blob: 22f5d3d951fe7d29ba5417448d57a0ac6fe71527 [file] [log] [blame]
//==- CoreEngine.h - Path-Sensitive Dataflow Engine ----------------*- C++ -*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a generic engine for intraprocedural, path-sensitive,
// dataflow analysis via graph reachability.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_GR_COREENGINE
#define LLVM_CLANG_GR_COREENGINE
#include "clang/AST/Expr.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/WorkList.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/BlockCounter.h"
#include "llvm/ADT/OwningPtr.h"
namespace clang {
class ProgramPointTag;
namespace ento {
class NodeBuilder;
//===----------------------------------------------------------------------===//
/// CoreEngine - Implements the core logic of the graph-reachability
/// analysis. It traverses the CFG and generates the ExplodedGraph.
/// Program "states" are treated as opaque void pointers.
/// The template class CoreEngine (which subclasses CoreEngine)
/// provides the matching component to the engine that knows the actual types
/// for states. Note that this engine only dispatches to transfer functions
/// at the statement and block-level. The analyses themselves must implement
/// any transfer function logic and the sub-expression level (if any).
class CoreEngine {
friend class CommonNodeBuilder;
friend class NodeBuilder;
friend class StmtNodeBuilder;
friend class GenericNodeBuilderImpl;
friend class BranchNodeBuilder;
friend class IndirectGotoNodeBuilder;
friend class SwitchNodeBuilder;
friend class EndOfFunctionNodeBuilder;
friend class CallEnterNodeBuilder;
friend class CallExitNodeBuilder;
public:
typedef std::vector<std::pair<BlockEdge, const ExplodedNode*> >
BlocksExhausted;
typedef std::vector<std::pair<const CFGBlock*, const ExplodedNode*> >
BlocksAborted;
private:
SubEngine& SubEng;
/// G - The simulation graph. Each node is a (location,state) pair.
llvm::OwningPtr<ExplodedGraph> G;
/// WList - A set of queued nodes that need to be processed by the
/// worklist algorithm. It is up to the implementation of WList to decide
/// the order that nodes are processed.
WorkList* WList;
/// BCounterFactory - A factory object for created BlockCounter objects.
/// These are used to record for key nodes in the ExplodedGraph the
/// number of times different CFGBlocks have been visited along a path.
BlockCounter::Factory BCounterFactory;
/// The locations where we stopped doing work because we visited a location
/// too many times.
BlocksExhausted blocksExhausted;
/// The locations where we stopped because the engine aborted analysis,
/// usually because it could not reason about something.
BlocksAborted blocksAborted;
void generateNode(const ProgramPoint &Loc,
const ProgramState *State,
ExplodedNode *Pred);
void HandleBlockEdge(const BlockEdge &E, ExplodedNode *Pred);
void HandleBlockEntrance(const BlockEntrance &E, ExplodedNode *Pred);
void HandleBlockExit(const CFGBlock *B, ExplodedNode *Pred);
void HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, ExplodedNode *Pred);
void HandleBranch(const Stmt *Cond, const Stmt *Term, const CFGBlock *B,
ExplodedNode *Pred);
void HandleCallEnter(const CallEnter &L, const CFGBlock *Block,
unsigned Index, ExplodedNode *Pred);
void HandleCallExit(const CallExit &L, ExplodedNode *Pred);
private:
CoreEngine(const CoreEngine&); // Do not implement.
CoreEngine& operator=(const CoreEngine&);
public:
/// Construct a CoreEngine object to analyze the provided CFG using
/// a DFS exploration of the exploded graph.
CoreEngine(SubEngine& subengine)
: SubEng(subengine), G(new ExplodedGraph()),
WList(WorkList::makeBFS()),
BCounterFactory(G->getAllocator()) {}
/// Construct a CoreEngine object to analyze the provided CFG and to
/// use the provided worklist object to execute the worklist algorithm.
/// The CoreEngine object assumes ownership of 'wlist'.
CoreEngine(WorkList* wlist, SubEngine& subengine)
: SubEng(subengine), G(new ExplodedGraph()), WList(wlist),
BCounterFactory(G->getAllocator()) {}
~CoreEngine() {
delete WList;
}
/// getGraph - Returns the exploded graph.
ExplodedGraph& getGraph() { return *G.get(); }
/// takeGraph - Returns the exploded graph. Ownership of the graph is
/// transferred to the caller.
ExplodedGraph* takeGraph() { return G.take(); }
/// ExecuteWorkList - Run the worklist algorithm for a maximum number of
/// steps. Returns true if there is still simulation state on the worklist.
bool ExecuteWorkList(const LocationContext *L, unsigned Steps,
const ProgramState *InitState);
void ExecuteWorkListWithInitialState(const LocationContext *L,
unsigned Steps,
const ProgramState *InitState,
ExplodedNodeSet &Dst);
// Functions for external checking of whether we have unfinished work
bool wasBlockAborted() const { return !blocksAborted.empty(); }
bool wasBlocksExhausted() const { return !blocksExhausted.empty(); }
bool hasWorkRemaining() const { return wasBlocksExhausted() ||
WList->hasWork() ||
wasBlockAborted(); }
/// Inform the CoreEngine that a basic block was aborted because
/// it could not be completely analyzed.
void addAbortedBlock(const ExplodedNode *node, const CFGBlock *block) {
blocksAborted.push_back(std::make_pair(block, node));
}
WorkList *getWorkList() const { return WList; }
BlocksExhausted::const_iterator blocks_exhausted_begin() const {
return blocksExhausted.begin();
}
BlocksExhausted::const_iterator blocks_exhausted_end() const {
return blocksExhausted.end();
}
BlocksAborted::const_iterator blocks_aborted_begin() const {
return blocksAborted.begin();
}
BlocksAborted::const_iterator blocks_aborted_end() const {
return blocksAborted.end();
}
/// Enqueue the results of the node builder onto the work list.
void enqueue(NodeBuilder &NB);
};
struct NodeBuilderContext {
CoreEngine &Eng;
ExplodedNode *Pred;
const CFGBlock *Block;
NodeBuilderContext(CoreEngine &E, ExplodedNode *N, const CFGBlock *B)
: Eng(E), Pred(N), Block(B) { assert(B); assert(!N->isSink()); }
};
/// This is the simplest builder which generates nodes in the ExplodedGraph.
class NodeBuilder {
protected:
friend class StmtNodeBuilder;
NodeBuilderContext &C;
bool Finalized;
/// \brief The frontier set - a set of nodes which need to be propagated after
/// the builder dies.
typedef llvm::SmallPtrSet<ExplodedNode*,5> DeferredTy;
DeferredTy Deferred;
BlockCounter getBlockCounter() const { return C.Eng.WList->getBlockCounter();}
bool checkResults() {
if (!Finalized)
return false;
for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
if ((*I)->isSink())
return false;
return true;
}
virtual void finalizeResults() {
if (!Finalized) {
Finalized = true;
}
}
ExplodedNode *generateNodeImpl(const ProgramPoint &PP,
const ProgramState *State,
ExplodedNode *Pred,
bool MarkAsSink = false);
public:
NodeBuilder(NodeBuilderContext &Ctx)
: C(Ctx), Finalized(false) { Deferred.insert(C.Pred); }
virtual ~NodeBuilder() {}
/// \brief Generates a node in the ExplodedGraph.
///
/// When a node is marked as sink, the exploration from the node is stopped -
/// the node becomes the last node on the path.
ExplodedNode *generateNode(const ProgramPoint &PP,
const ProgramState *State,
ExplodedNode *Pred,
bool MarkAsSink = false) {
return generateNodeImpl(PP, State, Pred, MarkAsSink);
}
// \brief Get the builder's predecessor - the parent to all the other nodes.
const ExplodedNode *getPred() const { return C.Pred; }
bool hasGeneratedNodes() const {
return (!Deferred.count(C.Pred));
}
typedef DeferredTy::iterator iterator;
/// \brief Iterators through the results frontier.
inline iterator results_begin() {
finalizeResults();
assert(checkResults());
return Deferred.begin();
}
inline iterator results_end() {
finalizeResults();
return Deferred.end();
}
/// \brief Returns the number of times the current basic block has been
/// visited on the exploded graph path.
unsigned getCurrentBlockCount() const {
return getBlockCounter().getNumVisited(
C.Pred->getLocationContext()->getCurrentStackFrame(),
C.Block->getBlockID());
}
ExplodedNode *getPredecessor() const { return C.Pred; }
};
class CommonNodeBuilder {
protected:
ExplodedNode *Pred;
public:
// TODO: make protected.
CoreEngine& Eng;
CommonNodeBuilder(CoreEngine* E, ExplodedNode *P) : Pred(P), Eng(*E) {}
BlockCounter getBlockCounter() const { return Eng.WList->getBlockCounter(); }
};
class StmtNodeBuilder: public CommonNodeBuilder {
const CFGBlock &B;
const unsigned Idx;
public:
bool PurgingDeadSymbols;
bool BuildSinks;
bool hasGeneratedNode;
ProgramPoint::Kind PointKind;
const ProgramPointTag *Tag;
typedef llvm::SmallPtrSet<ExplodedNode*,5> DeferredTy;
DeferredTy Deferred;
void GenerateAutoTransition(ExplodedNode *N);
public:
StmtNodeBuilder(const CFGBlock *b,
unsigned idx,
ExplodedNode *N,
CoreEngine* e);
~StmtNodeBuilder();
ExplodedNode *getPredecessor() const { return Pred; }
unsigned getCurrentBlockCount() const {
return getBlockCounter().getNumVisited(
Pred->getLocationContext()->getCurrentStackFrame(),
B.getBlockID());
}
ExplodedNode *generateNode(const Stmt *S,
const ProgramState *St,
ExplodedNode *Pred,
ProgramPoint::Kind K,
const ProgramPointTag *tag = 0) {
hasGeneratedNode = true;
if (PurgingDeadSymbols)
K = ProgramPoint::PostPurgeDeadSymbolsKind;
return generateNodeInternal(S, St, Pred, K, tag ? tag : Tag);
}
ExplodedNode *generateNode(const Stmt *S,
const ProgramState *St,
ExplodedNode *Pred,
const ProgramPointTag *tag = 0) {
return generateNode(S, St, Pred, PointKind, tag);
}
ExplodedNode *generateNode(const ProgramPoint &PP,
const ProgramState *State,
ExplodedNode *Pred) {
hasGeneratedNode = true;
return generateNodeInternal(PP, State, Pred);
}
ExplodedNode*
generateNodeInternal(const ProgramPoint &PP,
const ProgramState *State,
ExplodedNode *Pred);
ExplodedNode*
generateNodeInternal(const Stmt *S,
const ProgramState *State,
ExplodedNode *Pred,
ProgramPoint::Kind K,
const ProgramPointTag *tag = 0);
/// getStmt - Return the current block-level expression associated with
/// this builder.
const Stmt *getStmt() const {
const CFGStmt *CS = B[Idx].getAs<CFGStmt>();
return CS ? CS->getStmt() : 0;
}
/// getBlock - Return the CFGBlock associated with the block-level expression
/// of this builder.
const CFGBlock *getBlock() const { return &B; }
unsigned getIndex() const { return Idx; }
ExplodedNode *MakeNode(ExplodedNodeSet &Dst,
const Stmt *S,
ExplodedNode *Pred,
const ProgramState *St) {
return MakeNode(Dst, S, Pred, St, PointKind);
}
ExplodedNode *MakeNode(ExplodedNodeSet &Dst,
const Stmt *S,
ExplodedNode *Pred,
const ProgramState *St,
ProgramPoint::Kind K);
ExplodedNode *MakeSinkNode(ExplodedNodeSet &Dst,
const Stmt *S,
ExplodedNode *Pred,
const ProgramState *St) {
bool Tmp = BuildSinks;
BuildSinks = true;
ExplodedNode *N = MakeNode(Dst, S, Pred, St);
BuildSinks = Tmp;
return N;
}
void importNodesFromBuilder(const NodeBuilder &NB) {
ExplodedNode *NBPred = const_cast<ExplodedNode*>(NB.getPred());
if (NB.hasGeneratedNodes()) {
Deferred.erase(NBPred);
Deferred.insert(NB.Deferred.begin(), NB.Deferred.end());
hasGeneratedNode = true;
}
}
};
class BranchNodeBuilder: public NodeBuilder {
const CFGBlock *DstT;
const CFGBlock *DstF;
bool GeneratedTrue;
bool GeneratedFalse;
bool InFeasibleTrue;
bool InFeasibleFalse;
void finalizeResults() {
if (Finalized)
return;
if (!GeneratedTrue) generateNode(C.Pred->State, true);
if (!GeneratedFalse) generateNode(C.Pred->State, false);
Finalized = true;
}
public:
BranchNodeBuilder(NodeBuilderContext &C, const CFGBlock *dstT,
const CFGBlock *dstF)
: NodeBuilder(C), DstT(dstT), DstF(dstF),
GeneratedTrue(false), GeneratedFalse(false),
InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
}
/// This function generate a new ExplodedNode but not a new
/// branch(block edge). Creates a transition from the Builder's top
/// predecessor.
ExplodedNode *generateNode(const Stmt *Condition, const ProgramState *State,
const ProgramPointTag *Tag = 0,
bool MarkAsSink = false);
ExplodedNode *generateNode(const ProgramState *State, bool branch,
ExplodedNode *Pred = 0);
const CFGBlock *getTargetBlock(bool branch) const {
return branch ? DstT : DstF;
}
void markInfeasible(bool branch) {
if (branch)
InFeasibleTrue = GeneratedTrue = true;
else
InFeasibleFalse = GeneratedFalse = true;
}
bool isFeasible(bool branch) {
return branch ? !InFeasibleTrue : !InFeasibleFalse;
}
const ProgramState *getState() const {
return getPredecessor()->getState();
}
};
class IndirectGotoNodeBuilder {
CoreEngine& Eng;
const CFGBlock *Src;
const CFGBlock &DispatchBlock;
const Expr *E;
ExplodedNode *Pred;
public:
IndirectGotoNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
const Expr *e, const CFGBlock *dispatch, CoreEngine* eng)
: Eng(*eng), Src(src), DispatchBlock(*dispatch), E(e), Pred(pred) {}
class iterator {
CFGBlock::const_succ_iterator I;
friend class IndirectGotoNodeBuilder;
iterator(CFGBlock::const_succ_iterator i) : I(i) {}
public:
iterator &operator++() { ++I; return *this; }
bool operator!=(const iterator &X) const { return I != X.I; }
const LabelDecl *getLabel() const {
return llvm::cast<LabelStmt>((*I)->getLabel())->getDecl();
}
const CFGBlock *getBlock() const {
return *I;
}
};
iterator begin() { return iterator(DispatchBlock.succ_begin()); }
iterator end() { return iterator(DispatchBlock.succ_end()); }
ExplodedNode *generateNode(const iterator &I,
const ProgramState *State,
bool isSink = false);
const Expr *getTarget() const { return E; }
const ProgramState *getState() const { return Pred->State; }
};
class SwitchNodeBuilder {
CoreEngine& Eng;
const CFGBlock *Src;
const Expr *Condition;
ExplodedNode *Pred;
public:
SwitchNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
const Expr *condition, CoreEngine* eng)
: Eng(*eng), Src(src), Condition(condition), Pred(pred) {}
class iterator {
CFGBlock::const_succ_reverse_iterator I;
friend class SwitchNodeBuilder;
iterator(CFGBlock::const_succ_reverse_iterator i) : I(i) {}
public:
iterator &operator++() { ++I; return *this; }
bool operator!=(const iterator &X) const { return I != X.I; }
bool operator==(const iterator &X) const { return I == X.I; }
const CaseStmt *getCase() const {
return llvm::cast<CaseStmt>((*I)->getLabel());
}
const CFGBlock *getBlock() const {
return *I;
}
};
iterator begin() { return iterator(Src->succ_rbegin()+1); }
iterator end() { return iterator(Src->succ_rend()); }
const SwitchStmt *getSwitch() const {
return llvm::cast<SwitchStmt>(Src->getTerminator());
}
ExplodedNode *generateCaseStmtNode(const iterator &I,
const ProgramState *State);
ExplodedNode *generateDefaultCaseNode(const ProgramState *State,
bool isSink = false);
const Expr *getCondition() const { return Condition; }
const ProgramState *getState() const { return Pred->State; }
};
class GenericNodeBuilderImpl {
protected:
CoreEngine &engine;
ExplodedNode *pred;
ProgramPoint pp;
SmallVector<ExplodedNode*, 2> sinksGenerated;
ExplodedNode *generateNodeImpl(const ProgramState *state,
ExplodedNode *pred,
ProgramPoint programPoint,
bool asSink);
GenericNodeBuilderImpl(CoreEngine &eng, ExplodedNode *pr, ProgramPoint p)
: engine(eng), pred(pr), pp(p), hasGeneratedNode(false) {}
public:
bool hasGeneratedNode;
WorkList &getWorkList() { return *engine.WList; }
ExplodedNode *getPredecessor() const { return pred; }
BlockCounter getBlockCounter() const {
return engine.WList->getBlockCounter();
}
const SmallVectorImpl<ExplodedNode*> &sinks() const {
return sinksGenerated;
}
};
template <typename PP_T>
class GenericNodeBuilder : public GenericNodeBuilderImpl {
public:
GenericNodeBuilder(CoreEngine &eng, ExplodedNode *pr, const PP_T &p)
: GenericNodeBuilderImpl(eng, pr, p) {}
ExplodedNode *generateNode(const ProgramState *state, ExplodedNode *pred,
const ProgramPointTag *tag, bool asSink) {
return generateNodeImpl(state, pred, cast<PP_T>(pp).withTag(tag),
asSink);
}
const PP_T &getProgramPoint() const { return cast<PP_T>(pp); }
};
class EndOfFunctionNodeBuilder : public CommonNodeBuilder {
const CFGBlock &B;
const ProgramPointTag *Tag;
public:
bool hasGeneratedNode;
public:
EndOfFunctionNodeBuilder(const CFGBlock *b, ExplodedNode *N, CoreEngine* e,
const ProgramPointTag *tag = 0)
: CommonNodeBuilder(e, N), B(*b), Tag(tag), hasGeneratedNode(false) {}
~EndOfFunctionNodeBuilder();
EndOfFunctionNodeBuilder withCheckerTag(const ProgramPointTag *tag) {
return EndOfFunctionNodeBuilder(&B, Pred, &Eng, tag);
}
WorkList &getWorkList() { return *Eng.WList; }
ExplodedNode *getPredecessor() const { return Pred; }
unsigned getCurrentBlockCount() const {
return getBlockCounter().getNumVisited(
Pred->getLocationContext()->getCurrentStackFrame(),
B.getBlockID());
}
ExplodedNode *generateNode(const ProgramState *State,
ExplodedNode *P = 0,
const ProgramPointTag *tag = 0);
void GenerateCallExitNode(const ProgramState *state);
const CFGBlock *getBlock() const { return &B; }
const ProgramState *getState() const {
return getPredecessor()->getState();
}
};
class CallEnterNodeBuilder {
CoreEngine &Eng;
const ExplodedNode *Pred;
// The call site. For implicit automatic object dtor, this is the trigger
// statement.
const Stmt *CE;
// The context of the callee.
const StackFrameContext *CalleeCtx;
// The parent block of the CallExpr.
const CFGBlock *Block;
// The CFGBlock index of the CallExpr.
unsigned Index;
public:
CallEnterNodeBuilder(CoreEngine &eng, const ExplodedNode *pred,
const Stmt *s, const StackFrameContext *callee,
const CFGBlock *blk, unsigned idx)
: Eng(eng), Pred(pred), CE(s), CalleeCtx(callee), Block(blk), Index(idx) {}
const ProgramState *getState() const { return Pred->getState(); }
const LocationContext *getLocationContext() const {
return Pred->getLocationContext();
}
const Stmt *getCallExpr() const { return CE; }
const StackFrameContext *getCalleeContext() const { return CalleeCtx; }
const CFGBlock *getBlock() const { return Block; }
unsigned getIndex() const { return Index; }
void generateNode(const ProgramState *state);
};
class CallExitNodeBuilder {
CoreEngine &Eng;
const ExplodedNode *Pred;
public:
CallExitNodeBuilder(CoreEngine &eng, const ExplodedNode *pred)
: Eng(eng), Pred(pred) {}
const ExplodedNode *getPredecessor() const { return Pred; }
const ProgramState *getState() const { return Pred->getState(); }
void generateNode(const ProgramState *state);
};
} // end GR namespace
} // end clang namespace
#endif