blob: 341673fee900bc424444a995e69a22a52bb997b4 [file] [log] [blame]
//=-- lsan_common.cc ------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of LeakSanitizer.
// Implementation of common leak checking functionality.
//
//===----------------------------------------------------------------------===//
#include "lsan_common.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_stoptheworld.h"
namespace __lsan {
#if CAN_SANITIZE_LEAKS
// This mutex is used to prevent races between DoLeakCheck and SuppressObject.
BlockingMutex global_mutex(LINKER_INITIALIZED);
THREADLOCAL int disable_counter;
Flags lsan_flags;
static void InitializeFlags() {
Flags *f = flags();
// Default values.
f->report_objects = false;
f->resolution = 0;
f->max_leaks = 0;
f->exitcode = 23;
f->use_registers = true;
f->use_globals = true;
f->use_stacks = true;
f->use_tls = true;
f->use_unaligned = false;
f->verbosity = 0;
f->log_pointers = false;
f->log_threads = false;
const char *options = GetEnv("LSAN_OPTIONS");
if (options) {
ParseFlag(options, &f->use_registers, "use_registers");
ParseFlag(options, &f->use_globals, "use_globals");
ParseFlag(options, &f->use_stacks, "use_stacks");
ParseFlag(options, &f->use_tls, "use_tls");
ParseFlag(options, &f->use_unaligned, "use_unaligned");
ParseFlag(options, &f->report_objects, "report_objects");
ParseFlag(options, &f->resolution, "resolution");
CHECK_GE(&f->resolution, 0);
ParseFlag(options, &f->max_leaks, "max_leaks");
CHECK_GE(&f->max_leaks, 0);
ParseFlag(options, &f->verbosity, "verbosity");
ParseFlag(options, &f->log_pointers, "log_pointers");
ParseFlag(options, &f->log_threads, "log_threads");
ParseFlag(options, &f->exitcode, "exitcode");
}
}
void InitCommonLsan() {
InitializeFlags();
InitializePlatformSpecificModules();
}
static inline bool CanBeAHeapPointer(uptr p) {
// Since our heap is located in mmap-ed memory, we can assume a sensible lower
// boundary on heap addresses.
const uptr kMinAddress = 4 * 4096;
if (p < kMinAddress) return false;
#ifdef __x86_64__
// Accept only canonical form user-space addresses.
return ((p >> 47) == 0);
#else
return true;
#endif
}
// Scan the memory range, looking for byte patterns that point into allocator
// chunks. Mark those chunks with tag and add them to the frontier.
// There are two usage modes for this function: finding reachable or ignored
// chunks (tag = kReachable or kIgnored) and finding indirectly leaked chunks
// (tag = kIndirectlyLeaked). In the second case, there's no flood fill,
// so frontier = 0.
void ScanRangeForPointers(uptr begin, uptr end,
Frontier *frontier,
const char *region_type, ChunkTag tag) {
const uptr alignment = flags()->pointer_alignment();
if (flags()->log_pointers)
Report("Scanning %s range %p-%p.\n", region_type, begin, end);
uptr pp = begin;
if (pp % alignment)
pp = pp + alignment - pp % alignment;
for (; pp + sizeof(void *) <= end; pp += alignment) {
void *p = *reinterpret_cast<void**>(pp);
if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
void *chunk = PointsIntoChunk(p);
if (!chunk) continue;
LsanMetadata m(chunk);
// Reachable beats ignored beats leaked.
if (m.tag() == kReachable) continue;
if (m.tag() == kIgnored && tag != kReachable) continue;
m.set_tag(tag);
if (flags()->log_pointers)
Report("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
chunk, reinterpret_cast<uptr>(chunk) + m.requested_size(),
m.requested_size());
if (frontier)
frontier->push_back(reinterpret_cast<uptr>(chunk));
}
}
// Scan thread data (stacks and TLS) for heap pointers.
static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
Frontier *frontier) {
InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
uptr registers_begin = reinterpret_cast<uptr>(registers.data());
uptr registers_end = registers_begin + registers.size();
for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
if (flags()->log_threads) Report("Processing thread %d.\n", os_id);
uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
&tls_begin, &tls_end,
&cache_begin, &cache_end);
if (!thread_found) {
// If a thread can't be found in the thread registry, it's probably in the
// process of destruction. Log this event and move on.
if (flags()->log_threads)
Report("Thread %d not found in registry.\n", os_id);
continue;
}
uptr sp;
bool have_registers =
(suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
if (!have_registers) {
Report("Unable to get registers from thread %d.\n");
// If unable to get SP, consider the entire stack to be reachable.
sp = stack_begin;
}
if (flags()->use_registers && have_registers)
ScanRangeForPointers(registers_begin, registers_end, frontier,
"REGISTERS", kReachable);
if (flags()->use_stacks) {
if (flags()->log_threads)
Report("Stack at %p-%p, SP = %p.\n", stack_begin, stack_end, sp);
if (sp < stack_begin || sp >= stack_end) {
// SP is outside the recorded stack range (e.g. the thread is running a
// signal handler on alternate stack). Again, consider the entire stack
// range to be reachable.
if (flags()->log_threads)
Report("WARNING: stack_pointer not in stack_range.\n");
} else {
// Shrink the stack range to ignore out-of-scope values.
stack_begin = sp;
}
ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
kReachable);
}
if (flags()->use_tls) {
if (flags()->log_threads) Report("TLS at %p-%p.\n", tls_begin, tls_end);
if (cache_begin == cache_end) {
ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
} else {
// Because LSan should not be loaded with dlopen(), we can assume
// that allocator cache will be part of static TLS image.
CHECK_LE(tls_begin, cache_begin);
CHECK_GE(tls_end, cache_end);
if (tls_begin < cache_begin)
ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
kReachable);
if (tls_end > cache_end)
ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
}
}
}
}
static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
while (frontier->size()) {
uptr next_chunk = frontier->back();
frontier->pop_back();
LsanMetadata m(reinterpret_cast<void *>(next_chunk));
ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
"HEAP", tag);
}
}
// Mark leaked chunks which are reachable from other leaked chunks.
void MarkIndirectlyLeakedCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
if (m.allocated() && m.tag() != kReachable) {
ScanRangeForPointers(reinterpret_cast<uptr>(p),
reinterpret_cast<uptr>(p) + m.requested_size(),
/* frontier */ 0, "HEAP", kIndirectlyLeaked);
}
}
void CollectIgnoredCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
if (m.allocated() && m.tag() == kIgnored)
frontier_->push_back(reinterpret_cast<uptr>(p));
}
// Set the appropriate tag on each chunk.
static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
// Holds the flood fill frontier.
Frontier frontier(GetPageSizeCached());
if (flags()->use_globals)
ProcessGlobalRegions(&frontier);
ProcessThreads(suspended_threads, &frontier);
FloodFillTag(&frontier, kReachable);
// The check here is relatively expensive, so we do this in a separate flood
// fill. That way we can skip the check for chunks that are reachable
// otherwise.
ProcessPlatformSpecificAllocations(&frontier);
FloodFillTag(&frontier, kReachable);
if (flags()->log_pointers)
Report("Scanning ignored chunks.\n");
CHECK_EQ(0, frontier.size());
ForEachChunk(CollectIgnoredCb(&frontier));
FloodFillTag(&frontier, kIgnored);
// Iterate over leaked chunks and mark those that are reachable from other
// leaked chunks.
if (flags()->log_pointers)
Report("Scanning leaked chunks.\n");
ForEachChunk(MarkIndirectlyLeakedCb());
}
static void PrintStackTraceById(u32 stack_trace_id) {
CHECK(stack_trace_id);
uptr size = 0;
const uptr *trace = StackDepotGet(stack_trace_id, &size);
StackTrace::PrintStack(trace, size, common_flags()->symbolize,
common_flags()->strip_path_prefix, 0);
}
void CollectLeaksCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
if (!m.allocated()) return;
if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
uptr resolution = flags()->resolution;
if (resolution > 0) {
uptr size = 0;
const uptr *trace = StackDepotGet(m.stack_trace_id(), &size);
size = Min(size, resolution);
leak_report_->Add(StackDepotPut(trace, size), m.requested_size(),
m.tag());
} else {
leak_report_->Add(m.stack_trace_id(), m.requested_size(), m.tag());
}
}
}
static void CollectLeaks(LeakReport *leak_report) {
ForEachChunk(CollectLeaksCb(leak_report));
}
void PrintLeakedCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
if (!m.allocated()) return;
if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
Printf("%s leaked %zu byte object at %p.\n",
m.tag() == kDirectlyLeaked ? "Directly" : "Indirectly",
m.requested_size(), p);
}
}
static void PrintLeaked() {
Printf("\n");
Printf("Reporting individual objects:\n");
ForEachChunk(PrintLeakedCb());
}
struct DoLeakCheckParam {
bool success;
LeakReport leak_report;
};
static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
void *arg) {
DoLeakCheckParam *param = reinterpret_cast<DoLeakCheckParam *>(arg);
CHECK(param);
CHECK(!param->success);
CHECK(param->leak_report.IsEmpty());
ClassifyAllChunks(suspended_threads);
CollectLeaks(&param->leak_report);
if (!param->leak_report.IsEmpty() && flags()->report_objects)
PrintLeaked();
param->success = true;
}
void DoLeakCheck() {
BlockingMutexLock l(&global_mutex);
static bool already_done;
CHECK(!already_done);
already_done = true;
DoLeakCheckParam param;
param.success = false;
LockThreadRegistry();
LockAllocator();
StopTheWorld(DoLeakCheckCallback, &param);
UnlockAllocator();
UnlockThreadRegistry();
if (!param.success) {
Report("LeakSanitizer has encountered a fatal error.\n");
Die();
}
if (!param.leak_report.IsEmpty()) {
Printf("\n================================================================="
"\n");
Report("ERROR: LeakSanitizer: detected memory leaks\n");
param.leak_report.PrintLargest(flags()->max_leaks);
param.leak_report.PrintSummary();
if (flags()->exitcode)
internal__exit(flags()->exitcode);
}
}
///// LeakReport implementation. /////
// A hard limit on the number of distinct leaks, to avoid quadratic complexity
// in LeakReport::Add(). We don't expect to ever see this many leaks in
// real-world applications.
// FIXME: Get rid of this limit by changing the implementation of LeakReport to
// use a hash table.
const uptr kMaxLeaksConsidered = 1000;
void LeakReport::Add(u32 stack_trace_id, uptr leaked_size, ChunkTag tag) {
CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
bool is_directly_leaked = (tag == kDirectlyLeaked);
for (uptr i = 0; i < leaks_.size(); i++)
if (leaks_[i].stack_trace_id == stack_trace_id &&
leaks_[i].is_directly_leaked == is_directly_leaked) {
leaks_[i].hit_count++;
leaks_[i].total_size += leaked_size;
return;
}
if (leaks_.size() == kMaxLeaksConsidered) return;
Leak leak = { /* hit_count */ 1, leaked_size, stack_trace_id,
is_directly_leaked };
leaks_.push_back(leak);
}
static bool IsLarger(const Leak &leak1, const Leak &leak2) {
return leak1.total_size > leak2.total_size;
}
void LeakReport::PrintLargest(uptr max_leaks) {
CHECK(leaks_.size() <= kMaxLeaksConsidered);
Printf("\n");
if (leaks_.size() == kMaxLeaksConsidered)
Printf("Too many leaks! Only the first %zu leaks encountered will be "
"reported.\n",
kMaxLeaksConsidered);
if (max_leaks > 0 && max_leaks < leaks_.size())
Printf("The %zu largest leak(s):\n", max_leaks);
InternalSort(&leaks_, leaks_.size(), IsLarger);
max_leaks = max_leaks > 0 ? Min(max_leaks, leaks_.size()) : leaks_.size();
for (uptr i = 0; i < max_leaks; i++) {
Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
leaks_[i].is_directly_leaked ? "Direct" : "Indirect",
leaks_[i].total_size, leaks_[i].hit_count);
PrintStackTraceById(leaks_[i].stack_trace_id);
Printf("\n");
}
if (max_leaks < leaks_.size()) {
uptr remaining = leaks_.size() - max_leaks;
Printf("Omitting %zu more leak(s).\n", remaining);
}
}
void LeakReport::PrintSummary() {
CHECK(leaks_.size() <= kMaxLeaksConsidered);
uptr bytes = 0, allocations = 0;
for (uptr i = 0; i < leaks_.size(); i++) {
bytes += leaks_[i].total_size;
allocations += leaks_[i].hit_count;
}
Printf(
"SUMMARY: LeakSanitizer: %zu byte(s) leaked in %zu allocation(s).\n\n",
bytes, allocations);
}
#endif // CAN_SANITIZE_LEAKS
bool DisabledInThisThread() {
#ifdef CAN_SANITIZE_LEAKS
return disable_counter > 0;
#endif
return false;
}
} // namespace __lsan
using namespace __lsan; // NOLINT
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_ignore_object(const void *p) {
#if CAN_SANITIZE_LEAKS
// Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
// locked.
BlockingMutexLock l(&global_mutex);
IgnoreObjectResult res = IgnoreObjectLocked(p);
if (res == kIgnoreObjectInvalid && flags()->verbosity >= 1)
Report("__lsan_ignore_object(): no heap object found at %p", p);
if (res == kIgnoreObjectAlreadyIgnored && flags()->verbosity >= 1)
Report("__lsan_ignore_object(): "
"heap object at %p is already being ignored\n", p);
if (res == kIgnoreObjectSuccess && flags()->verbosity >= 2)
Report("__lsan_ignore_object(): ignoring heap object at %p\n", p);
#endif // CAN_SANITIZE_LEAKS
}
SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_disable() {
#if CAN_SANITIZE_LEAKS
__lsan::disable_counter++;
#endif
}
SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_enable() {
#if CAN_SANITIZE_LEAKS
if (!__lsan::disable_counter) {
Report("Unmatched call to __lsan_enable().\n");
Die();
}
__lsan::disable_counter--;
#endif
}
} // extern "C"