package ID mask */
const uint32_t cluster_id = apic_id & cluster_apic_mask;
if (cluster_id != last_cluster_id) {
last_cluster_id = cluster_id;
clusters_count++;
}
if (processor->cache.l1i.size != 0) {
const uint32_t l1i_id = apic_id & ~bit_mask(processor->cache.l1i.apic_bits);
if (l1i_id != last_l1i_id) {
last_l1i_id = l1i_id;
l1i_count++;
}
}
if (processor->cache.l1d.size != 0) {
const uint32_t l1d_id = apic_id & ~bit_mask(processor->cache.l1d.apic_bits);
if (l1d_id != last_l1d_id) {
last_l1d_id = l1d_id;
l1d_count++;
}
}
if (processor->cache.l2.size != 0) {
const uint32_t l2_id = apic_id & ~bit_mask(processor->cache.l2.apic_bits);
if (l2_id != last_l2_id) {
last_l2_id = l2_id;
l2_count++;
}
}
if (processor->cache.l3.size != 0) {
const uint32_t l3_id = apic_id & ~bit_mask(processor->cache.l3.apic_bits);
if (l3_id != last_l3_id) {
last_l3_id = l3_id;
l3_count++;
}
}
if (processor->cache.l4.size != 0) {
const uint32_t l4_id = apic_id & ~bit_mask(processor->cache.l4.apic_bits);
if (l4_id != last_l4_id) {
last_l4_id = l4_id;
l4_count++;
}
}
}
}
*cores_count_ptr = cores_count;
*clusters_count_ptr = clusters_count;
*packages_count_ptr = packages_count;
*l1i_count_ptr = l1i_count;
*l1d_count_ptr = l1d_count;
*l2_count_ptr = l2_count;
*l3_count_ptr = l3_count;
*l4_count_ptr = l4_count;
}
void cpuinfo_x86_linux_init(void) {
struct cpuinfo_x86_linux_processor* x86_linux_processors = NULL;
struct cpuinfo_processor* processors = NULL;
struct cpuinfo_core* cores = NULL;
struct cpuinfo_cluster* clusters = NULL;
struct cpuinfo_package* packages = NULL;
const struct cpuinfo_processor** linux_cpu_to_processor_map = NULL;
const struct cpuinfo_core** linux_cpu_to_core_map = NULL;
struct cpuinfo_cache* l1i = NULL;
struct cpuinfo_cache* l1d = NULL;
struct cpuinfo_cache* l2 = NULL;
struct cpuinfo_cache* l3 = NULL;
struct cpuinfo_cache* l4 = NULL;
const uint32_t max_processors_count = cpuinfo_linux_get_max_processors_count();
cpuinfo_log_debug("system maximum processors count: %"PRIu32, max_processors_count);
const uint32_t max_possible_processors_count = 1 +
cpuinfo_linux_get_max_possible_processor(max_processors_count);
cpuinfo_log_debug("maximum possible processors count: %"PRIu32, max_possible_processors_count);
const uint32_t max_present_processors_count = 1 +
cpuinfo_linux_get_max_present_processor(max_processors_count);
cpuinfo_log_debug("maximum present processors count: %"PRIu32, max_present_processors_count);
uint32_t valid_processor_mask = 0;
uint32_t x86_linux_processors_count = max_processors_count;
if (max_present_processors_count != 0) {
x86_linux_processors_count = min(x86_linux_processors_count, max_present_processors_count);
valid_processor_mask = CPUINFO_LINUX_FLAG_PRESENT;
} else {
valid_processor_mask = CPUINFO_LINUX_FLAG_PROC_CPUINFO;
}
if (max_possible_processors_count != 0) {
x86_linux_processors_count = min(x86_linux_processors_count, max_possible_processors_count);
valid_processor_mask |= CPUINFO_LINUX_FLAG_POSSIBLE;
}
x86_linux_processors = calloc(x86_linux_processors_count, sizeof(struct cpuinfo_x86_linux_processor));
if (x86_linux_processors == NULL) {
cpuinfo_log_error(
"failed to allocate %zu bytes for descriptions of %"PRIu32" x86 logical processors",
x86_linux_processors_count * sizeof(struct cpuinfo_x86_linux_processor),
x86_linux_processors_count);
return;
}
if (max_possible_processors_count != 0) {
cpuinfo_linux_detect_possible_processors(
x86_linux_processors_count, &x86_linux_processors->flags,
sizeof(struct cpuinfo_x86_linux_processor),
CPUINFO_LINUX_FLAG_POSSIBLE);
}
if (max_present_processors_count != 0) {
cpuinfo_linux_detect_present_processors(
x86_linux_processors_count, &x86_linux_processors->flags,
sizeof(struct cpuinfo_x86_linux_processor),
CPUINFO_LINUX_FLAG_PRESENT);
}
if (!cpuinfo_x86_linux_parse_proc_cpuinfo(x86_linux_processors_count, x86_linux_processors)) {
cpuinfo_log_error("failed to parse processor information from /proc/cpuinfo");
return;
}
for (uint32_t i = 0; i < x86_linux_processors_count; i++) {
if (bitmask_all(x86_linux_processors[i].flags, valid_processor_mask)) {
x86_linux_processors[i].flags |= CPUINFO_LINUX_FLAG_VALID;
}
}
struct cpuinfo_x86_processor x86_processor;
memset(&x86_processor, 0, sizeof(x86_processor));
cpuinfo_x86_init_processor(&x86_processor);
char brand_string[48];
cpuinfo_x86_normalize_brand_string(x86_processor.brand_string, brand_string);
uint32_t processors_count = 0;
for (uint32_t i = 0; i < x86_linux_processors_count; i++) {
if (bitmask_all(x86_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
x86_linux_processors[i].linux_id = i;
processors_count++;
}
}
qsort(x86_linux_processors, x86_linux_processors_count, sizeof(struct cpuinfo_x86_linux_processor),
cmp_x86_linux_processor);
processors = calloc(processors_count, sizeof(struct cpuinfo_processor));
if (processors == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" logical processors",
processors_count * sizeof(struct cpuinfo_processor), processors_count);
goto cleanup;
}
uint32_t llc_apic_bits = 0;
if (x86_processor.cache.l4.size != 0) {
llc_apic_bits = x86_processor.cache.l4.apic_bits;
} else if (x86_processor.cache.l3.size != 0) {
llc_apic_bits = x86_processor.cache.l3.apic_bits;
} else if (x86_processor.cache.l2.size != 0) {
llc_apic_bits = x86_processor.cache.l2.apic_bits;
} else if (x86_processor.cache.l1d.size != 0) {
llc_apic_bits = x86_processor.cache.l1d.apic_bits;
}
uint32_t packages_count = 0, clusters_count = 0, cores_count = 0;
uint32_t l1i_count = 0, l1d_count = 0, l2_count = 0, l3_count = 0, l4_count = 0;
cpuinfo_x86_count_objects(
x86_linux_processors_count, x86_linux_processors, &x86_processor, valid_processor_mask, llc_apic_bits,
&cores_count, &clusters_count, &packages_count, &l1i_count, &l1d_count, &l2_count, &l3_count, &l4_count);
cpuinfo_log_debug("detected %"PRIu32" cores", cores_count);
cpuinfo_log_debug("detected %"PRIu32" clusters", clusters_count);
cpuinfo_log_debug("detected %"PRIu32" packages", packages_count);
cpuinfo_log_debug("detected %"PRIu32" L1I caches", l1i_count);
cpuinfo_log_debug("detected %"PRIu32" L1D caches", l1d_count);
cpuinfo_log_debug("detected %"PRIu32" L2 caches", l2_count);
cpuinfo_log_debug("detected %"PRIu32" L3 caches", l3_count);
cpuinfo_log_debug("detected %"PRIu32" L4 caches", l4_count);
linux_cpu_to_processor_map = calloc(x86_linux_processors_count, sizeof(struct cpuinfo_processor*));
if (linux_cpu_to_processor_map == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for mapping entries of %"PRIu32" logical processors",
x86_linux_processors_count * sizeof(struct cpuinfo_processor*),
x86_linux_processors_count);
goto cleanup;
}
linux_cpu_to_core_map = calloc(x86_linux_processors_count, sizeof(struct cpuinfo_core*));
if (linux_cpu_to_core_map == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for mapping entries of %"PRIu32" cores",
x86_linux_processors_count * sizeof(struct cpuinfo_core*),
x86_linux_processors_count);
goto cleanup;
}
cores = calloc(cores_count, sizeof(struct cpuinfo_core));
if (cores == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" cores",
cores_count * sizeof(struct cpuinfo_core), cores_count);
goto cleanup;
}
clusters = calloc(clusters_count, sizeof(struct cpuinfo_cluster));
if (clusters == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" core clusters",
clusters_count * sizeof(struct cpuinfo_cluster), clusters_count);
goto cleanup;
}
packages = calloc(packages_count, sizeof(struct cpuinfo_package));
if (packages == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" physical packages",
packages_count * sizeof(struct cpuinfo_package), packages_count);
goto cleanup;
}
if (l1i_count != 0) {
l1i = calloc(l1i_count, sizeof(struct cpuinfo_cache));
if (l1i == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1I caches",
l1i_count * sizeof(struct cpuinfo_cache), l1i_count);
goto cleanup;
}
}
if (l1d_count != 0) {
l1d = calloc(l1d_count, sizeof(struct cpuinfo_cache));
if (l1d == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1D caches",
l1d_count * sizeof(struct cpuinfo_cache), l1d_count);
goto cleanup;
}
}
if (l2_count != 0) {
l2 = calloc(l2_count, sizeof(struct cpuinfo_cache));
if (l2 == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L2 caches",
l2_count * sizeof(struct cpuinfo_cache), l2_count);
goto cleanup;
}
}
if (l3_count != 0) {
l3 = calloc(l3_count, sizeof(struct cpuinfo_cache));
if (l3 == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L3 caches",
l3_count * sizeof(struct cpuinfo_cache), l3_count);
goto cleanup;
}
}
if (l4_count != 0) {
l4 = calloc(l4_count, sizeof(struct cpuinfo_cache));
if (l4 == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L4 caches",
l4_count * sizeof(struct cpuinfo_cache), l4_count);
goto cleanup;
}
}
const uint32_t core_apic_mask =
~(bit_mask(x86_processor.topology.thread_bits_length) << x86_processor.topology.thread_bits_offset);
const uint32_t package_apic_mask =
core_apic_mask & ~(bit_mask(x86_processor.topology.core_bits_length) << x86_processor.topology.core_bits_offset);
const uint32_t llc_apic_mask = ~bit_mask(llc_apic_bits);
const uint32_t cluster_apic_mask = package_apic_mask | llc_apic_mask;
uint32_t processor_index = UINT32_MAX, core_index = UINT32_MAX, cluster_index = UINT32_MAX, package_index = UINT32_MAX;
uint32_t l1i_index = UINT32_MAX, l1d_index = UINT32_MAX, l2_index = UINT32_MAX, l3_index = UINT32_MAX, l4_index = UINT32_MAX;
uint32_t cluster_id = 0, core_id = 0, smt_id = 0;
uint32_t last_apic_core_id = UINT32_MAX, last_apic_cluster_id = UINT32_MAX, last_apic_package_id = UINT32_MAX;
uint32_t last_l1i_id = UINT32_MAX, last_l1d_id = UINT32_MAX;
uint32_t last_l2_id = UINT32_MAX, last_l3_id = UINT32_MAX, last_l4_id = UINT32_MAX;
for (uint32_t i = 0; i < x86_linux_processors_count; i++) {
if (bitmask_all(x86_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
const uint32_t apic_id = x86_linux_processors[i].apic_id;
processor_index++;
smt_id++;
/* All bits of APIC ID except thread ID mask */
const uint32_t apid_core_id = apic_id & core_apic_mask;
if (apid_core_id != last_apic_core_id) {
core_index++;
core_id++;
smt_id = 0;
}
/* Bits of APIC ID which are part of either LLC or package ID mask */
const uint32_t apic_cluster_id = apic_id & cluster_apic_mask;
if (apic_cluster_id != last_apic_cluster_id) {
cluster_index++;
cluster_id++;
}
/* All bits of APIC ID except thread ID and core ID masks */
const uint32_t apic_package_id = apic_id & package_apic_mask;
if (apic_package_id != last_apic_package_id) {
package_index++;
core_id = 0;
cluster_id = 0;
}
/* Initialize logical processor object */
processors[processor_index].smt_id = smt_id;
processors[processor_index].core = cores + core_index;
processors[processor_index].cluster = clusters + cluster_index;
processors[processor_index].package = packages + package_index;
processors[processor_index].linux_id = x86_linux_processors[i].linux_id;
processors[processor_index].apic_id = x86_linux_processors[i].apic_id;
if (apid_core_id != last_apic_core_id) {
/* new core */
cores[core_index] = (struct cpuinfo_core) {
.processor_start = processor_index,
.processor_count = 1,
.core_id = core_id,
.cluster = clusters + cluster_index,
.package = packages + package_index,
.vendor = x86_processor.vendor,
.uarch = x86_processor.uarch,
.cpuid = x86_processor.cpuid,
};
clusters[cluster_index].core_count += 1;
packages[package_index].core_count += 1;
last_apic_core_id = apid_core_id;
} else {
/* another logical processor on the same core */
cores[core_index].processor_count++;
}
if (apic_cluster_id != last_apic_cluster_id) {
/* new cluster */
clusters[cluster_index].processor_start = processor_index;
clusters[cluster_index].processor_count = 1;
clusters[cluster_index].core_start = core_index;
clusters[cluster_index].cluster_id = cluster_id;
clusters[cluster_index].package = packages + package_index;
clusters[cluster_index].vendor = x86_processor.vendor;
clusters[cluster_index].uarch = x86_processor.uarch;
clusters[cluster_index].cpuid = x86_processor.cpuid;
packages[package_index].cluster_count += 1;
last_apic_cluster_id = apic_cluster_id;
} else {
/* another logical processor on the same cluster */
clusters[cluster_index].processor_count++;
}
if (apic_package_id != last_apic_package_id) {
/* new package */
packages[package_index].processor_start = processor_index;
packages[package_index].processor_count = 1;
packages[package_index].core_start = core_index;
packages[package_index].cluster_start = cluster_index;
cpuinfo_x86_format_package_name(x86_processor.vendor, brand_string, packages[package_index].name);
last_apic_package_id = apic_package_id;
} else {
/* another logical processor on the same package */
packages[package_index].processor_count++;
}
linux_cpu_to_processor_map[x86_linux_processors[i].linux_id] = processors + processor_index;
linux_cpu_to_core_map[x86_linux_processors[i].linux_id] = cores + core_index;
if (x86_processor.cache.l1i.size != 0) {
const uint32_t l1i_id = apic_id & ~bit_mask(x86_processor.cache.l1i.apic_bits);
processors[i].cache.l1i = &l1i[l1i_index];
if (l1i_id != last_l1i_id) {
/* new cache */
last_l1i_id = l1i_id;
l1i[++l1i_index] = (struct cpuinfo_cache) {
.size = x86_processor.cache.l1i.size,
.associativity = x86_processor.cache.l1i.associativity,
.sets = x86_processor.cache.l1i.sets,
.partitions = x86_processor.cache.l1i.partitions,
.line_size = x86_processor.cache.l1i.line_size,
.flags = x86_processor.cache.l1i.flags,
.processor_start = processor_index,
.processor_count = 1,
};
} else {
/* another processor sharing the same cache */
l1i[l1i_index].processor_count += 1;
}
processors[i].cache.l1i = &l1i[l1i_index];
} else {
/* reset cache id */
last_l1i_id = UINT32_MAX;
}
if (x86_processor.cache.l1d.size != 0) {
const uint32_t l1d_id = apic_id & ~bit_mask(x86_processor.cache.l1d.apic_bits);
processors[i].cache.l1d = &l1d[l1d_index];
if (l1d_id != last_l1d_id) {
/* new cache */
last_l1d_id = l1d_id;
l1d[++l1d_index] = (struct cpuinfo_cache) {
.size = x86_processor.cache.l1d.size,
.associativity = x86_processor.cache.l1d.associativity,
.sets = x86_processor.cache.l1d.sets,
.partitions = x86_processor.cache.l1d.partitions,
.line_size = x86_processor.cache.l1d.line_size,
.flags = x86_processor.cache.l1d.flags,
.processor_start = processor_index,
.processor_count = 1,
};
} else {
/* another processor sharing the same cache */
l1d[l1d_index].processor_count += 1;
}
processors[i].cache.l1d = &l1d[l1d_index];
} else {
/* reset cache id */
last_l1d_id = UINT32_MAX;
}
if (x86_processor.cache.l2.size != 0) {
const uint32_t l2_id = apic_id & ~bit_mask(x86_processor.cache.l2.apic_bits);
processors[i].cache.l2 = &l2[l2_index];
if (l2_id != last_l2_id) {
/* new cache */
last_l2_id = l2_id;
l2[++l2_index] = (struct cpuinfo_cache) {
.size = x86_processor.cache.l2.size,
.associativity = x86_processor.cache.l2.associativity,
.sets = x86_processor.cache.l2.sets,
.partitions = x86_processor.cache.l2.partitions,
.line_size = x86_processor.cache.l2.line_size,
.flags = x86_processor.cache.l2.flags,
.processor_start = processor_index,
.processor_count = 1,
};
} else {
/* another processor sharing the same cache */
l2[l2_index].processor_count += 1;
}
processors[i].cache.l2 = &l2[l2_index];
} else {
/* reset cache id */
last_l2_id = UINT32_MAX;
}
if (x86_processor.cache.l3.size != 0) {
const uint32_t l3_id = apic_id & ~bit_mask(x86_processor.cache.l3.apic_bits);
processors[i].cache.l3 = &l3[l3_index];
if (l3_id != last_l3_id) {
/* new cache */
last_l3_id = l3_id;
l3[++l3_index] = (struct cpuinfo_cache) {
.size = x86_processor.cache.l3.size,
.associativity = x86_processor.cache.l3.associativity,
.sets = x86_processor.cache.l3.sets,
.partitions = x86_processor.cache.l3.partitions,
.line_size = x86_processor.cache.l3.line_size,
.flags = x86_processor.cache.l3.flags,
.processor_start = processor_index,
.processor_count = 1,
};
} else {
/* another processor sharing the same cache */
l3[l3_index].processor_count += 1;
}
processors[i].cache.l3 = &l3[l3_index];
} else {
/* reset cache id */
last_l3_id = UINT32_MAX;
}
if (x86_processor.cache.l4.size != 0) {
const uint32_t l4_id = apic_id & ~bit_mask(x86_processor.cache.l4.apic_bits);
processors[i].cache.l4 = &l4[l4_index];
if (l4_id != last_l4_id) {
/* new cache */
last_l4_id = l4_id;
l4[++l4_index] = (struct cpuinfo_cache) {
.size = x86_processor.cache.l4.size,
.associativity = x86_processor.cache.l4.associativity,
.sets = x86_processor.cache.l4.sets,
.partitions = x86_processor.cache.l4.partitions,
.line_size = x86_processor.cache.l4.line_size,
.flags = x86_processor.cache.l4.flags,
.processor_start = processor_index,
.processor_count = 1,
};
} else {
/* another processor sharing the same cache */
l4[l4_index].processor_count += 1;
}
processors[i].cache.l4 = &l4[l4_index];
} else {
/* reset cache id */
last_l4_id = UINT32_MAX;
}
}
}
/* Commit changes */
cpuinfo_linux_cpu_to_processor_map = linux_cpu_to_processor_map;
cpuinfo_linux_cpu_to_core_map = linux_cpu_to_core_map;
cpuinfo_processors = processors;
cpuinfo_cores = cores;
cpuinfo_clusters = clusters;
cpuinfo_packages = packages;
cpuinfo_cache[cpuinfo_cache_level_1i] = l1i;
cpuinfo_cache[cpuinfo_cache_level_1d] = l1d;
cpuinfo_cache[cpuinfo_cache_level_2] = l2;
cpuinfo_cache[cpuinfo_cache_level_3] = l3;
cpuinfo_cache[cpuinfo_cache_level_4] = l4;
cpuinfo_processors_count = processors_count;
cpuinfo_cores_count = cores_count;
cpuinfo_clusters_count = clusters_count;
cpuinfo_packages_count = packages_count;
cpuinfo_cache_count[cpuinfo_cache_level_1i] = l1i_count;
cpuinfo_cache_count[cpuinfo_cache_level_1d] = l1d_count;
cpuinfo_cache_count[cpuinfo_cache_level_2] = l2_count;
cpuinfo_cache_count[cpuinfo_cache_level_3] = l3_count;
cpuinfo_cache_count[cpuinfo_cache_level_4] = l4_count;
cpuinfo_max_cache_size = cpuinfo_compute_max_cache_size(&processors[0]);
__sync_synchronize();
cpuinfo_is_initialized = true;
linux_cpu_to_processor_map = NULL;
linux_cpu_to_core_map = NULL;
processors = NULL;
cores = NULL;
clusters = NULL;
packages = NULL;
l1i = l1d = l2 = l3 = l4 = NULL;
cleanup:
free(linux_cpu_to_processor_map);
free(linux_cpu_to_core_map);
free(x86_linux_processors);
free(processors);
free(cores);
free(clusters);
free(packages);
free(l1i);
free(l1d);
free(l2);
free(l3);
free(l4);
}