blob: cc257eb38b46073780db51009aa91c26ba8743d6 [file] [log] [blame]
//=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines ExprEngine's support for calls and returns.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Calls.h"
#include "clang/AST/DeclCXX.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace clang;
using namespace ento;
static CallEventKind classifyCallExpr(const CallExpr *CE) {
if (isa<CXXMemberCallExpr>(CE))
return CE_CXXMember;
const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE);
if (OpCE) {
const FunctionDecl *DirectCallee = CE->getDirectCallee();
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
if (MD->isInstance())
return CE_CXXMemberOperator;
} else if (CE->getCallee()->getType()->isBlockPointerType()) {
return CE_Block;
}
return CE_Function;
}
void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
// Get the entry block in the CFG of the callee.
const StackFrameContext *calleeCtx = CE.getCalleeContext();
const CFG *CalleeCFG = calleeCtx->getCFG();
const CFGBlock *Entry = &(CalleeCFG->getEntry());
// Validate the CFG.
assert(Entry->empty());
assert(Entry->succ_size() == 1);
// Get the solitary sucessor.
const CFGBlock *Succ = *(Entry->succ_begin());
// Construct an edge representing the starting location in the callee.
BlockEdge Loc(Entry, Succ, calleeCtx);
ProgramStateRef state = Pred->getState();
// Construct a new node and add it to the worklist.
bool isNew;
ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
Node->addPredecessor(Pred, G);
if (isNew)
Engine.getWorkList()->enqueue(Node);
}
// Find the last statement on the path to the exploded node and the
// corresponding Block.
static std::pair<const Stmt*,
const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
const Stmt *S = 0;
const CFGBlock *Blk = 0;
const StackFrameContext *SF =
Node->getLocation().getLocationContext()->getCurrentStackFrame();
while (Node) {
const ProgramPoint &PP = Node->getLocation();
// Skip any BlockEdges, empty blocks, and the CallExitBegin node.
if (isa<BlockEdge>(PP) || isa<CallExitBegin>(PP) || isa<BlockEntrance>(PP)){
assert(Node->pred_size() == 1);
Node = *Node->pred_begin();
continue;
}
// If we reached the CallEnter, the function has no statements.
if (isa<CallEnter>(PP))
break;
if (const StmtPoint *SP = dyn_cast<StmtPoint>(&PP)) {
S = SP->getStmt();
// Now, get the enclosing basic block.
while (Node && Node->pred_size() >=1 ) {
const ProgramPoint &PP = Node->getLocation();
if (isa<BlockEdge>(PP) &&
(PP.getLocationContext()->getCurrentStackFrame() == SF)) {
BlockEdge &EPP = cast<BlockEdge>(PP);
Blk = EPP.getDst();
break;
}
Node = *Node->pred_begin();
}
break;
}
break;
}
return std::pair<const Stmt*, const CFGBlock*>(S, Blk);
}
/// The call exit is simulated with a sequence of nodes, which occur between
/// CallExitBegin and CallExitEnd. The following operations occur between the
/// two program points:
/// 1. CallExitBegin (triggers the start of call exit sequence)
/// 2. Bind the return value
/// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
/// 4. CallExitEnd (switch to the caller context)
/// 5. PostStmt<CallExpr>
void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
// Step 1 CEBNode was generated before the call.
const StackFrameContext *calleeCtx =
CEBNode->getLocationContext()->getCurrentStackFrame();
// The parent context might not be a stack frame, so make sure we
// look up the first enclosing stack frame.
const StackFrameContext *callerCtx =
calleeCtx->getParent()->getCurrentStackFrame();
const Stmt *CE = calleeCtx->getCallSite();
ProgramStateRef state = CEBNode->getState();
// Find the last statement in the function and the corresponding basic block.
const Stmt *LastSt = 0;
const CFGBlock *Blk = 0;
llvm::tie(LastSt, Blk) = getLastStmt(CEBNode);
// Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
// If the callee returns an expression, bind its value to CallExpr.
if (CE) {
if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
const LocationContext *LCtx = CEBNode->getLocationContext();
SVal V = state->getSVal(RS, LCtx);
state = state->BindExpr(CE, calleeCtx->getParent(), V);
}
// Bind the constructed object value to CXXConstructExpr.
if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
loc::MemRegionVal This =
svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
SVal ThisV = state->getSVal(This);
// Always bind the region to the CXXConstructExpr.
state = state->BindExpr(CCE, calleeCtx->getParent(), ThisV);
}
}
// Step 3: BindedRetNode -> CleanedNodes
// If we can find a statement and a block in the inlined function, run remove
// dead bindings before returning from the call. This is important to ensure
// that we report the issues such as leaks in the stack contexts in which
// they occurred.
ExplodedNodeSet CleanedNodes;
if (LastSt && Blk) {
static SimpleProgramPointTag retValBind("ExprEngine : Bind Return Value");
PostStmt Loc(LastSt, calleeCtx, &retValBind);
bool isNew;
ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
BindedRetNode->addPredecessor(CEBNode, G);
if (!isNew)
return;
NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
currentBuilderContext = &Ctx;
// Here, we call the Symbol Reaper with 0 statement and caller location
// context, telling it to clean up everything in the callee's context
// (and it's children). We use LastStmt as a diagnostic statement, which
// which the PreStmtPurge Dead point will be associated.
removeDead(BindedRetNode, CleanedNodes, 0, callerCtx, LastSt,
ProgramPoint::PostStmtPurgeDeadSymbolsKind);
currentBuilderContext = 0;
} else {
CleanedNodes.Add(CEBNode);
}
for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
E = CleanedNodes.end(); I != E; ++I) {
// Step 4: Generate the CallExit and leave the callee's context.
// CleanedNodes -> CEENode
CallExitEnd Loc(calleeCtx, callerCtx);
bool isNew;
ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
CEENode->addPredecessor(*I, G);
if (!isNew)
return;
// Step 5: Perform the post-condition check of the CallExpr and enqueue the
// result onto the work list.
// CEENode -> Dst -> WorkList
ExplodedNodeSet Dst;
NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
SaveAndRestore<const NodeBuilderContext*> NBCSave(currentBuilderContext,
&Ctx);
SaveAndRestore<unsigned> CBISave(currentStmtIdx, calleeCtx->getIndex());
// FIXME: This needs to call PostCall.
// FIXME: If/when we inline Objective-C messages, this also needs to call
// PostObjCMessage.
if (CE)
getCheckerManager().runCheckersForPostStmt(Dst, CEENode, CE, *this, true);
else
Dst.Add(CEENode);
// Enqueue the next element in the block.
for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
PSI != PSE; ++PSI) {
Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
calleeCtx->getIndex()+1);
}
}
}
static unsigned getNumberStackFrames(const LocationContext *LCtx) {
unsigned count = 0;
while (LCtx) {
if (isa<StackFrameContext>(LCtx))
++count;
LCtx = LCtx->getParent();
}
return count;
}
// Determine if we should inline the call.
bool ExprEngine::shouldInlineDecl(const Decl *D, ExplodedNode *Pred) {
AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
const CFG *CalleeCFG = CalleeADC->getCFG();
// It is possible that the CFG cannot be constructed.
// Be safe, and check if the CalleeCFG is valid.
if (!CalleeCFG)
return false;
if (getNumberStackFrames(Pred->getLocationContext())
== AMgr.InlineMaxStackDepth)
return false;
if (Engine.FunctionSummaries->hasReachedMaxBlockCount(D))
return false;
if (CalleeCFG->getNumBlockIDs() > AMgr.InlineMaxFunctionSize)
return false;
// Do not inline variadic calls (for now).
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
if (BD->isVariadic())
return false;
}
else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isVariadic())
return false;
}
// It is possible that the live variables analysis cannot be
// run. If so, bail out.
if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
return false;
return true;
}
bool ExprEngine::inlineCall(const CallEvent &Call,
ExplodedNode *Pred) {
if (!getAnalysisManager().shouldInlineCall())
return false;
bool IsDynamicDispatch;
const Decl *D = Call.getDefinition(IsDynamicDispatch);
if (!D || IsDynamicDispatch)
return false;
const LocationContext *CurLC = Pred->getLocationContext();
const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
const LocationContext *ParentOfCallee = 0;
switch (Call.getKind()) {
case CE_Function:
case CE_CXXMember:
case CE_CXXMemberOperator:
// These are always at least possible to inline.
break;
case CE_CXXConstructor:
case CE_CXXDestructor:
// Do not inline constructors until we can really model destructors.
// This is unfortunate, but basically necessary for smart pointers and such.
return false;
case CE_CXXAllocator:
// Do not inline allocators until we model deallocators.
// This is unfortunate, but basically necessary for smart pointers and such.
return false;
case CE_Block: {
const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
assert(BR && "If we have the block definition we should have its region");
AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
cast<BlockDecl>(D),
BR);
break;
}
case CE_ObjCMessage:
// These always use dynamic dispatch; enabling inlining means assuming
// that a particular method will be called at runtime.
llvm_unreachable("Dynamic dispatch should be handled above.");
}
if (!shouldInlineDecl(D, Pred))
return false;
if (!ParentOfCallee)
ParentOfCallee = CallerSFC;
// This may be NULL, but that's fine.
const Expr *CallE = Call.getOriginExpr();
// Construct a new stack frame for the callee.
AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
const StackFrameContext *CalleeSFC =
CalleeADC->getStackFrame(ParentOfCallee, CallE,
currentBuilderContext->getBlock(),
currentStmtIdx);
CallEnter Loc(CallE, CalleeSFC, CurLC);
// Construct a new state which contains the mapping from actual to
// formal arguments.
ProgramStateRef State = Pred->getState()->enterStackFrame(Call, CalleeSFC);
bool isNew;
if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
N->addPredecessor(Pred, G);
if (isNew)
Engine.getWorkList()->enqueue(N);
}
return true;
}
static ProgramStateRef getInlineFailedState(ProgramStateRef State,
const Stmt *CallE) {
void *ReplayState = State->get<ReplayWithoutInlining>();
if (!ReplayState)
return 0;
assert(ReplayState == (const void*)CallE && "Backtracked to the wrong call.");
(void)CallE;
return State->remove<ReplayWithoutInlining>();
}
void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
ExplodedNodeSet &dst) {
// Perform the previsit of the CallExpr.
ExplodedNodeSet dstPreVisit;
getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
// Get the callee kind.
CallEventKind K = classifyCallExpr(CE);
// Evaluate the function call. We try each of the checkers
// to see if the can evaluate the function call.
ExplodedNodeSet dstCallEvaluated;
for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
I != E; ++I) {
ProgramStateRef State = (*I)->getState();
const LocationContext *LCtx = (*I)->getLocationContext();
// Evaluate the call.
switch (K) {
case CE_Function:
evalCall(dstCallEvaluated, *I, FunctionCall(CE, State, LCtx));
break;
case CE_CXXMember:
evalCall(dstCallEvaluated, *I, CXXMemberCall(cast<CXXMemberCallExpr>(CE),
State, LCtx));
break;
case CE_CXXMemberOperator:
evalCall(dstCallEvaluated, *I,
CXXMemberOperatorCall(cast<CXXOperatorCallExpr>(CE),
State, LCtx));
break;
case CE_Block:
evalCall(dstCallEvaluated, *I, BlockCall(CE, State, LCtx));
break;
default:
llvm_unreachable("Non-CallExpr CallEventKind");
}
}
// Finally, perform the post-condition check of the CallExpr and store
// the created nodes in 'Dst'.
// Note that if the call was inlined, dstCallEvaluated will be empty.
// The post-CallExpr check will occur in processCallExit.
getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
*this);
}
void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
const SimpleCall &Call) {
// Run any pre-call checks using the generic call interface.
ExplodedNodeSet dstPreVisit;
getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this);
// Actually evaluate the function call. We try each of the checkers
// to see if the can evaluate the function call, and get a callback at
// defaultEvalCall if all of them fail.
ExplodedNodeSet dstCallEvaluated;
getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
Call, *this);
// Finally, run any post-call checks.
getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated,
Call, *this);
}
ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
const LocationContext *LCtx,
ProgramStateRef State) {
const Expr *E = Call.getOriginExpr();
if (!E)
return State;
// Some method families have known return values.
if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
switch (Msg->getMethodFamily()) {
default:
break;
case OMF_autorelease:
case OMF_retain:
case OMF_self: {
// These methods return their receivers.
return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
break;
}
}
}
// Conjure a symbol if the return value is unknown.
QualType ResultTy = Call.getResultType();
SValBuilder &SVB = getSValBuilder();
unsigned Count = currentBuilderContext->getCurrentBlockCount();
SVal R = SVB.getConjuredSymbolVal(0, E, LCtx, ResultTy, Count);
return State->BindExpr(E, LCtx, R);
}
void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
const CallEvent &Call) {
ProgramStateRef State = 0;
const Expr *E = Call.getOriginExpr();
// Try to inline the call.
// The origin expression here is just used as a kind of checksum;
// for CallEvents that do not have origin expressions, this should still be
// safe.
if (!isa<ObjCMethodCall>(Call)) {
State = getInlineFailedState(Pred->getState(), E);
if (State == 0 && inlineCall(Call, Pred)) {
// If we inlined the call, the successor has been manually added onto
// the work list and we should not consider it for subsequent call
// handling steps.
Bldr.takeNodes(Pred);
return;
}
}
// If we can't inline it, handle the return value and invalidate the regions.
if (State == 0)
State = Pred->getState();
// Invalidate any regions touched by the call.
unsigned Count = currentBuilderContext->getCurrentBlockCount();
State = Call.invalidateRegions(Count, State);
// Construct and bind the return value.
State = bindReturnValue(Call, Pred->getLocationContext(), State);
// And make the result node.
Bldr.generateNode(Call.getProgramPoint(), State, Pred);
}
void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
ExplodedNodeSet dstPreVisit;
getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
StmtNodeBuilder B(dstPreVisit, Dst, *currentBuilderContext);
if (RS->getRetValue()) {
for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
ei = dstPreVisit.end(); it != ei; ++it) {
B.generateNode(RS, *it, (*it)->getState());
}
}
}