blob: 0bac2374202dd5b81f61a66cbd58c80e620fc0a4 [file] [log] [blame]
//===-- sanitizer_allocator64.h ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Specialized allocator which works only in 64-bit address space.
// To be used by ThreadSanitizer, MemorySanitizer and possibly other tools.
// The main feature of this allocator is that the header is located far away
// from the user memory region, so that the tool does not use extra shadow
// for the header.
//
// Status: not yet ready.
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#define SANITIZER_ALLOCATOR_H
#include "sanitizer_common.h"
#include "sanitizer_internal_defs.h"
#include "sanitizer_libc.h"
namespace __sanitizer {
// Maps size class id to size and back.
class DefaultSizeClassMap {
private:
// Here we use a spline composed of 5 polynomials of oder 1.
// The first size class is l0, then the classes go with step s0
// untill they reach l1, after which they go with step s1 and so on.
// Steps should be powers of two for cheap division.
// The size of the last size class should be a power of two.
// There should be at most 256 size classes.
static const uptr l0 = 1 << 4;
static const uptr l1 = 1 << 9;
static const uptr l2 = 1 << 12;
static const uptr l3 = 1 << 15;
static const uptr l4 = 1 << 18;
static const uptr l5 = 1 << 21;
static const uptr s0 = 1 << 4;
static const uptr s1 = 1 << 6;
static const uptr s2 = 1 << 9;
static const uptr s3 = 1 << 12;
static const uptr s4 = 1 << 15;
static const uptr u0 = 0 + (l1 - l0) / s0;
static const uptr u1 = u0 + (l2 - l1) / s1;
static const uptr u2 = u1 + (l3 - l2) / s2;
static const uptr u3 = u2 + (l4 - l3) / s3;
static const uptr u4 = u3 + (l5 - l4) / s4;
public:
static const uptr kNumClasses = u4 + 1;
static const uptr kMaxSize = l5;
static const uptr kMinSize = l0;
COMPILER_CHECK(kNumClasses <= 256);
COMPILER_CHECK((kMaxSize & (kMaxSize - 1)) == 0);
static uptr Size(uptr class_id) {
if (class_id <= u0) return l0 + s0 * (class_id - 0);
if (class_id <= u1) return l1 + s1 * (class_id - u0);
if (class_id <= u2) return l2 + s2 * (class_id - u1);
if (class_id <= u3) return l3 + s3 * (class_id - u2);
if (class_id <= u4) return l4 + s4 * (class_id - u3);
return 0;
}
static uptr ClassID(uptr size) {
if (size <= l1) return 0 + (size - l0 + s0 - 1) / s0;
if (size <= l2) return u0 + (size - l1 + s1 - 1) / s1;
if (size <= l3) return u1 + (size - l2 + s2 - 1) / s2;
if (size <= l4) return u2 + (size - l3 + s3 - 1) / s3;
if (size <= l5) return u3 + (size - l4 + s4 - 1) / s4;
return 0;
}
};
// Space: a portion of address space of kSpaceSize bytes starting at
// a fixed address (kSpaceBeg). Both constants are powers of two and
// kSpaceBeg is kSpaceSize-aligned.
//
// Region: a part of Space dedicated to a single size class.
// There are kNumClasses Regions of equal size.
//
// UserChunk: a piece of memory returned to user.
// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
//
// A Region looks like this:
// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
template <const uptr kSpaceBeg, const uptr kSpaceSize,
const uptr kMetadataSize, class SizeClassMap>
class SizeClassAllocator64 {
public:
void Init() {
CHECK_EQ(AllocBeg(), reinterpret_cast<uptr>(MmapFixedNoReserve(
AllocBeg(), AllocSize())));
}
bool CanAllocate(uptr size, uptr alignment) {
return size <= SizeClassMap::kMaxSize &&
alignment <= SizeClassMap::kMaxSize;
}
void *Allocate(uptr size, uptr alignment) {
CHECK(CanAllocate(size, alignment));
return AllocateBySizeClass(SizeClassMap::ClassID(size));
}
void Deallocate(void *p) {
CHECK(PointerIsMine(p));
DeallocateBySizeClass(p, GetSizeClass(p));
}
bool PointerIsMine(void *p) {
return reinterpret_cast<uptr>(p) / kSpaceSize == kSpaceBeg / kSpaceSize;
}
uptr GetSizeClass(void *p) {
return (reinterpret_cast<uptr>(p) / kRegionSize) % kNumClasses;
}
void *GetMetaData(void *p) {
uptr class_id = GetSizeClass(p);
uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), class_id);
return reinterpret_cast<void*>(kSpaceBeg + (kRegionSize * (class_id + 1)) -
(1 + chunk_idx) * kMetadataSize);
}
uptr TotalMemoryUsed() {
uptr res = 0;
for (uptr i = 0; i < kNumClasses; i++)
res += GetRegionInfo(i)->allocated_user;
return res;
}
// Test-only.
void TestOnlyUnmap() {
UnmapOrDie(reinterpret_cast<void*>(AllocBeg()), AllocSize());
}
private:
static const uptr kNumClasses = 256; // Power of two <= 256
COMPILER_CHECK(kNumClasses <= SizeClassMap::kNumClasses);
static const uptr kRegionSize = kSpaceSize / kNumClasses;
COMPILER_CHECK((kRegionSize >> 32) > 0); // kRegionSize must be >= 2^32.
// Populate the free list with at most this number of bytes at once
// or with one element if its size is greater.
static const uptr kPopulateSize = 1 << 18;
struct LifoListNode {
LifoListNode *next;
};
struct RegionInfo {
uptr mutex; // FIXME
LifoListNode *free_list;
uptr allocated_user; // Bytes allocated for user memory.
uptr allocated_meta; // Bytes allocated for metadata.
char padding[kCacheLineSize - 4 * sizeof(uptr)];
};
COMPILER_CHECK(sizeof(RegionInfo) == kCacheLineSize);
uptr AdditionalSize() {
uptr res = sizeof(RegionInfo) * kNumClasses;
CHECK_EQ(res % kPageSize, 0);
return res;
}
uptr AllocBeg() { return kSpaceBeg - AdditionalSize(); }
uptr AllocSize() { return kSpaceSize + AdditionalSize(); }
RegionInfo *GetRegionInfo(uptr class_id) {
CHECK_LT(class_id, kNumClasses);
RegionInfo *regions = reinterpret_cast<RegionInfo*>(kSpaceBeg);
return &regions[-1 - class_id];
}
void PushLifoList(LifoListNode **list, LifoListNode *node) {
node->next = *list;
*list = node;
}
LifoListNode *PopLifoList(LifoListNode **list) {
LifoListNode *res = *list;
*list = res->next;
return res;
}
uptr GetChunkIdx(uptr chunk, uptr class_id) {
u32 offset = chunk % kRegionSize;
// Here we divide by a non-constant. This is costly.
// We require that kRegionSize is at least 2^32 so that offset is 32-bit.
// We save 2x by using 32-bit div, but may need to use a 256-way switch.
return offset / (u32)SizeClassMap::Size(class_id);
}
LifoListNode *PopulateFreeList(uptr class_id, RegionInfo *region) {
uptr size = SizeClassMap::Size(class_id);
uptr beg_idx = region->allocated_user;
uptr end_idx = beg_idx + kPopulateSize;
LifoListNode *res = 0;
uptr region_beg = kSpaceBeg + kRegionSize * class_id;
uptr idx = beg_idx;
uptr i = 0;
do { // do-while loop because we need to put at least one item.
uptr p = region_beg + idx;
PushLifoList(&res, reinterpret_cast<LifoListNode*>(p));
idx += size;
i++;
} while (idx < end_idx);
region->allocated_user += idx - beg_idx;
region->allocated_meta += i * kMetadataSize;
CHECK_LT(region->allocated_user + region->allocated_meta, kRegionSize);
return res;
}
void *AllocateBySizeClass(uptr class_id) {
CHECK_LT(class_id, kNumClasses);
RegionInfo *region = GetRegionInfo(class_id);
// FIXME: Lock region->mutex;
if (!region->free_list) {
region->free_list = PopulateFreeList(class_id, region);
}
CHECK_NE(region->free_list, 0);
LifoListNode *node = PopLifoList(&region->free_list);
return reinterpret_cast<void*>(node);
}
void DeallocateBySizeClass(void *p, uptr class_id) {
RegionInfo *region = GetRegionInfo(class_id);
// FIXME: Lock region->mutex;
PushLifoList(&region->free_list, reinterpret_cast<LifoListNode*>(p));
}
};
// This class can (de)allocate only large chunks of memory using mmap/unmap.
// The main purpose of this allocator is to cover large and rare allocation
// sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
// The result is always page-aligned.
class LargeMmapAllocator {
public:
void Init() {
internal_memset(this, 0, sizeof(*this));
}
void *Allocate(uptr size, uptr alignment) {
CHECK_LE(alignment, kPageSize); // Not implemented. Do we need it?
uptr map_size = RoundUpMapSize(size);
void *map = MmapOrDie(map_size, "LargeMmapAllocator");
void *res = reinterpret_cast<void*>(reinterpret_cast<uptr>(map)
+ kPageSize);
Header *h = GetHeader(res);
h->size = size;
{
// FIXME: lock
h->next = list_;
h->prev = 0;
if (list_)
list_->prev = h;
list_ = h;
}
return res;
}
void Deallocate(void *p) {
Header *h = GetHeader(p);
uptr map_size = RoundUpMapSize(h->size);
{
// FIXME: lock
Header *prev = h->prev;
Header *next = h->next;
if (prev)
prev->next = next;
if (next)
next->prev = prev;
if (h == list_)
list_ = next;
}
UnmapOrDie(h, map_size);
}
uptr TotalMemoryUsed() {
// FIXME: lock
uptr res = 0;
for (Header *l = list_; l; l = l->next) {
res += RoundUpMapSize(l->size);
}
return res;
}
bool PointerIsMine(void *p) {
// Fast check.
if ((reinterpret_cast<uptr>(p) % kPageSize) != 0) return false;
// FIXME: lock
for (Header *l = list_; l; l = l->next) {
if (GetUser(l) == p) return true;
}
return false;
}
// At least kPageSize/2 metadata bytes is available.
void *GetMetaData(void *p) {
return GetHeader(p) + 1;
}
private:
struct Header {
uptr size;
Header *next;
Header *prev;
};
Header *GetHeader(void *p) {
return reinterpret_cast<Header*>(reinterpret_cast<uptr>(p) - kPageSize);
}
void *GetUser(Header *h) {
return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + kPageSize);
}
uptr RoundUpMapSize(uptr size) {
return RoundUpTo(size, kPageSize) + kPageSize;
}
Header *list_;
uptr lock_; // FIXME
};
// This class implements a complete memory allocator by using two
// internal allocators:
// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
// When allocating 2^x bytes it should return 2^x aligned chunk.
// SecondaryAllocator can allocate anything, but is not efficient.
template <class PrimaryAllocator, class SecondaryAllocator>
class CombinedAllocator {
public:
void Init() {
primary_.Init();
secondary_.Init();
}
void *Allocate(uptr size, uptr alignment) {
CHECK_GT(size, 0);
if (alignment > 8)
size = RoundUpTo(size, alignment);
void *res;
if (primary_.CanAllocate(size, alignment))
res = primary_.Allocate(size, alignment);
else
res = secondary_.Allocate(size, alignment);
if (alignment > 8)
CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
return res;
}
void Deallocate(void *p) {
if (primary_.PointerIsMine(p))
primary_.Deallocate(p);
else
secondary_.Deallocate(p);
}
bool PointerIsMine(void *p) {
if (primary_.PointerIsMine(p))
return true;
return secondary_.PointerIsMine(p);
}
void *GetMetaData(void *p) {
if (primary_.PointerIsMine(p))
return primary_.GetMetaData(p);
return secondary_.GetMetaData(p);
}
uptr TotalMemoryUsed() {
return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
}
void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
private:
PrimaryAllocator primary_;
SecondaryAllocator secondary_;
};
} // namespace __sanitizer
#endif // SANITIZER_ALLOCATOR_H