blob: d5a28e327d5ace3cb458b9b97754d76fc0b26277 [file] [log] [blame]
#pragma once
#include <stdint.h>
#define CPUINFO_ARM_MIDR_IMPLEMENTER_MASK UINT32_C(0xFF000000)
#define CPUINFO_ARM_MIDR_VARIANT_MASK UINT32_C(0x00F00000)
#define CPUINFO_ARM_MIDR_ARCHITECTURE_MASK UINT32_C(0x000F0000)
#define CPUINFO_ARM_MIDR_PART_MASK UINT32_C(0x0000FFF0)
#define CPUINFO_ARM_MIDR_REVISION_MASK UINT32_C(0x0000000F)
#define CPUINFO_ARM_MIDR_IMPLEMENTER_OFFSET 24
#define CPUINFO_ARM_MIDR_VARIANT_OFFSET 20
#define CPUINFO_ARM_MIDR_ARCHITECTURE_OFFSET 16
#define CPUINFO_ARM_MIDR_PART_OFFSET 4
#define CPUINFO_ARM_MIDR_REVISION_OFFSET 0
#define CPUINFO_ARM_MIDR_ARM1156 UINT32_C(0x410FB560)
#define CPUINFO_ARM_MIDR_CORTEX_A7 UINT32_C(0x410FC070)
#define CPUINFO_ARM_MIDR_CORTEX_A9 UINT32_C(0x410FC090)
#define CPUINFO_ARM_MIDR_CORTEX_A15 UINT32_C(0x410FC0F0)
#define CPUINFO_ARM_MIDR_CORTEX_A17 UINT32_C(0x410FC0E0)
#define CPUINFO_ARM_MIDR_CORTEX_A35 UINT32_C(0x410FD040)
#define CPUINFO_ARM_MIDR_CORTEX_A53 UINT32_C(0x410FD030)
#define CPUINFO_ARM_MIDR_CORTEX_A55 UINT32_C(0x410FD050)
#define CPUINFO_ARM_MIDR_CORTEX_A57 UINT32_C(0x410FD070)
#define CPUINFO_ARM_MIDR_CORTEX_A72 UINT32_C(0x410FD080)
#define CPUINFO_ARM_MIDR_CORTEX_A73 UINT32_C(0x410FD090)
#define CPUINFO_ARM_MIDR_CORTEX_A75 UINT32_C(0x410FD0A0)
#define CPUINFO_ARM_MIDR_KRYO280_GOLD UINT32_C(0x51AF8001)
#define CPUINFO_ARM_MIDR_KRYO280_SILVER UINT32_C(0x51AF8014)
#define CPUINFO_ARM_MIDR_KRYO385_GOLD UINT32_C(0x518F802D)
#define CPUINFO_ARM_MIDR_KRYO385_SILVER UINT32_C(0x518F803C)
#define CPUINFO_ARM_MIDR_KRYO_SILVER_821 UINT32_C(0x510F2010)
#define CPUINFO_ARM_MIDR_KRYO_GOLD UINT32_C(0x510F2050)
#define CPUINFO_ARM_MIDR_KRYO_SILVER_820 UINT32_C(0x510F2110)
#define CPUINFO_ARM_MIDR_EXYNOS_M1_M2 UINT32_C(0x530F0010)
#define CPUINFO_ARM_MIDR_DENVER2 UINT32_C(0x4E0F0030)
inline static uint32_t midr_set_implementer(uint32_t midr, uint32_t implementer) {
return (midr & ~CPUINFO_ARM_MIDR_IMPLEMENTER_MASK) |
((implementer << CPUINFO_ARM_MIDR_IMPLEMENTER_OFFSET) & CPUINFO_ARM_MIDR_IMPLEMENTER_MASK);
}
inline static uint32_t midr_set_variant(uint32_t midr, uint32_t variant) {
return (midr & ~CPUINFO_ARM_MIDR_VARIANT_MASK) |
((variant << CPUINFO_ARM_MIDR_VARIANT_OFFSET) & CPUINFO_ARM_MIDR_VARIANT_MASK);
}
inline static uint32_t midr_set_architecture(uint32_t midr, uint32_t architecture) {
return (midr & ~CPUINFO_ARM_MIDR_ARCHITECTURE_MASK) |
((architecture << CPUINFO_ARM_MIDR_ARCHITECTURE_OFFSET) & CPUINFO_ARM_MIDR_ARCHITECTURE_MASK);
}
inline static uint32_t midr_set_part(uint32_t midr, uint32_t part) {
return (midr & ~CPUINFO_ARM_MIDR_PART_MASK) |
((part << CPUINFO_ARM_MIDR_PART_OFFSET) & CPUINFO_ARM_MIDR_PART_MASK);
}
inline static uint32_t midr_set_revision(uint32_t midr, uint32_t revision) {
return (midr & ~CPUINFO_ARM_MIDR_REVISION_MASK) |
((revision << CPUINFO_ARM_MIDR_REVISION_OFFSET) & CPUINFO_ARM_MIDR_REVISION_MASK);
}
inline static uint32_t midr_get_variant(uint32_t midr) {
return (midr & CPUINFO_ARM_MIDR_VARIANT_MASK) >> CPUINFO_ARM_MIDR_VARIANT_OFFSET;
}
inline static uint32_t midr_get_implementer(uint32_t midr) {
return (midr & CPUINFO_ARM_MIDR_IMPLEMENTER_MASK) >> CPUINFO_ARM_MIDR_IMPLEMENTER_OFFSET;
}
inline static uint32_t midr_get_part(uint32_t midr) {
return (midr & CPUINFO_ARM_MIDR_PART_MASK) >> CPUINFO_ARM_MIDR_PART_OFFSET;
}
inline static uint32_t midr_get_revision(uint32_t midr) {
return (midr & CPUINFO_ARM_MIDR_REVISION_MASK) >> CPUINFO_ARM_MIDR_REVISION_OFFSET;
}
inline static uint32_t midr_copy_implementer(uint32_t midr, uint32_t other_midr) {
return (midr & ~CPUINFO_ARM_MIDR_IMPLEMENTER_MASK) | (other_midr & CPUINFO_ARM_MIDR_IMPLEMENTER_MASK);
}
inline static uint32_t midr_copy_variant(uint32_t midr, uint32_t other_midr) {
return (midr & ~CPUINFO_ARM_MIDR_VARIANT_MASK) | (other_midr & CPUINFO_ARM_MIDR_VARIANT_MASK);
}
inline static uint32_t midr_copy_architecture(uint32_t midr, uint32_t other_midr) {
return (midr & ~CPUINFO_ARM_MIDR_ARCHITECTURE_MASK) | (other_midr & CPUINFO_ARM_MIDR_ARCHITECTURE_MASK);
}
inline static uint32_t midr_copy_part(uint32_t midr, uint32_t other_midr) {
return (midr & ~CPUINFO_ARM_MIDR_PART_MASK) | (other_midr & CPUINFO_ARM_MIDR_PART_MASK);
}
inline static uint32_t midr_copy_revision(uint32_t midr, uint32_t other_midr) {
return (midr & ~CPUINFO_ARM_MIDR_REVISION_MASK) | (other_midr & CPUINFO_ARM_MIDR_REVISION_MASK);
}
inline static bool midr_is_arm1156(uint32_t midr) {
const uint32_t uarch_mask = CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_PART_MASK;
return (midr & uarch_mask) == (CPUINFO_ARM_MIDR_ARM1156 & uarch_mask);
}
inline static bool midr_is_arm11(uint32_t midr) {
return (midr & (CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | 0x0000F000)) == UINT32_C(0x4100B000);
}
inline static bool midr_is_cortex_a9(uint32_t midr) {
const uint32_t uarch_mask = CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_PART_MASK;
return (midr & uarch_mask) == (CPUINFO_ARM_MIDR_CORTEX_A9 & uarch_mask);
}
inline static bool midr_is_scorpion(uint32_t midr) {
switch (midr & (CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_PART_MASK)) {
case UINT32_C(0x510000F0):
case UINT32_C(0x510002D0):
return true;
default:
return false;
}
}
inline static bool midr_is_krait(uint32_t midr) {
switch (midr & (CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_PART_MASK)) {
case UINT32_C(0x510004D0):
case UINT32_C(0x510006F0):
return true;
default:
return false;
}
}
inline static bool midr_is_cortex_a53(uint32_t midr) {
const uint32_t uarch_mask = CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_PART_MASK;
return (midr & uarch_mask) == (CPUINFO_ARM_MIDR_CORTEX_A53 & uarch_mask);
}
inline static bool midr_is_qualcomm_cortex_a53_silver(uint32_t midr) {
const uint32_t uarch_mask = CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_PART_MASK;
return (midr & uarch_mask) == (CPUINFO_ARM_MIDR_KRYO280_SILVER & uarch_mask);
}
inline static bool midr_is_qualcomm_cortex_a55_silver(uint32_t midr) {
const uint32_t uarch_mask = CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_PART_MASK;
return (midr & uarch_mask) == (CPUINFO_ARM_MIDR_KRYO385_SILVER & uarch_mask);
}
inline static bool midr_is_kryo280_gold(uint32_t midr) {
const uint32_t uarch_mask = CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_PART_MASK;
return (midr & uarch_mask) == (CPUINFO_ARM_MIDR_KRYO280_GOLD & uarch_mask);
}
inline static bool midr_is_kryo_silver(uint32_t midr) {
const uint32_t uarch_mask =
CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_ARCHITECTURE_MASK | CPUINFO_ARM_MIDR_PART_MASK;
switch (midr & uarch_mask) {
case CPUINFO_ARM_MIDR_KRYO_SILVER_820:
case CPUINFO_ARM_MIDR_KRYO_SILVER_821:
return true;
default:
return false;
}
}
inline static bool midr_is_kryo_gold(uint32_t midr) {
const uint32_t uarch_mask = CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_PART_MASK;
return (midr & uarch_mask) == (CPUINFO_ARM_MIDR_KRYO_GOLD & uarch_mask);
}
inline static uint32_t midr_score_core(uint32_t midr) {
const uint32_t core_mask = CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_PART_MASK;
switch (midr & core_mask) {
case UINT32_C(0x53000040): /* Exynos M5 */
case UINT32_C(0x53000030): /* Exynos M4 */
/* These cores are in big role w.r.t Cortex-A75 or Cortex-A76 */
return 6;
case UINT32_C(0x4E000030): /* Denver 2 */
case UINT32_C(0x53000010): /* Exynos M1 and Exynos M2 */
case UINT32_C(0x53000020): /* Exynos M3 */
case UINT32_C(0x51008040): /* Kryo 485 Gold / Gold Prime */
case UINT32_C(0x51008020): /* Kryo 385 Gold */
case UINT32_C(0x51008000): /* Kryo 260 / 280 Gold */
case UINT32_C(0x51002050): /* Kryo Gold */
case UINT32_C(0x4800D400): /* Cortex-A76 (HiSilicon) */
case UINT32_C(0x4100D0D0): /* Cortex-A77 */
case UINT32_C(0x4100D0E0): /* Cortex-A76AE */
case UINT32_C(0x4100D0B0): /* Cortex-A76 */
case UINT32_C(0x4100D0A0): /* Cortex-A75 */
case UINT32_C(0x4100D090): /* Cortex-A73 */
case UINT32_C(0x4100D080): /* Cortex-A72 */
case UINT32_C(0x4100C0F0): /* Cortex-A15 */
case UINT32_C(0x4100C0E0): /* Cortex-A17 */
case UINT32_C(0x4100C0D0): /* Rockchip RK3288 cores */
case UINT32_C(0x4100C0C0): /* Cortex-A12 */
/* These cores are always in big role */
return 5;
case UINT32_C(0x4100D070): /* Cortex-A57 */
/* Cortex-A57 can be in LITTLE role w.r.t. Denver 2, or in big role w.r.t. Cortex-A53 */
return 4;
case UINT32_C(0x4100D060): /* Cortex-A65 */
case UINT32_C(0x4100D050): /* Cortex-A55 */
case UINT32_C(0x4100D030): /* Cortex-A53 */
/* Cortex-A53 is usually in LITTLE role, but can be in big role w.r.t. Cortex-A35 */
return 2;
case UINT32_C(0x4100D040): /* Cortex-A35 */
case UINT32_C(0x4100C070): /* Cortex-A7 */
case UINT32_C(0x51008050): /* Kryo 485 Silver */
case UINT32_C(0x51008030): /* Kryo 385 Silver */
case UINT32_C(0x51008010): /* Kryo 260 / 280 Silver */
case UINT32_C(0x51002110): /* Kryo Silver (Snapdragon 820) */
case UINT32_C(0x51002010): /* Kryo Silver (Snapdragon 821) */
/* These cores are always in LITTLE core */
return 1;
default:
/*
* Unknown cores, or cores which do not have big/LITTLE roles.
* To be future-proof w.r.t. cores not yet recognized in cpuinfo, assume position between
* Cortex-A57/A72/A73/A75 and Cortex-A53/A55. Then at least future cores paired with
* one of these known cores will be properly scored.
*/
return 3;
}
}
inline static uint32_t midr_little_core_for_big(uint32_t midr) {
const uint32_t core_mask =
CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_ARCHITECTURE_MASK | CPUINFO_ARM_MIDR_PART_MASK;
switch (midr & core_mask) {
case CPUINFO_ARM_MIDR_CORTEX_A75:
return CPUINFO_ARM_MIDR_CORTEX_A55;
case CPUINFO_ARM_MIDR_CORTEX_A73:
case CPUINFO_ARM_MIDR_CORTEX_A72:
case CPUINFO_ARM_MIDR_CORTEX_A57:
case CPUINFO_ARM_MIDR_EXYNOS_M1_M2:
return CPUINFO_ARM_MIDR_CORTEX_A53;
case CPUINFO_ARM_MIDR_CORTEX_A17:
case CPUINFO_ARM_MIDR_CORTEX_A15:
return CPUINFO_ARM_MIDR_CORTEX_A7;
case CPUINFO_ARM_MIDR_KRYO280_GOLD:
return CPUINFO_ARM_MIDR_KRYO280_SILVER;
case CPUINFO_ARM_MIDR_KRYO_GOLD:
return CPUINFO_ARM_MIDR_KRYO_SILVER_820;
case CPUINFO_ARM_MIDR_DENVER2:
return CPUINFO_ARM_MIDR_CORTEX_A57;
default:
return midr;
}
}