blob: 6272abff224041f8ed58b02a9453b8b057ca156e [file] [log] [blame]
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <cpuinfo.h>
#include <arm/linux/api.h>
#if defined(__ANDROID__)
#include <arm/android/api.h>
#endif
#include <arm/api.h>
#include <arm/midr.h>
#include <linux/api.h>
#include <cpuinfo/internal-api.h>
#include <cpuinfo/log.h>
struct cpuinfo_arm_isa cpuinfo_isa = { 0 };
static struct cpuinfo_package package = { { 0 } };
static inline bool bitmask_all(uint32_t bitfield, uint32_t mask) {
return (bitfield & mask) == mask;
}
static inline uint32_t min(uint32_t a, uint32_t b) {
return a < b ? a : b;
}
static inline int cmp(uint32_t a, uint32_t b) {
return (a > b) - (a < b);
}
static bool cluster_siblings_parser(
uint32_t processor, uint32_t siblings_start, uint32_t siblings_end,
struct cpuinfo_arm_linux_processor* processors)
{
processors[processor].flags |= CPUINFO_LINUX_FLAG_PACKAGE_CLUSTER;
uint32_t package_leader_id = processors[processor].package_leader_id;
for (uint32_t sibling = siblings_start; sibling < siblings_end; sibling++) {
if (!bitmask_all(processors[sibling].flags, CPUINFO_LINUX_FLAG_VALID)) {
cpuinfo_log_info("invalid processor %"PRIu32" reported as a sibling for processor %"PRIu32,
sibling, processor);
continue;
}
const uint32_t sibling_package_leader_id = processors[sibling].package_leader_id;
if (sibling_package_leader_id < package_leader_id) {
package_leader_id = sibling_package_leader_id;
}
processors[sibling].package_leader_id = package_leader_id;
processors[sibling].flags |= CPUINFO_LINUX_FLAG_PACKAGE_CLUSTER;
}
processors[processor].package_leader_id = package_leader_id;
return true;
}
static int cmp_arm_linux_processor(const void* ptr_a, const void* ptr_b) {
const struct cpuinfo_arm_linux_processor* processor_a = (const struct cpuinfo_arm_linux_processor*) ptr_a;
const struct cpuinfo_arm_linux_processor* processor_b = (const struct cpuinfo_arm_linux_processor*) ptr_b;
/* Move usable processors towards the start of the array */
const bool usable_a = bitmask_all(processor_a->flags, CPUINFO_LINUX_FLAG_VALID);
const bool usable_b = bitmask_all(processor_b->flags, CPUINFO_LINUX_FLAG_VALID);
if (usable_a != usable_b) {
return (int) usable_b - (int) usable_a;
}
/* Compare based on core type (e.g. Cortex-A57 < Cortex-A53) */
const uint32_t midr_a = processor_a->midr;
const uint32_t midr_b = processor_b->midr;
if (midr_a != midr_b) {
const uint32_t score_a = midr_score_core(midr_a);
const uint32_t score_b = midr_score_core(midr_b);
if (score_a != score_b) {
return score_a > score_b ? -1 : 1;
}
}
/* Compare based on core frequency (e.g. 2.0 GHz < 1.2 GHz) */
const uint32_t frequency_a = processor_a->max_frequency;
const uint32_t frequency_b = processor_b->max_frequency;
if (frequency_a != frequency_b) {
return frequency_a > frequency_b ? -1 : 1;
}
/* Compare based on cluster leader id (i.e. cluster 1 < cluster 0) */
const uint32_t cluster_a = processor_a->package_leader_id;
const uint32_t cluster_b = processor_b->package_leader_id;
if (cluster_a != cluster_b) {
return cluster_a > cluster_b ? -1 : 1;
}
/* Compare based on system processor id (i.e. processor 0 < processor 1) */
const uint32_t id_a = processor_a->system_processor_id;
const uint32_t id_b = processor_b->system_processor_id;
return cmp(id_a, id_b);
}
void cpuinfo_arm_linux_init(void) {
struct cpuinfo_arm_linux_processor* arm_linux_processors = NULL;
struct cpuinfo_processor* processors = NULL;
struct cpuinfo_core* cores = NULL;
struct cpuinfo_cluster* clusters = NULL;
struct cpuinfo_uarch_info* uarchs = NULL;
struct cpuinfo_cache* l1i = NULL;
struct cpuinfo_cache* l1d = NULL;
struct cpuinfo_cache* l2 = NULL;
struct cpuinfo_cache* l3 = NULL;
const struct cpuinfo_processor** linux_cpu_to_processor_map = NULL;
const struct cpuinfo_core** linux_cpu_to_core_map = NULL;
uint32_t* linux_cpu_to_uarch_index_map = NULL;
const uint32_t max_processors_count = cpuinfo_linux_get_max_processors_count();
cpuinfo_log_debug("system maximum processors count: %"PRIu32, max_processors_count);
const uint32_t max_possible_processors_count = 1 +
cpuinfo_linux_get_max_possible_processor(max_processors_count);
cpuinfo_log_debug("maximum possible processors count: %"PRIu32, max_possible_processors_count);
const uint32_t max_present_processors_count = 1 +
cpuinfo_linux_get_max_present_processor(max_processors_count);
cpuinfo_log_debug("maximum present processors count: %"PRIu32, max_present_processors_count);
uint32_t valid_processor_mask = 0;
uint32_t arm_linux_processors_count = max_processors_count;
if (max_present_processors_count != 0) {
arm_linux_processors_count = min(arm_linux_processors_count, max_present_processors_count);
valid_processor_mask = CPUINFO_LINUX_FLAG_PRESENT;
}
if (max_possible_processors_count != 0) {
arm_linux_processors_count = min(arm_linux_processors_count, max_possible_processors_count);
valid_processor_mask |= CPUINFO_LINUX_FLAG_POSSIBLE;
}
if ((max_present_processors_count | max_possible_processors_count) == 0) {
cpuinfo_log_error("failed to parse both lists of possible and present processors");
return;
}
arm_linux_processors = calloc(arm_linux_processors_count, sizeof(struct cpuinfo_arm_linux_processor));
if (arm_linux_processors == NULL) {
cpuinfo_log_error(
"failed to allocate %zu bytes for descriptions of %"PRIu32" ARM logical processors",
arm_linux_processors_count * sizeof(struct cpuinfo_arm_linux_processor),
arm_linux_processors_count);
return;
}
if (max_possible_processors_count) {
cpuinfo_linux_detect_possible_processors(
arm_linux_processors_count, &arm_linux_processors->flags,
sizeof(struct cpuinfo_arm_linux_processor),
CPUINFO_LINUX_FLAG_POSSIBLE);
}
if (max_present_processors_count) {
cpuinfo_linux_detect_present_processors(
arm_linux_processors_count, &arm_linux_processors->flags,
sizeof(struct cpuinfo_arm_linux_processor),
CPUINFO_LINUX_FLAG_PRESENT);
}
#if defined(__ANDROID__)
struct cpuinfo_android_properties android_properties;
cpuinfo_arm_android_parse_properties(&android_properties);
#else
char proc_cpuinfo_hardware[CPUINFO_HARDWARE_VALUE_MAX] = { 0 };
#endif
if (!cpuinfo_arm_linux_parse_proc_cpuinfo(
#if defined(__ANDROID__)
android_properties.proc_cpuinfo_hardware,
#else
proc_cpuinfo_hardware,
#endif
arm_linux_processors_count,
arm_linux_processors)) {
cpuinfo_log_error("failed to parse processor information from /proc/cpuinfo");
return;
}
for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
if (bitmask_all(arm_linux_processors[i].flags, valid_processor_mask)) {
arm_linux_processors[i].flags |= CPUINFO_LINUX_FLAG_VALID;
cpuinfo_log_debug("parsed processor %"PRIu32" MIDR 0x%08"PRIx32,
i, arm_linux_processors[i].midr);
}
}
uint32_t valid_processors = 0, last_midr = 0;
#if CPUINFO_ARCH_ARM
uint32_t last_architecture_version = 0, last_architecture_flags = 0;
#endif
for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
arm_linux_processors[i].system_processor_id = i;
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
valid_processors += 1;
if (!(arm_linux_processors[i].flags & CPUINFO_ARM_LINUX_VALID_PROCESSOR)) {
/*
* Processor is in possible and present lists, but not reported in /proc/cpuinfo.
* This is fairly common: high-index processors can be not reported if they are offline.
*/
cpuinfo_log_info("processor %"PRIu32" is not listed in /proc/cpuinfo", i);
}
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_ARM_LINUX_VALID_MIDR)) {
last_midr = arm_linux_processors[i].midr;
}
#if CPUINFO_ARCH_ARM
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_ARM_LINUX_VALID_ARCHITECTURE)) {
last_architecture_version = arm_linux_processors[i].architecture_version;
last_architecture_flags = arm_linux_processors[i].architecture_flags;
}
#endif
} else {
/* Processor reported in /proc/cpuinfo, but not in possible and/or present lists: log and ignore */
if (!(arm_linux_processors[i].flags & CPUINFO_ARM_LINUX_VALID_PROCESSOR)) {
cpuinfo_log_warning("invalid processor %"PRIu32" reported in /proc/cpuinfo", i);
}
}
}
#if defined(__ANDROID__)
const struct cpuinfo_arm_chipset chipset =
cpuinfo_arm_android_decode_chipset(&android_properties, valid_processors, 0);
#else
const struct cpuinfo_arm_chipset chipset = {
.vendor = cpuinfo_arm_chipset_vendor_unknown,
.series = cpuinfo_arm_chipset_series_unknown,
};
#endif
#if CPUINFO_ARCH_ARM
uint32_t isa_features = 0, isa_features2 = 0;
#ifdef __ANDROID__
/*
* On Android before API 20, libc.so does not provide getauxval function.
* Thus, we try to dynamically find it, or use two fallback mechanisms:
* 1. dlopen libc.so, and try to find getauxval
* 2. Parse /proc/self/auxv procfs file
* 3. Use features reported in /proc/cpuinfo
*/
if (!cpuinfo_arm_linux_hwcap_from_getauxval(&isa_features, &isa_features2)) {
/* getauxval can't be used, fall back to parsing /proc/self/auxv */
if (!cpuinfo_arm_linux_hwcap_from_procfs(&isa_features, &isa_features2)) {
/*
* Reading /proc/self/auxv failed, probably due to file permissions.
* Use information from /proc/cpuinfo to detect ISA.
*
* If different processors report different ISA features, take the intersection.
*/
uint32_t processors_with_features = 0;
for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID | CPUINFO_ARM_LINUX_VALID_FEATURES)) {
if (processors_with_features == 0) {
isa_features = arm_linux_processors[i].features;
isa_features2 = arm_linux_processors[i].features2;
} else {
isa_features &= arm_linux_processors[i].features;
isa_features2 &= arm_linux_processors[i].features2;
}
processors_with_features += 1;
}
}
}
}
#else
/* On GNU/Linux getauxval is always available */
cpuinfo_arm_linux_hwcap_from_getauxval(&isa_features, &isa_features2);
#endif
cpuinfo_arm_linux_decode_isa_from_proc_cpuinfo(
isa_features, isa_features2,
last_midr, last_architecture_version, last_architecture_flags,
&chipset, &cpuinfo_isa);
#elif CPUINFO_ARCH_ARM64
/* getauxval is always available on ARM64 Android */
const uint32_t isa_features = cpuinfo_arm_linux_hwcap_from_getauxval();
cpuinfo_arm64_linux_decode_isa_from_proc_cpuinfo(
isa_features, last_midr, &chipset, &cpuinfo_isa);
#endif
/* Detect min/max frequency and package ID */
for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
const uint32_t max_frequency = cpuinfo_linux_get_processor_max_frequency(i);
if (max_frequency != 0) {
arm_linux_processors[i].max_frequency = max_frequency;
arm_linux_processors[i].flags |= CPUINFO_LINUX_FLAG_MAX_FREQUENCY;
}
const uint32_t min_frequency = cpuinfo_linux_get_processor_min_frequency(i);
if (min_frequency != 0) {
arm_linux_processors[i].min_frequency = min_frequency;
arm_linux_processors[i].flags |= CPUINFO_LINUX_FLAG_MIN_FREQUENCY;
}
if (cpuinfo_linux_get_processor_package_id(i, &arm_linux_processors[i].package_id)) {
arm_linux_processors[i].flags |= CPUINFO_LINUX_FLAG_PACKAGE_ID;
}
}
}
/* Initialize topology group IDs */
for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
arm_linux_processors[i].package_leader_id = i;
}
/* Propagate topology group IDs among siblings */
for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
if (!bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
continue;
}
if (arm_linux_processors[i].flags & CPUINFO_LINUX_FLAG_PACKAGE_ID) {
cpuinfo_linux_detect_core_siblings(
arm_linux_processors_count, i,
(cpuinfo_siblings_callback) cluster_siblings_parser,
arm_linux_processors);
}
}
/* Propagate all cluster IDs */
uint32_t clustered_processors = 0;
for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID | CPUINFO_LINUX_FLAG_PACKAGE_CLUSTER)) {
clustered_processors += 1;
const uint32_t package_leader_id = arm_linux_processors[i].package_leader_id;
if (package_leader_id < i) {
arm_linux_processors[i].package_leader_id = arm_linux_processors[package_leader_id].package_leader_id;
}
cpuinfo_log_debug("processor %"PRIu32" clustered with processor %"PRIu32" as inferred from system siblings lists",
i, arm_linux_processors[i].package_leader_id);
}
}
if (clustered_processors != valid_processors) {
/*
* Topology information about some or all logical processors may be unavailable, for the following reasons:
* - Linux kernel is too old, or configured without support for topology information in sysfs.
* - Core is offline, and Linux kernel is configured to not report topology for offline cores.
*
* In this case, we assign processors to clusters using two methods:
* - Try heuristic cluster configurations (e.g. 6-core SoC usually has 4+2 big.LITTLE configuration).
* - If heuristic failed, assign processors to core clusters in a sequential scan.
*/
if (!cpuinfo_arm_linux_detect_core_clusters_by_heuristic(valid_processors, arm_linux_processors_count, arm_linux_processors)) {
cpuinfo_arm_linux_detect_core_clusters_by_sequential_scan(arm_linux_processors_count, arm_linux_processors);
}
}
cpuinfo_arm_linux_count_cluster_processors(arm_linux_processors_count, arm_linux_processors);
const uint32_t cluster_count = cpuinfo_arm_linux_detect_cluster_midr(
&chipset,
arm_linux_processors_count, valid_processors, arm_linux_processors);
/* Initialize core vendor, uarch, MIDR, and frequency for every logical processor */
for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
const uint32_t cluster_leader = arm_linux_processors[i].package_leader_id;
if (cluster_leader == i) {
/* Cluster leader: decode core vendor and uarch */
cpuinfo_arm_decode_vendor_uarch(
arm_linux_processors[cluster_leader].midr,
#if CPUINFO_ARCH_ARM
!!(arm_linux_processors[cluster_leader].features & CPUINFO_ARM_LINUX_FEATURE_VFPV4),
#endif
&arm_linux_processors[cluster_leader].vendor,
&arm_linux_processors[cluster_leader].uarch);
} else {
/* Cluster non-leader: copy vendor, uarch, MIDR, and frequency from cluster leader */
arm_linux_processors[i].flags |= arm_linux_processors[cluster_leader].flags &
(CPUINFO_ARM_LINUX_VALID_MIDR | CPUINFO_LINUX_FLAG_MAX_FREQUENCY);
arm_linux_processors[i].midr = arm_linux_processors[cluster_leader].midr;
arm_linux_processors[i].vendor = arm_linux_processors[cluster_leader].vendor;
arm_linux_processors[i].uarch = arm_linux_processors[cluster_leader].uarch;
arm_linux_processors[i].max_frequency = arm_linux_processors[cluster_leader].max_frequency;
}
}
}
for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
cpuinfo_log_debug("post-analysis processor %"PRIu32": MIDR %08"PRIx32" frequency %"PRIu32,
i, arm_linux_processors[i].midr, arm_linux_processors[i].max_frequency);
}
}
qsort(arm_linux_processors, arm_linux_processors_count,
sizeof(struct cpuinfo_arm_linux_processor), cmp_arm_linux_processor);
for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
cpuinfo_log_debug("post-sort processor %"PRIu32": system id %"PRIu32" MIDR %08"PRIx32" frequency %"PRIu32,
i, arm_linux_processors[i].system_processor_id, arm_linux_processors[i].midr, arm_linux_processors[i].max_frequency);
}
}
uint32_t uarchs_count = 0;
enum cpuinfo_uarch last_uarch;
for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
if (uarchs_count == 0 || arm_linux_processors[i].uarch != last_uarch) {
last_uarch = arm_linux_processors[i].uarch;
uarchs_count += 1;
}
arm_linux_processors[i].uarch_index = uarchs_count - 1;
}
}
/*
* Assumptions:
* - No SMP (i.e. each core supports only one hardware thread).
* - Level 1 instruction and data caches are private to the core clusters.
* - Level 2 and level 3 cache is shared between cores in the same cluster.
*/
cpuinfo_arm_chipset_to_string(&chipset, package.name);
package.processor_count = valid_processors;
package.core_count = valid_processors;
package.cluster_count = cluster_count;
processors = calloc(valid_processors, sizeof(struct cpuinfo_processor));
if (processors == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" logical processors",
valid_processors * sizeof(struct cpuinfo_processor), valid_processors);
goto cleanup;
}
cores = calloc(valid_processors, sizeof(struct cpuinfo_core));
if (cores == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" cores",
valid_processors * sizeof(struct cpuinfo_core), valid_processors);
goto cleanup;
}
clusters = calloc(cluster_count, sizeof(struct cpuinfo_cluster));
if (clusters == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" core clusters",
cluster_count * sizeof(struct cpuinfo_cluster), cluster_count);
goto cleanup;
}
uarchs = calloc(uarchs_count, sizeof(struct cpuinfo_uarch_info));
if (uarchs == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" microarchitectures",
uarchs_count * sizeof(struct cpuinfo_uarch_info), uarchs_count);
goto cleanup;
}
linux_cpu_to_processor_map = calloc(arm_linux_processors_count, sizeof(struct cpuinfo_processor*));
if (linux_cpu_to_processor_map == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for %"PRIu32" logical processor mapping entries",
arm_linux_processors_count * sizeof(struct cpuinfo_processor*), arm_linux_processors_count);
goto cleanup;
}
linux_cpu_to_core_map = calloc(arm_linux_processors_count, sizeof(struct cpuinfo_core*));
if (linux_cpu_to_core_map == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for %"PRIu32" core mapping entries",
arm_linux_processors_count * sizeof(struct cpuinfo_core*), arm_linux_processors_count);
goto cleanup;
}
if (uarchs_count > 1) {
linux_cpu_to_uarch_index_map = calloc(arm_linux_processors_count, sizeof(uint32_t));
if (linux_cpu_to_uarch_index_map == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for %"PRIu32" uarch index mapping entries",
arm_linux_processors_count * sizeof(uint32_t), arm_linux_processors_count);
goto cleanup;
}
}
l1i = calloc(valid_processors, sizeof(struct cpuinfo_cache));
if (l1i == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1I caches",
valid_processors * sizeof(struct cpuinfo_cache), valid_processors);
goto cleanup;
}
l1d = calloc(valid_processors, sizeof(struct cpuinfo_cache));
if (l1d == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1D caches",
valid_processors * sizeof(struct cpuinfo_cache), valid_processors);
goto cleanup;
}
uint32_t uarchs_index = 0;
for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
if (uarchs_index == 0 || arm_linux_processors[i].uarch != last_uarch) {
last_uarch = arm_linux_processors[i].uarch;
uarchs[uarchs_index] = (struct cpuinfo_uarch_info) {
.uarch = arm_linux_processors[i].uarch,
.midr = arm_linux_processors[i].midr,
};
uarchs_index += 1;
}
uarchs[uarchs_index - 1].processor_count += 1;
uarchs[uarchs_index - 1].core_count += 1;
}
}
uint32_t l2_count = 0, l3_count = 0, big_l3_size = 0, cluster_id = UINT32_MAX;
/* Indication whether L3 (if it exists) is shared between all cores */
bool shared_l3 = true;
/* Populate cache infromation structures in l1i, l1d */
for (uint32_t i = 0; i < valid_processors; i++) {
if (arm_linux_processors[i].package_leader_id == arm_linux_processors[i].system_processor_id) {
cluster_id += 1;
clusters[cluster_id] = (struct cpuinfo_cluster) {
.processor_start = i,
.processor_count = arm_linux_processors[i].package_processor_count,
.core_start = i,
.core_count = arm_linux_processors[i].package_processor_count,
.cluster_id = cluster_id,
.package = &package,
.vendor = arm_linux_processors[i].vendor,
.uarch = arm_linux_processors[i].uarch,
.midr = arm_linux_processors[i].midr,
};
}
processors[i].smt_id = 0;
processors[i].core = cores + i;
processors[i].cluster = clusters + cluster_id;
processors[i].package = &package;
processors[i].linux_id = (int) arm_linux_processors[i].system_processor_id;
processors[i].cache.l1i = l1i + i;
processors[i].cache.l1d = l1d + i;
linux_cpu_to_processor_map[arm_linux_processors[i].system_processor_id] = &processors[i];
cores[i].processor_start = i;
cores[i].processor_count = 1;
cores[i].core_id = i;
cores[i].cluster = clusters + cluster_id;
cores[i].package = &package;
cores[i].vendor = arm_linux_processors[i].vendor;
cores[i].uarch = arm_linux_processors[i].uarch;
cores[i].midr = arm_linux_processors[i].midr;
linux_cpu_to_core_map[arm_linux_processors[i].system_processor_id] = &cores[i];
if (linux_cpu_to_uarch_index_map != NULL) {
linux_cpu_to_uarch_index_map[arm_linux_processors[i].system_processor_id] =
arm_linux_processors[i].uarch_index;
}
struct cpuinfo_cache temp_l2 = { 0 }, temp_l3 = { 0 };
cpuinfo_arm_decode_cache(
arm_linux_processors[i].uarch,
arm_linux_processors[i].package_processor_count,
arm_linux_processors[i].midr,
&chipset,
cluster_id,
arm_linux_processors[i].architecture_version,
&l1i[i], &l1d[i], &temp_l2, &temp_l3);
l1i[i].processor_start = l1d[i].processor_start = i;
l1i[i].processor_count = l1d[i].processor_count = 1;
#if CPUINFO_ARCH_ARM
/* L1I reported in /proc/cpuinfo overrides defaults */
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_ARM_LINUX_VALID_ICACHE)) {
l1i[i] = (struct cpuinfo_cache) {
.size = arm_linux_processors[i].proc_cpuinfo_cache.i_size,
.associativity = arm_linux_processors[i].proc_cpuinfo_cache.i_assoc,
.sets = arm_linux_processors[i].proc_cpuinfo_cache.i_sets,
.partitions = 1,
.line_size = arm_linux_processors[i].proc_cpuinfo_cache.i_line_length
};
}
/* L1D reported in /proc/cpuinfo overrides defaults */
if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_ARM_LINUX_VALID_DCACHE)) {
l1d[i] = (struct cpuinfo_cache) {
.size = arm_linux_processors[i].proc_cpuinfo_cache.d_size,
.associativity = arm_linux_processors[i].proc_cpuinfo_cache.d_assoc,
.sets = arm_linux_processors[i].proc_cpuinfo_cache.d_sets,
.partitions = 1,
.line_size = arm_linux_processors[i].proc_cpuinfo_cache.d_line_length
};
}
#endif
if (temp_l3.size != 0) {
/*
* Assumptions:
* - L2 is private to each core
* - L3 is shared by cores in the same cluster
* - If cores in different clusters report the same L3, it is shared between all cores.
*/
l2_count += 1;
if (arm_linux_processors[i].package_leader_id == arm_linux_processors[i].system_processor_id) {
if (cluster_id == 0) {
big_l3_size = temp_l3.size;
l3_count = 1;
} else if (temp_l3.size != big_l3_size) {
/* If some cores have different L3 size, L3 is not shared between all cores */
shared_l3 = false;
l3_count += 1;
}
}
} else {
/* If some cores don't have L3 cache, L3 is not shared between all cores */
shared_l3 = false;
if (temp_l2.size != 0) {
/* Assume L2 is shared by cores in the same cluster */
if (arm_linux_processors[i].package_leader_id == arm_linux_processors[i].system_processor_id) {
l2_count += 1;
}
}
}
}
if (l2_count != 0) {
l2 = calloc(l2_count, sizeof(struct cpuinfo_cache));
if (l2 == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L2 caches",
l2_count * sizeof(struct cpuinfo_cache), l2_count);
goto cleanup;
}
if (l3_count != 0) {
l3 = calloc(l3_count, sizeof(struct cpuinfo_cache));
if (l3 == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L3 caches",
l3_count * sizeof(struct cpuinfo_cache), l3_count);
goto cleanup;
}
}
}
cluster_id = UINT32_MAX;
uint32_t l2_index = UINT32_MAX, l3_index = UINT32_MAX;
for (uint32_t i = 0; i < valid_processors; i++) {
if (arm_linux_processors[i].package_leader_id == arm_linux_processors[i].system_processor_id) {
cluster_id++;
}
struct cpuinfo_cache dummy_l1i, dummy_l1d, temp_l2 = { 0 }, temp_l3 = { 0 };
cpuinfo_arm_decode_cache(
arm_linux_processors[i].uarch,
arm_linux_processors[i].package_processor_count,
arm_linux_processors[i].midr,
&chipset,
cluster_id,
arm_linux_processors[i].architecture_version,
&dummy_l1i, &dummy_l1d, &temp_l2, &temp_l3);
if (temp_l3.size != 0) {
/*
* Assumptions:
* - L2 is private to each core
* - L3 is shared by cores in the same cluster
* - If cores in different clusters report the same L3, it is shared between all cores.
*/
l2_index += 1;
l2[l2_index] = (struct cpuinfo_cache) {
.size = temp_l2.size,
.associativity = temp_l2.associativity,
.sets = temp_l2.sets,
.partitions = 1,
.line_size = temp_l2.line_size,
.flags = temp_l2.flags,
.processor_start = i,
.processor_count = 1,
};
processors[i].cache.l2 = l2 + l2_index;
if (arm_linux_processors[i].package_leader_id == arm_linux_processors[i].system_processor_id) {
l3_index += 1;
if (l3_index < l3_count) {
l3[l3_index] = (struct cpuinfo_cache) {
.size = temp_l3.size,
.associativity = temp_l3.associativity,
.sets = temp_l3.sets,
.partitions = 1,
.line_size = temp_l3.line_size,
.flags = temp_l3.flags,
.processor_start = i,
.processor_count =
shared_l3 ? valid_processors : arm_linux_processors[i].package_processor_count,
};
}
}
if (shared_l3) {
processors[i].cache.l3 = l3;
} else if (l3_index < l3_count) {
processors[i].cache.l3 = l3 + l3_index;
}
} else if (temp_l2.size != 0) {
/* Assume L2 is shared by cores in the same cluster */
if (arm_linux_processors[i].package_leader_id == arm_linux_processors[i].system_processor_id) {
l2_index += 1;
l2[l2_index] = (struct cpuinfo_cache) {
.size = temp_l2.size,
.associativity = temp_l2.associativity,
.sets = temp_l2.sets,
.partitions = 1,
.line_size = temp_l2.line_size,
.flags = temp_l2.flags,
.processor_start = i,
.processor_count = arm_linux_processors[i].package_processor_count,
};
}
processors[i].cache.l2 = l2 + l2_index;
}
}
/* Commit */
cpuinfo_processors = processors;
cpuinfo_cores = cores;
cpuinfo_clusters = clusters;
cpuinfo_packages = &package;
cpuinfo_uarchs = uarchs;
cpuinfo_cache[cpuinfo_cache_level_1i] = l1i;
cpuinfo_cache[cpuinfo_cache_level_1d] = l1d;
cpuinfo_cache[cpuinfo_cache_level_2] = l2;
cpuinfo_cache[cpuinfo_cache_level_3] = l3;
cpuinfo_processors_count = valid_processors;
cpuinfo_cores_count = valid_processors;
cpuinfo_clusters_count = cluster_count;
cpuinfo_packages_count = 1;
cpuinfo_uarchs_count = uarchs_count;
cpuinfo_cache_count[cpuinfo_cache_level_1i] = valid_processors;
cpuinfo_cache_count[cpuinfo_cache_level_1d] = valid_processors;
cpuinfo_cache_count[cpuinfo_cache_level_2] = l2_count;
cpuinfo_cache_count[cpuinfo_cache_level_3] = l3_count;
cpuinfo_max_cache_size = cpuinfo_arm_compute_max_cache_size(&processors[0]);
cpuinfo_linux_cpu_max = arm_linux_processors_count;
cpuinfo_linux_cpu_to_processor_map = linux_cpu_to_processor_map;
cpuinfo_linux_cpu_to_core_map = linux_cpu_to_core_map;
cpuinfo_linux_cpu_to_uarch_index_map = linux_cpu_to_uarch_index_map;
__sync_synchronize();
cpuinfo_is_initialized = true;
processors = NULL;
cores = NULL;
clusters = NULL;
uarchs = NULL;
l1i = l1d = l2 = l3 = NULL;
linux_cpu_to_processor_map = NULL;
linux_cpu_to_core_map = NULL;
linux_cpu_to_uarch_index_map = NULL;
cleanup:
free(arm_linux_processors);
free(processors);
free(cores);
free(clusters);
free(uarchs);
free(l1i);
free(l1d);
free(l2);
free(l3);
free(linux_cpu_to_processor_map);
free(linux_cpu_to_core_map);
free(linux_cpu_to_uarch_index_map);
}