blob: 7a2090e318e787ae57eab95114fc73dd9d33b0f7 [file] [log] [blame]
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <cpuinfo.h>
#include <x86/api.h>
#include <cpuinfo/internal-api.h>
#include <cpuinfo/log.h>
#include <Windows.h>
static inline uint32_t bit_mask(uint32_t bits) {
return (UINT32_C(1) << bits) - UINT32_C(1);
}
static inline uint32_t low_index_from_kaffinity(KAFFINITY kaffinity) {
#if defined(_M_X64) || defined(_M_AMD64)
unsigned long index;
_BitScanForward64(&index, (unsigned __int64) kaffinity);
return (uint32_t) index;
#elif defined(_M_IX86)
unsigned long index;
_BitScanForward(&index, (unsigned long) kaffinity);
return (uint32_t) index;
#else
#error Platform-specific implementation required
#endif
}
static void cpuinfo_x86_count_caches(
uint32_t processors_count,
const struct cpuinfo_processor* processors,
const struct cpuinfo_x86_processor* x86_processor,
uint32_t* l1i_count_ptr,
uint32_t* l1d_count_ptr,
uint32_t* l2_count_ptr,
uint32_t* l3_count_ptr,
uint32_t* l4_count_ptr)
{
uint32_t l1i_count = 0, l1d_count = 0, l2_count = 0, l3_count = 0, l4_count = 0;
uint32_t last_l1i_id = UINT32_MAX, last_l1d_id = UINT32_MAX;
uint32_t last_l2_id = UINT32_MAX, last_l3_id = UINT32_MAX, last_l4_id = UINT32_MAX;
for (uint32_t i = 0; i < processors_count; i++) {
const uint32_t apic_id = processors[i].apic_id;
cpuinfo_log_debug("APID ID %"PRIu32": logical processor %"PRIu32, apic_id, i);
if (x86_processor->cache.l1i.size != 0) {
const uint32_t l1i_id = apic_id & ~bit_mask(x86_processor->cache.l1i.apic_bits);
if (l1i_id != last_l1i_id) {
last_l1i_id = l1i_id;
l1i_count++;
}
}
if (x86_processor->cache.l1d.size != 0) {
const uint32_t l1d_id = apic_id & ~bit_mask(x86_processor->cache.l1d.apic_bits);
if (l1d_id != last_l1d_id) {
last_l1d_id = l1d_id;
l1d_count++;
}
}
if (x86_processor->cache.l2.size != 0) {
const uint32_t l2_id = apic_id & ~bit_mask(x86_processor->cache.l2.apic_bits);
if (l2_id != last_l2_id) {
last_l2_id = l2_id;
l2_count++;
}
}
if (x86_processor->cache.l3.size != 0) {
const uint32_t l3_id = apic_id & ~bit_mask(x86_processor->cache.l3.apic_bits);
if (l3_id != last_l3_id) {
last_l3_id = l3_id;
l3_count++;
}
}
if (x86_processor->cache.l4.size != 0) {
const uint32_t l4_id = apic_id & ~bit_mask(x86_processor->cache.l4.apic_bits);
if (l4_id != last_l4_id) {
last_l4_id = l4_id;
l4_count++;
}
}
}
*l1i_count_ptr = l1i_count;
*l1d_count_ptr = l1d_count;
*l2_count_ptr = l2_count;
*l3_count_ptr = l3_count;
*l4_count_ptr = l4_count;
}
BOOL CALLBACK cpuinfo_x86_windows_init(PINIT_ONCE init_once, PVOID parameter, PVOID* context) {
struct cpuinfo_processor* processors = NULL;
struct cpuinfo_core* cores = NULL;
struct cpuinfo_cluster* clusters = NULL;
struct cpuinfo_package* packages = NULL;
struct cpuinfo_cache* l1i = NULL;
struct cpuinfo_cache* l1d = NULL;
struct cpuinfo_cache* l2 = NULL;
struct cpuinfo_cache* l3 = NULL;
struct cpuinfo_cache* l4 = NULL;
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX processor_infos = NULL;
HANDLE heap = GetProcessHeap();
struct cpuinfo_x86_processor x86_processor;
ZeroMemory(&x86_processor, sizeof(x86_processor));
cpuinfo_x86_init_processor(&x86_processor);
char brand_string[48];
cpuinfo_x86_normalize_brand_string(x86_processor.brand_string, brand_string);
const uint32_t thread_bits_mask = bit_mask(x86_processor.topology.thread_bits_length);
const uint32_t core_bits_mask = bit_mask(x86_processor.topology.core_bits_length);
const uint32_t package_bits_offset = max(
x86_processor.topology.thread_bits_offset + x86_processor.topology.thread_bits_length,
x86_processor.topology.core_bits_offset + x86_processor.topology.core_bits_length);
const uint32_t max_group_count = (uint32_t) GetMaximumProcessorGroupCount();
cpuinfo_log_debug("detected %"PRIu32" processor groups", max_group_count);
uint32_t processors_count = 0;
uint32_t* processors_per_group = (uint32_t*) _alloca(max_group_count * sizeof(uint32_t));
for (uint32_t i = 0; i < max_group_count; i++) {
processors_per_group[i] = GetMaximumProcessorCount((WORD) i);
cpuinfo_log_debug("detected %"PRIu32" processors in group %"PRIu32,
processors_per_group[i], i);
processors_count += processors_per_group[i];
}
uint32_t* processors_before_group = (uint32_t*) _alloca(max_group_count * sizeof(uint32_t));
for (uint32_t i = 0, count = 0; i < max_group_count; i++) {
processors_before_group[i] = count;
cpuinfo_log_debug("detected %"PRIu32" processors before group %"PRIu32,
processors_before_group[i], i);
count += processors_per_group[i];
}
processors = HeapAlloc(heap, HEAP_ZERO_MEMORY, processors_count * sizeof(struct cpuinfo_processor));
if (processors == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" logical processors",
processors_count * sizeof(struct cpuinfo_processor), processors_count);
goto cleanup;
}
DWORD cores_info_size = 0;
if (GetLogicalProcessorInformationEx(RelationProcessorCore, NULL, &cores_info_size) == FALSE) {
const DWORD last_error = GetLastError();
if (last_error != ERROR_INSUFFICIENT_BUFFER) {
cpuinfo_log_error("failed to query size of processor cores information: error %"PRIu32,
(uint32_t) last_error);
goto cleanup;
}
}
DWORD packages_info_size = 0;
if (GetLogicalProcessorInformationEx(RelationProcessorPackage, NULL, &packages_info_size) == FALSE) {
const DWORD last_error = GetLastError();
if (last_error != ERROR_INSUFFICIENT_BUFFER) {
cpuinfo_log_error("failed to query size of processor packages information: error %"PRIu32,
(uint32_t) last_error);
goto cleanup;
}
}
DWORD max_info_size = max(cores_info_size, packages_info_size);
processor_infos = HeapAlloc(heap, 0, max_info_size);
if (processor_infos == NULL) {
cpuinfo_log_error("failed to allocate %"PRIu32" bytes for logical processor information",
(uint32_t) max_info_size);
goto cleanup;
}
if (GetLogicalProcessorInformationEx(RelationProcessorPackage, processor_infos, &max_info_size) == FALSE) {
cpuinfo_log_error("failed to query processor packages information: error %"PRIu32,
(uint32_t) GetLastError());
goto cleanup;
}
uint32_t packages_count = 0;
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX packages_info_end =
(PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) processor_infos + packages_info_size);
for (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX package_info = processor_infos;
package_info < packages_info_end;
package_info = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) package_info + package_info->Size))
{
if (package_info->Relationship != RelationProcessorPackage) {
cpuinfo_log_warning("unexpected processor info type (%"PRIu32") for processor package information",
(uint32_t) package_info->Relationship);
continue;
}
/* We assume that packages are reported in APIC order */
const uint32_t package_id = packages_count++;
/* Reconstruct package part of APIC ID */
const uint32_t package_apic_id = package_id << package_bits_offset;
/* Iterate processor groups and set the package part of APIC ID */
for (uint32_t i = 0; i < package_info->Processor.GroupCount; i++) {
const uint32_t group_id = package_info->Processor.GroupMask[i].Group;
/* Global index of the first logical processor belonging to this group */
const uint32_t group_processors_start = processors_before_group[group_id];
/* Bitmask representing processors in this group belonging to this package */
KAFFINITY group_processors_mask = package_info->Processor.GroupMask[i].Mask;
while (group_processors_mask != 0) {
const uint32_t group_processor_id = low_index_from_kaffinity(group_processors_mask);
const uint32_t processor_id = group_processors_start + group_processor_id;
processors[processor_id].package = (const struct cpuinfo_package*) NULL + package_id;
processors[processor_id].windows_group_id = (uint16_t) group_id;
processors[processor_id].windows_processor_id = (uint16_t) group_processor_id;
processors[processor_id].apic_id = package_apic_id;
/* Reset the lowest bit in affinity mask */
group_processors_mask &= (group_processors_mask - 1);
}
}
}
max_info_size = max(cores_info_size, packages_info_size);
if (GetLogicalProcessorInformationEx(RelationProcessorCore, processor_infos, &max_info_size) == FALSE) {
cpuinfo_log_error("failed to query processor cores information: error %"PRIu32,
(uint32_t) GetLastError());
goto cleanup;
}
uint32_t cores_count = 0;
/* Index (among all cores) of the the first core on the current package */
uint32_t package_core_start = 0;
uint32_t current_package_apic_id = 0;
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX cores_info_end =
(PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) processor_infos + cores_info_size);
for (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX core_info = processor_infos;
core_info < cores_info_end;
core_info = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) core_info + core_info->Size))
{
if (core_info->Relationship != RelationProcessorCore) {
cpuinfo_log_warning("unexpected processor info type (%"PRIu32") for processor core information",
(uint32_t) core_info->Relationship);
continue;
}
/* We assume that cores and logical processors are reported in APIC order */
const uint32_t core_id = cores_count++;
uint32_t smt_id = 0;
/* Reconstruct core part of APIC ID */
const uint32_t core_apic_id = (core_id & core_bits_mask) << x86_processor.topology.core_bits_offset;
/* Iterate processor groups and set the core & SMT parts of APIC ID */
for (uint32_t i = 0; i < core_info->Processor.GroupCount; i++) {
const uint32_t group_id = core_info->Processor.GroupMask[i].Group;
/* Global index of the first logical processor belonging to this group */
const uint32_t group_processors_start = processors_before_group[group_id];
/* Bitmask representing processors in this group belonging to this package */
KAFFINITY group_processors_mask = core_info->Processor.GroupMask[i].Mask;
while (group_processors_mask != 0) {
const uint32_t group_processor_id = low_index_from_kaffinity(group_processors_mask);
const uint32_t processor_id = group_processors_start + group_processor_id;
/* Check if this is the first core on a new package */
if (processors[processor_id].apic_id != current_package_apic_id) {
package_core_start = core_id;
current_package_apic_id = processors[processor_id].apic_id;
}
/* Core ID w.r.t package */
const uint32_t package_core_id = core_id - package_core_start;
/* Update APIC ID with core and SMT parts */
processors[processor_id].apic_id |=
((smt_id & thread_bits_mask) << x86_processor.topology.thread_bits_offset) |
((package_core_id & core_bits_mask) << x86_processor.topology.core_bits_offset);
cpuinfo_log_debug("reconstructed APIC ID 0x%08"PRIx32" for processor %"PRIu32" in group %"PRIu32,
processors[processor_id].apic_id, group_processor_id, group_id);
/* Set SMT ID (assume logical processors within the core are reported in APIC order) */
processors[processor_id].smt_id = smt_id++;
processors[processor_id].core = (const struct cpuinfo_core*) NULL + core_id;
/* Reset the lowest bit in affinity mask */
group_processors_mask &= (group_processors_mask - 1);
}
}
}
cores = HeapAlloc(heap, HEAP_ZERO_MEMORY, cores_count * sizeof(struct cpuinfo_core));
if (cores == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" cores",
cores_count * sizeof(struct cpuinfo_core), cores_count);
goto cleanup;
}
clusters = HeapAlloc(heap, HEAP_ZERO_MEMORY, packages_count * sizeof(struct cpuinfo_cluster));
if (clusters == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" core clusters",
packages_count * sizeof(struct cpuinfo_cluster), packages_count);
goto cleanup;
}
packages = HeapAlloc(heap, HEAP_ZERO_MEMORY, packages_count * sizeof(struct cpuinfo_package));
if (packages == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" physical packages",
packages_count * sizeof(struct cpuinfo_package), packages_count);
goto cleanup;
}
for (uint32_t i = processors_count; i != 0; i--) {
const uint32_t processor_id = i - 1;
struct cpuinfo_processor* processor = processors + processor_id;
/* Adjust core and package pointers for all logical processors */
struct cpuinfo_core* core =
(struct cpuinfo_core*) ((uintptr_t) cores + (uintptr_t) processor->core);
processor->core = core;
struct cpuinfo_cluster* cluster =
(struct cpuinfo_cluster*) ((uintptr_t) clusters + (uintptr_t) processor->cluster);
processor->cluster = cluster;
struct cpuinfo_package* package =
(struct cpuinfo_package*) ((uintptr_t) packages + (uintptr_t) processor->package);
processor->package = package;
/* This can be overwritten by lower-index processors on the same package */
package->processor_start = processor_id;
package->processor_count += 1;
/* This can be overwritten by lower-index processors on the same cluster */
cluster->processor_start = processor_id;
cluster->processor_count += 1;
/* This can be overwritten by lower-index processors on the same core*/
core->processor_start = processor_id;
core->processor_count += 1;
}
/* Set vendor/uarch/CPUID information for cores */
for (uint32_t i = cores_count; i != 0; i--) {
const uint32_t global_core_id = i - 1;
struct cpuinfo_core* core = cores + global_core_id;
const struct cpuinfo_processor* processor = processors + core->processor_start;
struct cpuinfo_package* package = (struct cpuinfo_package*) processor->package;
struct cpuinfo_cluster* cluster = (struct cpuinfo_cluster*) processor->cluster;
core->cluster = cluster;
core->package = package;
core->core_id = core_bits_mask &
(processor->apic_id >> x86_processor.topology.core_bits_offset);
core->vendor = x86_processor.vendor;
core->uarch = x86_processor.uarch;
core->cpuid = x86_processor.cpuid;
/* This can be overwritten by lower-index cores on the same cluster/package */
cluster->core_start = global_core_id;
cluster->core_count += 1;
package->core_start = global_core_id;
package->core_count += 1;
}
for (uint32_t i = 0; i < packages_count; i++) {
struct cpuinfo_package* package = packages + i;
struct cpuinfo_cluster* cluster = clusters + i;
cluster->package = package;
cluster->vendor = cores[cluster->core_start].vendor;
cluster->uarch = cores[cluster->core_start].uarch;
cluster->cpuid = cores[cluster->core_start].cpuid;
package->cluster_start = i;
package->cluster_count = 1;
cpuinfo_x86_format_package_name(x86_processor.vendor, brand_string, package->name);
}
/* Count caches */
uint32_t l1i_count, l1d_count, l2_count, l3_count, l4_count;
cpuinfo_x86_count_caches(processors_count, processors, &x86_processor,
&l1i_count, &l1d_count, &l2_count, &l3_count, &l4_count);
/* Allocate cache descriptions */
if (l1i_count != 0) {
l1i = HeapAlloc(heap, HEAP_ZERO_MEMORY, l1i_count * sizeof(struct cpuinfo_cache));
if (l1i == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1I caches",
l1i_count * sizeof(struct cpuinfo_cache), l1i_count);
goto cleanup;
}
}
if (l1d_count != 0) {
l1d = HeapAlloc(heap, HEAP_ZERO_MEMORY, l1d_count * sizeof(struct cpuinfo_cache));
if (l1d == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1D caches",
l1d_count * sizeof(struct cpuinfo_cache), l1d_count);
goto cleanup;
}
}
if (l2_count != 0) {
l2 = HeapAlloc(heap, HEAP_ZERO_MEMORY, l2_count * sizeof(struct cpuinfo_cache));
if (l2 == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L2 caches",
l2_count * sizeof(struct cpuinfo_cache), l2_count);
goto cleanup;
}
}
if (l3_count != 0) {
l3 = HeapAlloc(heap, HEAP_ZERO_MEMORY, l3_count * sizeof(struct cpuinfo_cache));
if (l3 == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L3 caches",
l3_count * sizeof(struct cpuinfo_cache), l3_count);
goto cleanup;
}
}
if (l4_count != 0) {
l4 = HeapAlloc(heap, HEAP_ZERO_MEMORY, l4_count * sizeof(struct cpuinfo_cache));
if (l4 == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L4 caches",
l4_count * sizeof(struct cpuinfo_cache), l4_count);
goto cleanup;
}
}
/* Set cache information */
uint32_t l1i_index = UINT32_MAX, l1d_index = UINT32_MAX, l2_index = UINT32_MAX, l3_index = UINT32_MAX, l4_index = UINT32_MAX;
uint32_t last_l1i_id = UINT32_MAX, last_l1d_id = UINT32_MAX;
uint32_t last_l2_id = UINT32_MAX, last_l3_id = UINT32_MAX, last_l4_id = UINT32_MAX;
for (uint32_t i = 0; i < processors_count; i++) {
const uint32_t apic_id = processors[i].apic_id;
//linux_cpu_to_processor_map[x86_linux_processors[i].linux_id] = processors + processor_index;
//linux_cpu_to_core_map[x86_linux_processors[i].linux_id] = cores + core_index;
if (x86_processor.cache.l1i.size != 0) {
const uint32_t l1i_id = apic_id & ~bit_mask(x86_processor.cache.l1i.apic_bits);
processors[i].cache.l1i = &l1i[l1i_index];
if (l1i_id != last_l1i_id) {
/* new cache */
last_l1i_id = l1i_id;
l1i[++l1i_index] = (struct cpuinfo_cache) {
.size = x86_processor.cache.l1i.size,
.associativity = x86_processor.cache.l1i.associativity,
.sets = x86_processor.cache.l1i.sets,
.partitions = x86_processor.cache.l1i.partitions,
.line_size = x86_processor.cache.l1i.line_size,
.flags = x86_processor.cache.l1i.flags,
.processor_start = i,
.processor_count = 1,
};
} else {
/* another processor sharing the same cache */
l1i[l1i_index].processor_count += 1;
}
processors[i].cache.l1i = &l1i[l1i_index];
} else {
/* reset cache id */
last_l1i_id = UINT32_MAX;
}
if (x86_processor.cache.l1d.size != 0) {
const uint32_t l1d_id = apic_id & ~bit_mask(x86_processor.cache.l1d.apic_bits);
processors[i].cache.l1d = &l1d[l1d_index];
if (l1d_id != last_l1d_id) {
/* new cache */
last_l1d_id = l1d_id;
l1d[++l1d_index] = (struct cpuinfo_cache) {
.size = x86_processor.cache.l1d.size,
.associativity = x86_processor.cache.l1d.associativity,
.sets = x86_processor.cache.l1d.sets,
.partitions = x86_processor.cache.l1d.partitions,
.line_size = x86_processor.cache.l1d.line_size,
.flags = x86_processor.cache.l1d.flags,
.processor_start = i,
.processor_count = 1,
};
} else {
/* another processor sharing the same cache */
l1d[l1d_index].processor_count += 1;
}
processors[i].cache.l1d = &l1d[l1d_index];
} else {
/* reset cache id */
last_l1d_id = UINT32_MAX;
}
if (x86_processor.cache.l2.size != 0) {
const uint32_t l2_id = apic_id & ~bit_mask(x86_processor.cache.l2.apic_bits);
processors[i].cache.l2 = &l2[l2_index];
if (l2_id != last_l2_id) {
/* new cache */
last_l2_id = l2_id;
l2[++l2_index] = (struct cpuinfo_cache) {
.size = x86_processor.cache.l2.size,
.associativity = x86_processor.cache.l2.associativity,
.sets = x86_processor.cache.l2.sets,
.partitions = x86_processor.cache.l2.partitions,
.line_size = x86_processor.cache.l2.line_size,
.flags = x86_processor.cache.l2.flags,
.processor_start = i,
.processor_count = 1,
};
} else {
/* another processor sharing the same cache */
l2[l2_index].processor_count += 1;
}
processors[i].cache.l2 = &l2[l2_index];
} else {
/* reset cache id */
last_l2_id = UINT32_MAX;
}
if (x86_processor.cache.l3.size != 0) {
const uint32_t l3_id = apic_id & ~bit_mask(x86_processor.cache.l3.apic_bits);
processors[i].cache.l3 = &l3[l3_index];
if (l3_id != last_l3_id) {
/* new cache */
last_l3_id = l3_id;
l3[++l3_index] = (struct cpuinfo_cache) {
.size = x86_processor.cache.l3.size,
.associativity = x86_processor.cache.l3.associativity,
.sets = x86_processor.cache.l3.sets,
.partitions = x86_processor.cache.l3.partitions,
.line_size = x86_processor.cache.l3.line_size,
.flags = x86_processor.cache.l3.flags,
.processor_start = i,
.processor_count = 1,
};
} else {
/* another processor sharing the same cache */
l3[l3_index].processor_count += 1;
}
processors[i].cache.l3 = &l3[l3_index];
} else {
/* reset cache id */
last_l3_id = UINT32_MAX;
}
if (x86_processor.cache.l4.size != 0) {
const uint32_t l4_id = apic_id & ~bit_mask(x86_processor.cache.l4.apic_bits);
processors[i].cache.l4 = &l4[l4_index];
if (l4_id != last_l4_id) {
/* new cache */
last_l4_id = l4_id;
l4[++l4_index] = (struct cpuinfo_cache) {
.size = x86_processor.cache.l4.size,
.associativity = x86_processor.cache.l4.associativity,
.sets = x86_processor.cache.l4.sets,
.partitions = x86_processor.cache.l4.partitions,
.line_size = x86_processor.cache.l4.line_size,
.flags = x86_processor.cache.l4.flags,
.processor_start = i,
.processor_count = 1,
};
} else {
/* another processor sharing the same cache */
l4[l4_index].processor_count += 1;
}
processors[i].cache.l4 = &l4[l4_index];
} else {
/* reset cache id */
last_l4_id = UINT32_MAX;
}
}
/* Commit changes */
cpuinfo_cache[cpuinfo_cache_level_1i] = l1i;
cpuinfo_cache[cpuinfo_cache_level_1d] = l1d;
cpuinfo_cache[cpuinfo_cache_level_2] = l2;
cpuinfo_cache[cpuinfo_cache_level_3] = l3;
cpuinfo_cache[cpuinfo_cache_level_4] = l4;
cpuinfo_processors = processors;
cpuinfo_cores = cores;
cpuinfo_clusters = clusters;
cpuinfo_packages = packages;
cpuinfo_cache_count[cpuinfo_cache_level_1i] = l1i_count;
cpuinfo_cache_count[cpuinfo_cache_level_1d] = l1d_count;
cpuinfo_cache_count[cpuinfo_cache_level_2] = l2_count;
cpuinfo_cache_count[cpuinfo_cache_level_3] = l3_count;
cpuinfo_cache_count[cpuinfo_cache_level_4] = l4_count;
cpuinfo_processors_count = processors_count;
cpuinfo_cores_count = cores_count;
cpuinfo_clusters_count = packages_count;
cpuinfo_packages_count = packages_count;
cpuinfo_max_cache_size = cpuinfo_compute_max_cache_size(&processors[0]);
MemoryBarrier();
cpuinfo_is_initialized = true;
processors = NULL;
cores = NULL;
clusters = NULL;
packages = NULL;
l1i = l1d = l2 = l3 = l4 = NULL;
cleanup:
if (processors != NULL) {
HeapFree(heap, 0, processors);
}
if (cores != NULL) {
HeapFree(heap, 0, cores);
}
if (clusters != NULL) {
HeapFree(heap, 0, clusters);
}
if (packages != NULL) {
HeapFree(heap, 0, packages);
}
if (l1i != NULL) {
HeapFree(heap, 0, l1i);
}
if (l1d != NULL) {
HeapFree(heap, 0, l1d);
}
if (l2 != NULL) {
HeapFree(heap, 0, l2);
}
if (l3 != NULL) {
HeapFree(heap, 0, l3);
}
if (l4 != NULL) {
HeapFree(heap, 0, l4);
}
return TRUE;
}