blob: af5ed273a96732ef3e301f6d7c93b215a92d21f9 [file] [log] [blame]
//==- CoreEngine.h - Path-Sensitive Dataflow Engine ----------------*- C++ -*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a generic engine for intraprocedural, path-sensitive,
// dataflow analysis via graph reachability.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_GR_COREENGINE
#define LLVM_CLANG_GR_COREENGINE
#include "clang/AST/Expr.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/WorkList.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/BlockCounter.h"
#include "llvm/ADT/OwningPtr.h"
namespace clang {
class ProgramPointTag;
namespace ento {
class NodeBuilder;
//===----------------------------------------------------------------------===//
/// CoreEngine - Implements the core logic of the graph-reachability
/// analysis. It traverses the CFG and generates the ExplodedGraph.
/// Program "states" are treated as opaque void pointers.
/// The template class CoreEngine (which subclasses CoreEngine)
/// provides the matching component to the engine that knows the actual types
/// for states. Note that this engine only dispatches to transfer functions
/// at the statement and block-level. The analyses themselves must implement
/// any transfer function logic and the sub-expression level (if any).
class CoreEngine {
friend struct NodeBuilderContext;
friend class NodeBuilder;
friend class CommonNodeBuilder;
friend class IndirectGotoNodeBuilder;
friend class SwitchNodeBuilder;
friend class EndOfFunctionNodeBuilder;
friend class CallEnterNodeBuilder;
public:
typedef std::vector<std::pair<BlockEdge, const ExplodedNode*> >
BlocksExhausted;
typedef std::vector<std::pair<const CFGBlock*, const ExplodedNode*> >
BlocksAborted;
private:
SubEngine& SubEng;
/// G - The simulation graph. Each node is a (location,state) pair.
llvm::OwningPtr<ExplodedGraph> G;
/// WList - A set of queued nodes that need to be processed by the
/// worklist algorithm. It is up to the implementation of WList to decide
/// the order that nodes are processed.
WorkList* WList;
/// BCounterFactory - A factory object for created BlockCounter objects.
/// These are used to record for key nodes in the ExplodedGraph the
/// number of times different CFGBlocks have been visited along a path.
BlockCounter::Factory BCounterFactory;
/// The locations where we stopped doing work because we visited a location
/// too many times.
BlocksExhausted blocksExhausted;
/// The locations where we stopped because the engine aborted analysis,
/// usually because it could not reason about something.
BlocksAborted blocksAborted;
void generateNode(const ProgramPoint &Loc,
const ProgramState *State,
ExplodedNode *Pred);
void HandleBlockEdge(const BlockEdge &E, ExplodedNode *Pred);
void HandleBlockEntrance(const BlockEntrance &E, ExplodedNode *Pred);
void HandleBlockExit(const CFGBlock *B, ExplodedNode *Pred);
void HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, ExplodedNode *Pred);
void HandleBranch(const Stmt *Cond, const Stmt *Term, const CFGBlock *B,
ExplodedNode *Pred);
void HandleCallEnter(const CallEnter &L, const CFGBlock *Block,
unsigned Index, ExplodedNode *Pred);
void HandleCallExit(const CallExit &L, ExplodedNode *Pred);
private:
CoreEngine(const CoreEngine&); // Do not implement.
CoreEngine& operator=(const CoreEngine&);
void enqueueStmtNode(ExplodedNode *N,
const CFGBlock *Block, unsigned Idx);
ExplodedNode *generateCallExitNode(ExplodedNode *N);
public:
/// Construct a CoreEngine object to analyze the provided CFG using
/// a DFS exploration of the exploded graph.
CoreEngine(SubEngine& subengine)
: SubEng(subengine), G(new ExplodedGraph()),
WList(WorkList::makeBFS()),
BCounterFactory(G->getAllocator()) {}
/// Construct a CoreEngine object to analyze the provided CFG and to
/// use the provided worklist object to execute the worklist algorithm.
/// The CoreEngine object assumes ownership of 'wlist'.
CoreEngine(WorkList* wlist, SubEngine& subengine)
: SubEng(subengine), G(new ExplodedGraph()), WList(wlist),
BCounterFactory(G->getAllocator()) {}
~CoreEngine() {
delete WList;
}
/// getGraph - Returns the exploded graph.
ExplodedGraph& getGraph() { return *G.get(); }
/// takeGraph - Returns the exploded graph. Ownership of the graph is
/// transferred to the caller.
ExplodedGraph* takeGraph() { return G.take(); }
/// ExecuteWorkList - Run the worklist algorithm for a maximum number of
/// steps. Returns true if there is still simulation state on the worklist.
bool ExecuteWorkList(const LocationContext *L, unsigned Steps,
const ProgramState *InitState);
void ExecuteWorkListWithInitialState(const LocationContext *L,
unsigned Steps,
const ProgramState *InitState,
ExplodedNodeSet &Dst);
// Functions for external checking of whether we have unfinished work
bool wasBlockAborted() const { return !blocksAborted.empty(); }
bool wasBlocksExhausted() const { return !blocksExhausted.empty(); }
bool hasWorkRemaining() const { return wasBlocksExhausted() ||
WList->hasWork() ||
wasBlockAborted(); }
/// Inform the CoreEngine that a basic block was aborted because
/// it could not be completely analyzed.
void addAbortedBlock(const ExplodedNode *node, const CFGBlock *block) {
blocksAborted.push_back(std::make_pair(block, node));
}
WorkList *getWorkList() const { return WList; }
BlocksExhausted::const_iterator blocks_exhausted_begin() const {
return blocksExhausted.begin();
}
BlocksExhausted::const_iterator blocks_exhausted_end() const {
return blocksExhausted.end();
}
BlocksAborted::const_iterator blocks_aborted_begin() const {
return blocksAborted.begin();
}
BlocksAborted::const_iterator blocks_aborted_end() const {
return blocksAborted.end();
}
/// \brief Enqueue the given set of nodes onto the work list.
void enqueue(ExplodedNodeSet &Set);
/// \brief Enqueue nodes that were created as a result of processing
/// a statement onto the work list.
void enqueue(ExplodedNodeSet &Set, const CFGBlock *Block, unsigned Idx);
/// \brief enqueue the nodes corresponding to the end of function onto the
/// end of path / work list.
void enqueueEndOfFunction(ExplodedNodeSet &Set);
};
// TODO: Turn into a calss.
struct NodeBuilderContext {
CoreEngine &Eng;
const CFGBlock *Block;
ExplodedNode *Pred;
NodeBuilderContext(CoreEngine &E, const CFGBlock *B, ExplodedNode *N)
: Eng(E), Block(B), Pred(N) { assert(B); assert(!N->isSink()); }
ExplodedNode *getPred() const { return Pred; }
/// \brief Return the CFGBlock associated with this builder.
const CFGBlock *getBlock() const { return Block; }
/// \brief Returns the number of times the current basic block has been
/// visited on the exploded graph path.
unsigned getCurrentBlockCount() const {
return Eng.WList->getBlockCounter().getNumVisited(
Pred->getLocationContext()->getCurrentStackFrame(),
Block->getBlockID());
}
};
/// \class NodeBuilder
/// \brief This is the simplest builder which generates nodes in the
/// ExplodedGraph.
///
/// The main benefit of the builder is that it automatically tracks the
/// frontier nodes (or destination set). This is the set of nodes which should
/// be propagated to the next step / builder. They are the nodes which have been
/// added to the builder (either as the input node set or as the newly
/// constructed nodes) but did not have any outgoing transitions added.
class NodeBuilder {
virtual void anchor();
protected:
const NodeBuilderContext &C;
/// Specifies if the builder results have been finalized. For example, if it
/// is set to false, autotransitions are yet to be generated.
bool Finalized;
bool HasGeneratedNodes;
/// \brief The frontier set - a set of nodes which need to be propagated after
/// the builder dies.
ExplodedNodeSet &Frontier;
/// Checkes if the results are ready.
virtual bool checkResults() {
if (!Finalized)
return false;
return true;
}
bool hasNoSinksInFrontier() {
for (iterator I = Frontier.begin(), E = Frontier.end(); I != E; ++I) {
if ((*I)->isSink())
return false;
}
return true;
}
/// Allow subclasses to finalize results before result_begin() is executed.
virtual void finalizeResults() {}
ExplodedNode *generateNodeImpl(const ProgramPoint &PP,
const ProgramState *State,
ExplodedNode *Pred,
bool MarkAsSink = false);
public:
NodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
const NodeBuilderContext &Ctx, bool F = true)
: C(Ctx), Finalized(F), HasGeneratedNodes(false), Frontier(DstSet) {
Frontier.Add(SrcNode);
}
NodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
const NodeBuilderContext &Ctx, bool F = true)
: C(Ctx), Finalized(F), HasGeneratedNodes(false), Frontier(DstSet) {
Frontier.insert(SrcSet);
assert(hasNoSinksInFrontier());
}
virtual ~NodeBuilder() {}
/// \brief Generates a node in the ExplodedGraph.
///
/// When a node is marked as sink, the exploration from the node is stopped -
/// the node becomes the last node on the path.
ExplodedNode *generateNode(const ProgramPoint &PP,
const ProgramState *State,
ExplodedNode *Pred,
bool MarkAsSink = false) {
return generateNodeImpl(PP, State, Pred, MarkAsSink);
}
const ExplodedNodeSet &getResults() {
finalizeResults();
assert(checkResults());
return Frontier;
}
typedef ExplodedNodeSet::iterator iterator;
/// \brief Iterators through the results frontier.
inline iterator begin() {
finalizeResults();
assert(checkResults());
return Frontier.begin();
}
inline iterator end() {
finalizeResults();
return Frontier.end();
}
const NodeBuilderContext &getContext() { return C; }
bool hasGeneratedNodes() { return HasGeneratedNodes; }
void takeNodes(const ExplodedNodeSet &S) {
for (ExplodedNodeSet::iterator I = S.begin(), E = S.end(); I != E; ++I )
Frontier.erase(*I);
}
void takeNodes(ExplodedNode *N) { Frontier.erase(N); }
void addNodes(const ExplodedNodeSet &S) { Frontier.insert(S); }
void addNodes(ExplodedNode *N) { Frontier.Add(N); }
};
/// \class NodeBuilderWithSinks
/// \brief This node builder keeps track of the generated sink nodes.
class NodeBuilderWithSinks: public NodeBuilder {
virtual void anchor();
protected:
SmallVector<ExplodedNode*, 2> sinksGenerated;
ProgramPoint &Location;
public:
NodeBuilderWithSinks(ExplodedNode *Pred, ExplodedNodeSet &DstSet,
const NodeBuilderContext &Ctx, ProgramPoint &L)
: NodeBuilder(Pred, DstSet, Ctx), Location(L) {}
ExplodedNode *generateNode(const ProgramState *State,
ExplodedNode *Pred,
const ProgramPointTag *Tag = 0,
bool MarkAsSink = false) {
ProgramPoint LocalLoc = (Tag ? Location.withTag(Tag): Location);
ExplodedNode *N = generateNodeImpl(LocalLoc, State, Pred, MarkAsSink);
if (N && N->isSink())
sinksGenerated.push_back(N);
return N;
}
const SmallVectorImpl<ExplodedNode*> &getSinks() const {
return sinksGenerated;
}
};
/// \class StmtNodeBuilder
/// \brief This builder class is useful for generating nodes that resulted from
/// visiting a statement. The main difference from it's parent NodeBuilder is
/// that it creates a statement specific ProgramPoint.
class StmtNodeBuilder: public NodeBuilder {
NodeBuilder *EnclosingBldr;
public:
/// \brief Constructs a StmtNodeBuilder. If the builder is going to process
/// nodes currently owned by another builder(with larger scope), use
/// Enclosing builder to transfer ownership.
StmtNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
const NodeBuilderContext &Ctx, NodeBuilder *Enclosing = 0)
: NodeBuilder(SrcNode, DstSet, Ctx), EnclosingBldr(Enclosing) {
if (EnclosingBldr)
EnclosingBldr->takeNodes(SrcNode);
}
StmtNodeBuilder(ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
const NodeBuilderContext &Ctx, NodeBuilder *Enclosing = 0)
: NodeBuilder(SrcSet, DstSet, Ctx), EnclosingBldr(Enclosing) {
if (EnclosingBldr)
for (ExplodedNodeSet::iterator I = SrcSet.begin(),
E = SrcSet.end(); I != E; ++I )
EnclosingBldr->takeNodes(*I);
}
virtual ~StmtNodeBuilder();
ExplodedNode *generateNode(const Stmt *S,
ExplodedNode *Pred,
const ProgramState *St,
bool MarkAsSink = false,
const ProgramPointTag *tag = 0,
ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
Pred->getLocationContext(), tag);
return generateNodeImpl(L, St, Pred, MarkAsSink);
}
ExplodedNode *generateNode(const ProgramPoint &PP,
ExplodedNode *Pred,
const ProgramState *State,
bool MarkAsSink = false) {
return generateNodeImpl(PP, State, Pred, MarkAsSink);
}
};
/// \brief BranchNodeBuilder is responsible for constructing the nodes
/// corresponding to the two branches of the if statement - true and false.
class BranchNodeBuilder: public NodeBuilder {
virtual void anchor();
const CFGBlock *DstT;
const CFGBlock *DstF;
bool InFeasibleTrue;
bool InFeasibleFalse;
public:
BranchNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
const NodeBuilderContext &C,
const CFGBlock *dstT, const CFGBlock *dstF)
: NodeBuilder(SrcNode, DstSet, C), DstT(dstT), DstF(dstF),
InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
// The branch node builder does not generate autotransitions.
// If there are no successors it means that both branches are infeasible.
takeNodes(SrcNode);
}
BranchNodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
const NodeBuilderContext &C,
const CFGBlock *dstT, const CFGBlock *dstF)
: NodeBuilder(SrcSet, DstSet, C), DstT(dstT), DstF(dstF),
InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
takeNodes(SrcSet);
}
ExplodedNode *generateNode(const ProgramState *State, bool branch,
ExplodedNode *Pred);
const CFGBlock *getTargetBlock(bool branch) const {
return branch ? DstT : DstF;
}
void markInfeasible(bool branch) {
if (branch)
InFeasibleTrue = true;
else
InFeasibleFalse = true;
}
bool isFeasible(bool branch) {
return branch ? !InFeasibleTrue : !InFeasibleFalse;
}
};
class IndirectGotoNodeBuilder {
CoreEngine& Eng;
const CFGBlock *Src;
const CFGBlock &DispatchBlock;
const Expr *E;
ExplodedNode *Pred;
public:
IndirectGotoNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
const Expr *e, const CFGBlock *dispatch, CoreEngine* eng)
: Eng(*eng), Src(src), DispatchBlock(*dispatch), E(e), Pred(pred) {}
class iterator {
CFGBlock::const_succ_iterator I;
friend class IndirectGotoNodeBuilder;
iterator(CFGBlock::const_succ_iterator i) : I(i) {}
public:
iterator &operator++() { ++I; return *this; }
bool operator!=(const iterator &X) const { return I != X.I; }
const LabelDecl *getLabel() const {
return llvm::cast<LabelStmt>((*I)->getLabel())->getDecl();
}
const CFGBlock *getBlock() const {
return *I;
}
};
iterator begin() { return iterator(DispatchBlock.succ_begin()); }
iterator end() { return iterator(DispatchBlock.succ_end()); }
ExplodedNode *generateNode(const iterator &I,
const ProgramState *State,
bool isSink = false);
const Expr *getTarget() const { return E; }
const ProgramState *getState() const { return Pred->State; }
const LocationContext *getLocationContext() const {
return Pred->getLocationContext();
}
};
class SwitchNodeBuilder {
CoreEngine& Eng;
const CFGBlock *Src;
const Expr *Condition;
ExplodedNode *Pred;
public:
SwitchNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
const Expr *condition, CoreEngine* eng)
: Eng(*eng), Src(src), Condition(condition), Pred(pred) {}
class iterator {
CFGBlock::const_succ_reverse_iterator I;
friend class SwitchNodeBuilder;
iterator(CFGBlock::const_succ_reverse_iterator i) : I(i) {}
public:
iterator &operator++() { ++I; return *this; }
bool operator!=(const iterator &X) const { return I != X.I; }
bool operator==(const iterator &X) const { return I == X.I; }
const CaseStmt *getCase() const {
return llvm::cast<CaseStmt>((*I)->getLabel());
}
const CFGBlock *getBlock() const {
return *I;
}
};
iterator begin() { return iterator(Src->succ_rbegin()+1); }
iterator end() { return iterator(Src->succ_rend()); }
const SwitchStmt *getSwitch() const {
return llvm::cast<SwitchStmt>(Src->getTerminator());
}
ExplodedNode *generateCaseStmtNode(const iterator &I,
const ProgramState *State);
ExplodedNode *generateDefaultCaseNode(const ProgramState *State,
bool isSink = false);
const Expr *getCondition() const { return Condition; }
const ProgramState *getState() const { return Pred->State; }
const LocationContext *getLocationContext() const {
return Pred->getLocationContext();
}
};
class CallEnterNodeBuilder {
CoreEngine &Eng;
const ExplodedNode *Pred;
// The call site. For implicit automatic object dtor, this is the trigger
// statement.
const Stmt *CE;
// The context of the callee.
const StackFrameContext *CalleeCtx;
// The parent block of the CallExpr.
const CFGBlock *Block;
// The CFGBlock index of the CallExpr.
unsigned Index;
public:
CallEnterNodeBuilder(CoreEngine &eng, const ExplodedNode *pred,
const Stmt *s, const StackFrameContext *callee,
const CFGBlock *blk, unsigned idx)
: Eng(eng), Pred(pred), CE(s), CalleeCtx(callee), Block(blk), Index(idx) {}
const ProgramState *getState() const { return Pred->getState(); }
const LocationContext *getLocationContext() const {
return Pred->getLocationContext();
}
const Stmt *getCallExpr() const { return CE; }
const StackFrameContext *getCalleeContext() const { return CalleeCtx; }
const CFGBlock *getBlock() const { return Block; }
unsigned getIndex() const { return Index; }
void generateNode(const ProgramState *state);
};
} // end GR namespace
} // end clang namespace
#endif