blob: a03cf83ff7db703318ad9cde29959918f7509f5e [file] [log] [blame]
//===--- TargetInfo.h - Expose information about the target -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the TargetInfo interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_BASIC_TARGETINFO_H
#define LLVM_CLANG_BASIC_TARGETINFO_H
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/DataTypes.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/VersionTuple.h"
#include <cassert>
#include <vector>
#include <string>
namespace llvm {
struct fltSemantics;
}
namespace clang {
class DiagnosticsEngine;
class LangOptions;
class MacroBuilder;
class SourceLocation;
class SourceManager;
class TargetOptions;
namespace Builtin { struct Info; }
/// TargetCXXABI - The types of C++ ABIs for which we can generate code.
enum TargetCXXABI {
/// The generic ("Itanium") C++ ABI, documented at:
/// http://www.codesourcery.com/public/cxx-abi/
CXXABI_Itanium,
/// The ARM C++ ABI, based largely on the Itanium ABI but with
/// significant differences.
/// http://infocenter.arm.com
/// /help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
CXXABI_ARM,
/// The Visual Studio ABI. Only scattered official documentation exists.
CXXABI_Microsoft
};
/// TargetInfo - This class exposes information about the current target.
///
class TargetInfo : public RefCountedBase<TargetInfo> {
llvm::Triple Triple;
protected:
// Target values set by the ctor of the actual target implementation. Default
// values are specified by the TargetInfo constructor.
bool BigEndian;
bool TLSSupported;
bool NoAsmVariants; // True if {|} are normal characters.
unsigned char PointerWidth, PointerAlign;
unsigned char BoolWidth, BoolAlign;
unsigned char IntWidth, IntAlign;
unsigned char HalfWidth, HalfAlign;
unsigned char FloatWidth, FloatAlign;
unsigned char DoubleWidth, DoubleAlign;
unsigned char LongDoubleWidth, LongDoubleAlign;
unsigned char LargeArrayMinWidth, LargeArrayAlign;
unsigned char LongWidth, LongAlign;
unsigned char LongLongWidth, LongLongAlign;
unsigned char SuitableAlign;
unsigned char MaxAtomicPromoteWidth, MaxAtomicInlineWidth;
const char *DescriptionString;
const char *UserLabelPrefix;
const char *MCountName;
const llvm::fltSemantics *HalfFormat, *FloatFormat, *DoubleFormat,
*LongDoubleFormat;
unsigned char RegParmMax, SSERegParmMax;
TargetCXXABI CXXABI;
const LangAS::Map *AddrSpaceMap;
mutable StringRef PlatformName;
mutable VersionTuple PlatformMinVersion;
unsigned HasAlignMac68kSupport : 1;
unsigned RealTypeUsesObjCFPRet : 3;
unsigned ComplexLongDoubleUsesFP2Ret : 1;
// TargetInfo Constructor. Default initializes all fields.
TargetInfo(const std::string &T);
public:
/// CreateTargetInfo - Construct a target for the given options.
///
/// \param Opts - The options to use to initialize the target. The target may
/// modify the options to canonicalize the target feature information to match
/// what the backend expects.
static TargetInfo* CreateTargetInfo(DiagnosticsEngine &Diags,
TargetOptions &Opts);
virtual ~TargetInfo();
///===---- Target Data Type Query Methods -------------------------------===//
enum IntType {
NoInt = 0,
SignedShort,
UnsignedShort,
SignedInt,
UnsignedInt,
SignedLong,
UnsignedLong,
SignedLongLong,
UnsignedLongLong
};
enum RealType {
Float = 0,
Double,
LongDouble
};
protected:
IntType SizeType, IntMaxType, UIntMaxType, PtrDiffType, IntPtrType, WCharType,
WIntType, Char16Type, Char32Type, Int64Type, SigAtomicType;
/// Flag whether the Objective-C built-in boolean type should be signed char.
/// Otherwise, when this flag is not set, the normal built-in boolean type is
/// used.
unsigned UseSignedCharForObjCBool : 1;
/// Control whether the alignment of bit-field types is respected when laying
/// out structures. If true, then the alignment of the bit-field type will be
/// used to (a) impact the alignment of the containing structure, and (b)
/// ensure that the individual bit-field will not straddle an alignment
/// boundary.
unsigned UseBitFieldTypeAlignment : 1;
/// Control whether zero length bitfields (e.g., int : 0;) force alignment of
/// the next bitfield. If the alignment of the zero length bitfield is
/// greater than the member that follows it, `bar', `bar' will be aligned as
/// the type of the zero-length bitfield.
unsigned UseZeroLengthBitfieldAlignment : 1;
/// If non-zero, specifies a fixed alignment value for bitfields that follow
/// zero length bitfield, regardless of the zero length bitfield type.
unsigned ZeroLengthBitfieldBoundary;
public:
IntType getSizeType() const { return SizeType; }
IntType getIntMaxType() const { return IntMaxType; }
IntType getUIntMaxType() const { return UIntMaxType; }
IntType getPtrDiffType(unsigned AddrSpace) const {
return AddrSpace == 0 ? PtrDiffType : getPtrDiffTypeV(AddrSpace);
}
IntType getIntPtrType() const { return IntPtrType; }
IntType getWCharType() const { return WCharType; }
IntType getWIntType() const { return WIntType; }
IntType getChar16Type() const { return Char16Type; }
IntType getChar32Type() const { return Char32Type; }
IntType getInt64Type() const { return Int64Type; }
IntType getSigAtomicType() const { return SigAtomicType; }
/// getTypeWidth - Return the width (in bits) of the specified integer type
/// enum. For example, SignedInt -> getIntWidth().
unsigned getTypeWidth(IntType T) const;
/// getTypeAlign - Return the alignment (in bits) of the specified integer
/// type enum. For example, SignedInt -> getIntAlign().
unsigned getTypeAlign(IntType T) const;
/// isTypeSigned - Return whether an integer types is signed. Returns true if
/// the type is signed; false otherwise.
static bool isTypeSigned(IntType T);
/// getPointerWidth - Return the width of pointers on this target, for the
/// specified address space.
uint64_t getPointerWidth(unsigned AddrSpace) const {
return AddrSpace == 0 ? PointerWidth : getPointerWidthV(AddrSpace);
}
uint64_t getPointerAlign(unsigned AddrSpace) const {
return AddrSpace == 0 ? PointerAlign : getPointerAlignV(AddrSpace);
}
/// getBoolWidth/Align - Return the size of '_Bool' and C++ 'bool' for this
/// target, in bits.
unsigned getBoolWidth() const { return BoolWidth; }
unsigned getBoolAlign() const { return BoolAlign; }
unsigned getCharWidth() const { return 8; } // FIXME
unsigned getCharAlign() const { return 8; } // FIXME
/// getShortWidth/Align - Return the size of 'signed short' and
/// 'unsigned short' for this target, in bits.
unsigned getShortWidth() const { return 16; } // FIXME
unsigned getShortAlign() const { return 16; } // FIXME
/// getIntWidth/Align - Return the size of 'signed int' and 'unsigned int' for
/// this target, in bits.
unsigned getIntWidth() const { return IntWidth; }
unsigned getIntAlign() const { return IntAlign; }
/// getLongWidth/Align - Return the size of 'signed long' and 'unsigned long'
/// for this target, in bits.
unsigned getLongWidth() const { return LongWidth; }
unsigned getLongAlign() const { return LongAlign; }
/// getLongLongWidth/Align - Return the size of 'signed long long' and
/// 'unsigned long long' for this target, in bits.
unsigned getLongLongWidth() const { return LongLongWidth; }
unsigned getLongLongAlign() const { return LongLongAlign; }
/// getSuitableAlign - Return the alignment that is suitable for storing any
/// object with a fundamental alignment requirement.
unsigned getSuitableAlign() const { return SuitableAlign; }
/// getWCharWidth/Align - Return the size of 'wchar_t' for this target, in
/// bits.
unsigned getWCharWidth() const { return getTypeWidth(WCharType); }
unsigned getWCharAlign() const { return getTypeAlign(WCharType); }
/// getChar16Width/Align - Return the size of 'char16_t' for this target, in
/// bits.
unsigned getChar16Width() const { return getTypeWidth(Char16Type); }
unsigned getChar16Align() const { return getTypeAlign(Char16Type); }
/// getChar32Width/Align - Return the size of 'char32_t' for this target, in
/// bits.
unsigned getChar32Width() const { return getTypeWidth(Char32Type); }
unsigned getChar32Align() const { return getTypeAlign(Char32Type); }
/// getHalfWidth/Align/Format - Return the size/align/format of 'half'.
unsigned getHalfWidth() const { return HalfWidth; }
unsigned getHalfAlign() const { return HalfAlign; }
const llvm::fltSemantics &getHalfFormat() const { return *HalfFormat; }
/// getFloatWidth/Align/Format - Return the size/align/format of 'float'.
unsigned getFloatWidth() const { return FloatWidth; }
unsigned getFloatAlign() const { return FloatAlign; }
const llvm::fltSemantics &getFloatFormat() const { return *FloatFormat; }
/// getDoubleWidth/Align/Format - Return the size/align/format of 'double'.
unsigned getDoubleWidth() const { return DoubleWidth; }
unsigned getDoubleAlign() const { return DoubleAlign; }
const llvm::fltSemantics &getDoubleFormat() const { return *DoubleFormat; }
/// getLongDoubleWidth/Align/Format - Return the size/align/format of 'long
/// double'.
unsigned getLongDoubleWidth() const { return LongDoubleWidth; }
unsigned getLongDoubleAlign() const { return LongDoubleAlign; }
const llvm::fltSemantics &getLongDoubleFormat() const {
return *LongDoubleFormat;
}
/// getFloatEvalMethod - Return the value for the C99 FLT_EVAL_METHOD macro.
virtual unsigned getFloatEvalMethod() const { return 0; }
// getLargeArrayMinWidth/Align - Return the minimum array size that is
// 'large' and its alignment.
unsigned getLargeArrayMinWidth() const { return LargeArrayMinWidth; }
unsigned getLargeArrayAlign() const { return LargeArrayAlign; }
/// getMaxAtomicPromoteWidth - Return the maximum width lock-free atomic
/// operation which will ever be supported for the given target
unsigned getMaxAtomicPromoteWidth() const { return MaxAtomicPromoteWidth; }
/// getMaxAtomicInlineWidth - Return the maximum width lock-free atomic
/// operation which can be inlined given the supported features of the
/// given target.
unsigned getMaxAtomicInlineWidth() const { return MaxAtomicInlineWidth; }
/// getIntMaxTWidth - Return the size of intmax_t and uintmax_t for this
/// target, in bits.
unsigned getIntMaxTWidth() const {
return getTypeWidth(IntMaxType);
}
/// getRegisterWidth - Return the "preferred" register width on this target.
uint64_t getRegisterWidth() const {
// Currently we assume the register width on the target matches the pointer
// width, we can introduce a new variable for this if/when some target wants
// it.
return LongWidth;
}
/// getUserLabelPrefix - This returns the default value of the
/// __USER_LABEL_PREFIX__ macro, which is the prefix given to user symbols by
/// default. On most platforms this is "_", but it is "" on some, and "." on
/// others.
const char *getUserLabelPrefix() const {
return UserLabelPrefix;
}
/// MCountName - This returns name of the mcount instrumentation function.
const char *getMCountName() const {
return MCountName;
}
/// useSignedCharForObjCBool - Check if the Objective-C built-in boolean
/// type should be signed char. Otherwise, if this returns false, the
/// normal built-in boolean type should also be used for Objective-C.
bool useSignedCharForObjCBool() const {
return UseSignedCharForObjCBool;
}
void noSignedCharForObjCBool() {
UseSignedCharForObjCBool = false;
}
/// useBitFieldTypeAlignment() - Check whether the alignment of bit-field
/// types is respected when laying out structures.
bool useBitFieldTypeAlignment() const {
return UseBitFieldTypeAlignment;
}
/// useZeroLengthBitfieldAlignment() - Check whether zero length bitfields
/// should force alignment of the next member.
bool useZeroLengthBitfieldAlignment() const {
return UseZeroLengthBitfieldAlignment;
}
/// getZeroLengthBitfieldBoundary() - Get the fixed alignment value in bits
/// for a member that follows a zero length bitfield.
unsigned getZeroLengthBitfieldBoundary() const {
return ZeroLengthBitfieldBoundary;
}
/// hasAlignMac68kSupport - Check whether this target support '#pragma options
/// align=mac68k'.
bool hasAlignMac68kSupport() const {
return HasAlignMac68kSupport;
}
/// getTypeName - Return the user string for the specified integer type enum.
/// For example, SignedShort -> "short".
static const char *getTypeName(IntType T);
/// getTypeConstantSuffix - Return the constant suffix for the specified
/// integer type enum. For example, SignedLong -> "L".
static const char *getTypeConstantSuffix(IntType T);
/// \brief Check whether the given real type should use the "fpret" flavor of
/// Obj-C message passing on this target.
bool useObjCFPRetForRealType(RealType T) const {
return RealTypeUsesObjCFPRet & (1 << T);
}
/// \brief Check whether _Complex long double should use the "fp2ret" flavor
/// of Obj-C message passing on this target.
bool useObjCFP2RetForComplexLongDouble() const {
return ComplexLongDoubleUsesFP2Ret;
}
///===---- Other target property query methods --------------------------===//
/// getTargetDefines - Appends the target-specific #define values for this
/// target set to the specified buffer.
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const = 0;
/// getTargetBuiltins - Return information about target-specific builtins for
/// the current primary target, and info about which builtins are non-portable
/// across the current set of primary and secondary targets.
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const = 0;
/// isCLZForZeroUndef - The __builtin_clz* and __builtin_ctz* built-in
/// functions are specified to have undefined results for zero inputs, but
/// on targets that support these operations in a way that provides
/// well-defined results for zero without loss of performance, it is a good
/// idea to avoid optimizing based on that undef behavior.
virtual bool isCLZForZeroUndef() const { return true; }
/// getVAListDeclaration - Return the declaration to use for
/// __builtin_va_list, which is target-specific.
virtual const char *getVAListDeclaration() const = 0;
/// isValidClobber - Returns whether the passed in string is
/// a valid clobber in an inline asm statement. This is used by
/// Sema.
bool isValidClobber(StringRef Name) const;
/// isValidGCCRegisterName - Returns whether the passed in string
/// is a valid register name according to GCC. This is used by Sema for
/// inline asm statements.
bool isValidGCCRegisterName(StringRef Name) const;
// getNormalizedGCCRegisterName - Returns the "normalized" GCC register name.
// For example, on x86 it will return "ax" when "eax" is passed in.
StringRef getNormalizedGCCRegisterName(StringRef Name) const;
struct ConstraintInfo {
enum {
CI_None = 0x00,
CI_AllowsMemory = 0x01,
CI_AllowsRegister = 0x02,
CI_ReadWrite = 0x04, // "+r" output constraint (read and write).
CI_HasMatchingInput = 0x08 // This output operand has a matching input.
};
unsigned Flags;
int TiedOperand;
std::string ConstraintStr; // constraint: "=rm"
std::string Name; // Operand name: [foo] with no []'s.
public:
ConstraintInfo(StringRef ConstraintStr, StringRef Name)
: Flags(0), TiedOperand(-1), ConstraintStr(ConstraintStr.str()),
Name(Name.str()) {}
const std::string &getConstraintStr() const { return ConstraintStr; }
const std::string &getName() const { return Name; }
bool isReadWrite() const { return (Flags & CI_ReadWrite) != 0; }
bool allowsRegister() const { return (Flags & CI_AllowsRegister) != 0; }
bool allowsMemory() const { return (Flags & CI_AllowsMemory) != 0; }
/// hasMatchingInput - Return true if this output operand has a matching
/// (tied) input operand.
bool hasMatchingInput() const { return (Flags & CI_HasMatchingInput) != 0; }
/// hasTiedOperand() - Return true if this input operand is a matching
/// constraint that ties it to an output operand. If this returns true,
/// then getTiedOperand will indicate which output operand this is tied to.
bool hasTiedOperand() const { return TiedOperand != -1; }
unsigned getTiedOperand() const {
assert(hasTiedOperand() && "Has no tied operand!");
return (unsigned)TiedOperand;
}
void setIsReadWrite() { Flags |= CI_ReadWrite; }
void setAllowsMemory() { Flags |= CI_AllowsMemory; }
void setAllowsRegister() { Flags |= CI_AllowsRegister; }
void setHasMatchingInput() { Flags |= CI_HasMatchingInput; }
/// setTiedOperand - Indicate that this is an input operand that is tied to
/// the specified output operand. Copy over the various constraint
/// information from the output.
void setTiedOperand(unsigned N, ConstraintInfo &Output) {
Output.setHasMatchingInput();
Flags = Output.Flags;
TiedOperand = N;
// Don't copy Name or constraint string.
}
};
// validateOutputConstraint, validateInputConstraint - Checks that
// a constraint is valid and provides information about it.
// FIXME: These should return a real error instead of just true/false.
bool validateOutputConstraint(ConstraintInfo &Info) const;
bool validateInputConstraint(ConstraintInfo *OutputConstraints,
unsigned NumOutputs,
ConstraintInfo &info) const;
bool resolveSymbolicName(const char *&Name,
ConstraintInfo *OutputConstraints,
unsigned NumOutputs, unsigned &Index) const;
// Constraint parm will be left pointing at the last character of
// the constraint. In practice, it won't be changed unless the
// constraint is longer than one character.
virtual std::string convertConstraint(const char *&Constraint) const {
// 'p' defaults to 'r', but can be overridden by targets.
if (*Constraint == 'p')
return std::string("r");
return std::string(1, *Constraint);
}
// Returns a string of target-specific clobbers, in LLVM format.
virtual const char *getClobbers() const = 0;
/// getTriple - Return the target triple of the primary target.
const llvm::Triple &getTriple() const {
return Triple;
}
const char *getTargetDescription() const {
return DescriptionString;
}
struct GCCRegAlias {
const char * const Aliases[5];
const char * const Register;
};
struct AddlRegName {
const char * const Names[5];
const unsigned RegNum;
};
/// hasProtectedVisibility - Does this target support "protected"
/// visibility?
///
/// Any target which dynamic libraries will naturally support
/// something like "default" (meaning that the symbol is visible
/// outside this shared object) and "hidden" (meaning that it isn't)
/// visibilities, but "protected" is really an ELF-specific concept
/// with wierd semantics designed around the convenience of dynamic
/// linker implementations. Which is not to suggest that there's
/// consistent target-independent semantics for "default" visibility
/// either; the entire thing is pretty badly mangled.
virtual bool hasProtectedVisibility() const { return true; }
virtual bool useGlobalsForAutomaticVariables() const { return false; }
/// getCFStringSection - Return the section to use for CFString
/// literals, or 0 if no special section is used.
virtual const char *getCFStringSection() const {
return "__DATA,__cfstring";
}
/// getNSStringSection - Return the section to use for NSString
/// literals, or 0 if no special section is used.
virtual const char *getNSStringSection() const {
return "__OBJC,__cstring_object,regular,no_dead_strip";
}
/// getNSStringNonFragileABISection - Return the section to use for
/// NSString literals, or 0 if no special section is used (NonFragile ABI).
virtual const char *getNSStringNonFragileABISection() const {
return "__DATA, __objc_stringobj, regular, no_dead_strip";
}
/// isValidSectionSpecifier - This is an optional hook that targets can
/// implement to perform semantic checking on attribute((section("foo")))
/// specifiers. In this case, "foo" is passed in to be checked. If the
/// section specifier is invalid, the backend should return a non-empty string
/// that indicates the problem.
///
/// This hook is a simple quality of implementation feature to catch errors
/// and give good diagnostics in cases when the assembler or code generator
/// would otherwise reject the section specifier.
///
virtual std::string isValidSectionSpecifier(StringRef SR) const {
return "";
}
/// setForcedLangOptions - Set forced language options.
/// Apply changes to the target information with respect to certain
/// language options which change the target configuration.
virtual void setForcedLangOptions(LangOptions &Opts);
/// getDefaultFeatures - Get the default set of target features for the CPU;
/// this should include all legal feature strings on the target.
virtual void getDefaultFeatures(llvm::StringMap<bool> &Features) const {
}
/// getABI - Get the ABI in use.
virtual const char *getABI() const {
return "";
}
/// getCXXABI - Get the C++ ABI in use.
virtual TargetCXXABI getCXXABI() const {
return CXXABI;
}
/// setCPU - Target the specific CPU.
///
/// \return - False on error (invalid CPU name).
virtual bool setCPU(const std::string &Name) {
return false;
}
/// setABI - Use the specific ABI.
///
/// \return - False on error (invalid ABI name).
virtual bool setABI(const std::string &Name) {
return false;
}
/// setCXXABI - Use this specific C++ ABI.
///
/// \return - False on error (invalid C++ ABI name).
bool setCXXABI(const std::string &Name) {
static const TargetCXXABI Unknown = static_cast<TargetCXXABI>(-1);
TargetCXXABI ABI = llvm::StringSwitch<TargetCXXABI>(Name)
.Case("arm", CXXABI_ARM)
.Case("itanium", CXXABI_Itanium)
.Case("microsoft", CXXABI_Microsoft)
.Default(Unknown);
if (ABI == Unknown) return false;
return setCXXABI(ABI);
}
/// setCXXABI - Set the C++ ABI to be used by this implementation.
///
/// \return - False on error (ABI not valid on this target)
virtual bool setCXXABI(TargetCXXABI ABI) {
CXXABI = ABI;
return true;
}
/// setFeatureEnabled - Enable or disable a specific target feature,
/// the feature name must be valid.
///
/// \return - False on error (invalid feature name).
virtual bool setFeatureEnabled(llvm::StringMap<bool> &Features,
StringRef Name,
bool Enabled) const {
return false;
}
/// HandleTargetOptions - Perform initialization based on the user configured
/// set of features (e.g., +sse4). The list is guaranteed to have at most one
/// entry per feature.
///
/// The target may modify the features list, to change which options are
/// passed onwards to the backend.
virtual void HandleTargetFeatures(std::vector<std::string> &Features) {
}
/// \brief Determine whether the given target has the given feature.
virtual bool hasFeature(StringRef Feature) const {
return false;
}
// getRegParmMax - Returns maximal number of args passed in registers.
unsigned getRegParmMax() const {
assert(RegParmMax < 7 && "RegParmMax value is larger than AST can handle");
return RegParmMax;
}
/// isTLSSupported - Whether the target supports thread-local storage.
bool isTLSSupported() const {
return TLSSupported;
}
/// hasNoAsmVariants - Return true if {|} are normal characters in the
/// asm string. If this returns false (the default), then {abc|xyz} is syntax
/// that says that when compiling for asm variant #0, "abc" should be
/// generated, but when compiling for asm variant #1, "xyz" should be
/// generated.
bool hasNoAsmVariants() const {
return NoAsmVariants;
}
/// getEHDataRegisterNumber - Return the register number that
/// __builtin_eh_return_regno would return with the specified argument.
virtual int getEHDataRegisterNumber(unsigned RegNo) const {
return -1;
}
/// getStaticInitSectionSpecifier - Return the section to use for C++ static
/// initialization functions.
virtual const char *getStaticInitSectionSpecifier() const {
return 0;
}
const LangAS::Map &getAddressSpaceMap() const {
return *AddrSpaceMap;
}
/// \brief Retrieve the name of the platform as it is used in the
/// availability attribute.
StringRef getPlatformName() const { return PlatformName; }
/// \brief Retrieve the minimum desired version of the platform, to
/// which the program should be compiled.
VersionTuple getPlatformMinVersion() const { return PlatformMinVersion; }
bool isBigEndian() const { return BigEndian; }
protected:
virtual uint64_t getPointerWidthV(unsigned AddrSpace) const {
return PointerWidth;
}
virtual uint64_t getPointerAlignV(unsigned AddrSpace) const {
return PointerAlign;
}
virtual enum IntType getPtrDiffTypeV(unsigned AddrSpace) const {
return PtrDiffType;
}
virtual void getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const = 0;
virtual void getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const = 0;
virtual void getGCCAddlRegNames(const AddlRegName *&Addl,
unsigned &NumAddl) const {
Addl = 0;
NumAddl = 0;
}
virtual bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &info) const= 0;
};
} // end namespace clang
#endif